//`define MAX_MEM `define MEM_BITS 20 /**************************************************************************************** * * File Name: ddr3.v * Version: 1.74 * Model: BUS Functional * * Dependencies: ddr3_parameters.vh * * Description: Micron SDRAM DDR3 (Double Data Rate 3) * * Limitation: - doesn't check for average refresh timings * - positive ck and ck_n edges are used to form internal clock * - positive dqs and dqs_n edges are used to latch data * - test mode is not modeled * - Duty Cycle Corrector is not modeled * - Temperature Compensated Self Refresh is not modeled * - DLL off mode is not modeled. * * Note: - Set simulator resolution to "ps" accuracy * - Set DEBUG = 0 to disable $display messages * * Disclaimer This software code and all associated documentation, comments or other * of Warranty: information (collectively "Software") is provided "AS IS" without * warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY * DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES * OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT * WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE * OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE. * FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR * THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, * ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE * OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI, * ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT, * INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, * WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, * OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE * THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGES. Because some jurisdictions prohibit the exclusion or * limitation of liability for consequential or incidental damages, the * above limitation may not apply to you. * * Copyright 2003 Micron Technology, Inc. All rights reserved. * * Rev Author Date Changes * --------------------------------------------------------------------------------------- * 0.41 JMK 05/12/06 Removed auto-precharge to power down error check. * 0.42 JMK 08/25/06 Created internal clock using ck and ck_n. * TDQS can only be enabled in EMR for x8 configurations. * CAS latency is checked vs frequency when DLL locks. * Improved checking of DQS during writes. * Added true BL4 operation. * 0.43 JMK 08/14/06 Added checking for setting reserved bits in Mode Registers. * Added ODTS Readout. * Replaced tZQCL with tZQinit and tZQoper * Fixed tWRPDEN and tWRAPDEN during BC4MRS and BL4MRS. * Added tRFC checking for Refresh to Power-Down Re-Entry. * Added tXPDLL checking for Power-Down Exit to Refresh to Power-Down Entry * Added Clock Frequency Change during Precharge Power-Down. * Added -125x speed grades. * Fixed tRCD checking during Write. * 1.00 JMK 05/11/07 Initial release * 1.10 JMK 06/26/07 Fixed ODTH8 check during BLOTF * Removed temp sensor readout from MPR * Updated initialization sequence * Updated timing parameters * 1.20 JMK 09/05/07 Updated clock frequency change * Added ddr3_dimm module * 1.30 JMK 01/23/08 Updated timing parameters * 1.40 JMK 12/02/08 Added support for DDR3-1866 and DDR3-2133 * renamed ddr3_dimm.v to ddr3_module.v and added SODIMM support. * Added multi-chip package model support in ddr3_mcp.v * 1.50 JMK 05/04/08 Added 1866 and 2133 speed grades. * 1.60 MYY 07/10/09 Merging of 1.50 version and pre-1.0 version changes * 1.61 SPH 12/10/09 Only check tIH for cmd_addr if CS# LOW * 1.62 SPH 10/26/10 Added 4Gb DDR3 SDRAM support * 1.63 MYY 11/09/10 Added Dll Disable mode * 1.64 MYY 07/28/11 Check dqs_in for dqs timing check * 1.65 MYY 09/19/11 Widen internal bus width * 1.66 MYY 01/20/12 Support ODT tied high feature * 1.67 MYY 02/03/12 Added TJIT_PER margin for timing checks * 1.68 SPH 04/02/12 Added memory preload * 1.69 SPH 03/19/13 Update tZQCS, tZQinit, tZQoper timing parameters * 1.70 SPH 04/08/14 Update tRFC to PRECHARGE check * 1.71 SPH 04/21/14 Added 8Gb mono die parameters * Remove strict CL check * 1.72 DLH 06/18/15 calculate TZQCS from current tCK * 1.73 SPH 08/20/15 calculate TZQINIT/TZQOPER from current tCK * 1.74 SPH 09/08/15 Fix CWL 9 check to use 1071ps instead of 15e3/14 (round up error) * Fix tIS don't care for Bank and Address when DES / NOP *****************************************************************************************/ // DO NOT CHANGE THE TIMESCALE // MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION `timescale 1ps / 1ps module ddr3 ( rst_n, ck, ck_n, cke, cs_n, ras_n, cas_n, we_n, dm_tdqs, ba, addr, dq, dqs, dqs_n, tdqs_n, odt ); `define den4096Mb `define x16 `define sg125 `ifdef den1024Mb `include "1024Mb_ddr3_parameters.vh" `elsif den2048Mb `include "2048Mb_ddr3_parameters.vh" `elsif den4096Mb `include "4096Mb_ddr3_parameters.vh" `elsif den8192Mb `include "8192Mb_ddr3_parameters.vh" `else // NOTE: Intentionally cause a compile fail here to force the users // to select the correct component density before continuing ERROR: You must specify component density with +define+den____Mb. `endif parameter check_strict_mrbits = 1; parameter check_strict_timing = 1; parameter feature_pasr = 1; parameter feature_truebl4 = 0; parameter feature_odt_hi = 0; parameter PERTCKAVG=TDLLK; // text macros `define DQ_PER_DQS DQ_BITS/DQS_BITS `define BANKS (1<= 2. \nBL_MAX = %d", BL_MAX); if ((1< BL_MAX) $display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter."); $timeformat (-12, 1, " ps", 1); seed = RANDOM_SEED; ck_cntr = 0; end function integer get_rtt_wr; input [1:0] rtt; begin get_rtt_wr = RZQ/{rtt[0], rtt[1], 1'b0}; end endfunction function integer get_rtt_nom; input [2:0] rtt; begin case (rtt) 1: get_rtt_nom = RZQ/4; 2: get_rtt_nom = RZQ/2; 3: get_rtt_nom = RZQ/6; 4: get_rtt_nom = RZQ/12; 5: get_rtt_nom = RZQ/8; default : get_rtt_nom = 0; endcase end endfunction // calculate the absolute value of a real number function real abs_value; input arg; real arg; begin if (arg < 0.0) abs_value = -1.0 * arg; else abs_value = arg; end endfunction function integer ceil; input number; real number; // LMR 4.1.7 // When either operand of a relational expression is a real operand then the other operand shall be converted // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values. if (