

Implementing VexRiscv Based
Murax SoC on Arty A7 Artix-7 PCB
from Digilent and Enabling JTAG

Connection through Xilinx’s
BSCANE2 Debug IP

By
Pradeep Krishnamurthy – Student Research Assistant, OFFIS e.V.

Frank Poppen – Senior Research Engineer, OFFIS e.V.

www.offis.de

Acknowledgement
This work was supported in part by the German Federal Ministry of Education and Research
(BMBF) within the project SATiSFy under contract no. 16KIS0821K, and within the project
Scale4Edge under contract no. 16ME0127.

OFFIS.e.V

Page | 2

Contents

1. Introduction .. 2

2. SpinalHDL - Generation of Murax SoC with BSCANE2 ... 2

3. Xilinx Vivado - Programming Arty A7 FPGA .. 3

4. Debugging - Using OpenOCD and GDB... 4

1. Introduction

Up-to-date FPGA evaluation boards, like the Digilent Arty A7 mounting a Xilinx Artix-7
FPGA, come with an integrated FTDI chip which makes programming and debugging quite
easy. In our work, we synthesized the VexRiscv based Murax processor to an Artix-7 FPGA
and at first lead out the JTAG relevant signals of the Riscv core to the board’s Pmod Header to
connect to a dedicated Olimex JTAG Adapter through a second USB cable. As it turns out, this
extra effort on hardware can be minimized by use of some Xilinx Debug IP named BSCANE2.
Collecting the required information on how to do this was tedious. So we came to the decision
to document our path to success with this short report. We expect that the reader is familiar
with the README.md to be found at https://github.com/SpinalHDL/VexRiscv
and that the reader is capable of generating the Murax SoC as it is described there.

2. SpinalHDL - Generation of Murax SoC with BSCANE2

The BSCANE2 allows access between the internal FPGA logic and the JTAG Boundary Scan
logic controller. This allows for communication between the internally running design and the
dedicated JTAG pins of the FPGA.

Steps to enable Bscane2

 After cloning all files from https://github.com/SpinalHDL/VexRiscv, go
to the path: src/main/scala/vexriscv/demo and find the Murax.scala
file.

 Comment out the following lines to remove the toplevel jtag I/O pins in
Murax.scala. Be aware that line numbers as given could move with future changes
to the file:
[164] val jtag = slave(Jtag())

…
[392] val jtagClkBuffer = SB_GB()
[393] jtagClkBuffer.USER_SIGNAL_TO_GLOBAL_BUFFER <>

io.jtag_tck
[394] jtagClkBuffer.GLOBAL_BUFFER_OUTPUT <>

murax.io.jtag.tck
…

[398] murax.io.jtag.tdi <> io.jtag_tdi
[399] murax.io.jtag.tdo <> io.jtag_tdo

OFFIS.e.V

Page | 3

[400] murax.io.jtag.tms <> io.jtag_tms
 In the Murax.scala file, delete the line:

[253] io.jtag <> plugin.io.bus.fromJtag()
 And add the lines:

[254] val jtagCtrl = JtagTapInstructionCtrl()
[255] val tap = jtagCtrl.fromXilinxBscane2(userId = 2)
[256] jtagCtrl <>

plugin.io.bus.fromJtagInstructionCtrl(ClockDoma
in(tap.TCK))

Changing the above lines, removes the Murax SoC’s JTAG ports as pins of the FPGA
and inserts the BSCANE2 Xilinx Debug IP to which the JTAG signals are now
connected.

 Add the following import statement at the beginning of Murax.scala:
import spinal.lib.com.jtag.JtagTapInstructionCtrl

With these changes in place, you generate the SoC with a demo program already in ram by use
of:

sbt "runMain vexriscv.demo.MuraxWithRamInit"

A Verilog file is generated with the name Murax.v next to four .bin files inside the

VexRiscv folder. These files are the input to the Xilinx FPGA synthesis. Inside the Murax.v
file, we can see that the BSCANE2 ports are instantiated, confirming that the BSCANE2 has
successfully been instantiated within the Murax SoC as a debug brige to JTAG.

3. Xilinx Vivado - Programming Arty A7 FPGA

There are many applications to program a FPGA. In our work we referred to the freely available
Xilinx Vivado 2020 application to synthesize and program the FPGA. Vivado is readily
available at Xilinx website and free of cost to download. This document assumes that the reader
is able to setup and execute FPGA synthesis projects. The following is not a step by step
tutorial, but gives general guiding information.

Programming the FPGA

 Create a new project and choose the board. In our case it is the Arty A7-35
(xc7a35ticsg324-1L).

 Copy the mentioned files (.v and .bin) of the previous section from the Vexriscv
folder into the Vivado project in e.g. the path:
project_name.srcs\sources_1\imports\Downloads

 Create a toplevel file by instantiating Murax I/O ports in it to blink the LED’s on the
Digilent board. (Note: The program to blink the LED’s is already present in the

four .bin files with the Murax.v file). The toplevel file and constraint

arty_a7.xdc file, if required, can be found and reused from the path:

VexRiscv/scripts/Murax/arty_a7, but you need to make sure that all the
JTAG ports of Murax are commented or deleted in the toplevel file. Remember: we
removed them in Section 2 and connected them internally to the BSCANE2 debug

OFFIS.e.V

Page | 4

bridge.

 Be aware that line numbers as given could move with future changes to the file. The
lines to remove from toplevel file are:
[43] reg tesic_tck,tesic_tms,tesic_tdi;
[44] wire tesic_tdo;
[45] reg soc_tck,soc_tms,soc_tdi;
[46] wire soc_tdo;
[47]
[48] always @(*) begin
[49] {soc_tck, soc_tms, soc_tdi } = {tck,tms,tdi};
[50] tdo = soc_tdo;
[51] end

…
[56] .io_jtag_tck(soc_tck),
[57] .io_jtag_tdi(soc_tdi),
[58] .io_jtag_tdo(soc_tdo),
[59] .io_jtag_tms(soc_tms),

 Also remove any JTAG port to pin assignments from any constraint file.

 Next, click Generate Bitstream and program the FPGA with the bit file. You can see
the LED’s blink and Murax SoC has been programmed into the FPGA.

4. Debugging - Using OpenOCD and GDB

 Clone and setup openocd with the steps as provided by
https://github.com/SpinalHDL/openocd_riscv

 You basically have to provide two files for OpenOCD to connect successfully through
the FPGA into the Murax SoC inside it:

1. usb_connect.cfg (interface configuration)

2. soc_init.cfg (take over the control of the CPU)

 usb_connect.cfg
You can take it from …
https://github.com/SpinalHDL/SaxonSoc/blob/dev-
0.3/bsp/digilent/ArtyA7SmpLinux/openocd/usb_connect.cfg …
without modifications as we would say, but make sure to check the entire path in your
system for the files xilinx-xc7.cfg and jtagspi.cfg. If required, adapt the
find and path for the lines:
[29] source [find cpld/xilinx-xc7.cfg]
[30] source [find cpld/jtagspi.cfg]

 soc_init.cfg
https://github.com/SpinalHDL/SaxonSoc/blob/dev-
0.3/bsp/digilent/ArtyA7SmpLinux/openocd/soc_init.cfg
You can take it but you need to: set cpu_count to 1 and remove lines 22 to 35 as
shown in the result below:
set cpu_count 1

for {set i 0} {$i < $cpu_count} {incr i} {

OFFIS.e.V

Page | 5

 target create saxon.cpu$i vexriscv -endian little -
chain-position $TAP_NAME -coreid $i -dbgbase
[expr $i*0x1000+0x10B80000]

 vexriscv readWaitCycles 40
 vexriscv cpuConfigFile $CPU0_YAML
 if {$SPINAL_SIM != "yes"} {
 vexriscv jtagMapping 3 3 0 1 2 2
 }
}

for {set i 0} {$i < $cpu_count} {incr i} {
 targets saxon.cpu$i
 poll_period 50
 init
 soft_reset_halt
}

puts " done"

 Run openocd:
openocd -c "set CPU0_YAML ../VexRiscv/cpu0.yaml" \

-f tcl/interface/usb_connect.cfg \
-f tcl/interface/soc_init.cfg

On success you should be able to see something like
Open On-Chip Debugger 0.10.0+dev-01231-gf8c1c8ad-dirty

(2021-05-03-10:57)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
../../cpu0.yaml
Info : auto-selecting first available session transport

"jtag". To override use 'transport select
<transport>'.

xc7.tap
Info : set servers polling period to 50ms
Info : clock speed 5000 kHz
Info : JTAG tap: xc7.tap tap/device found: 0x0362d093

(mfg: 0x049 (Xilinx), part: 0x362d, ver: 0x0)
Info : starting gdb server for saxon.cpu0 on 3333
Info : Listening on port 3333 for gdb connections
requesting target halt and executing a soft reset
 done
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections

 Information on setting up a riscv compiler and debugger toolchain are to be found at:
https://github.com/riscv/riscv-gnu-toolchain

 With openocd running you can now connect a debugger to port 3333.

 A demonstration software to compile and debug with the Murax SoC can be found at
https://github.com/SpinalHDL/VexRiscvSocSoftware in the path

VexRiscvSocSoftware/projects/murax/demo. With a make you create

OFFIS.e.V

Page | 6

the .elf in the build directory from which you then give the command:
riscv64-unknown-elf-gdb demo.elf
 The riscv debugger is started with the demo.elf program and is ready to be

connected to the CPU. Do so by issuing the following command in its
window:

 target remote localhost:3333
This command will connect the GDB server to OpenOCD

 load
This command will load the program into the FPGA. Whenever you decide to
make changes to the demo software and recompiled it, you need to upload the
resulting new executable to the CPU in this way.

 monitor reset halt
This command resets the Murax CPU and halts it to receive further
commands.

 continue
From her on you should be able to execute a regular debug session with your
VexRiscv based Murax SoC on the FPGA.

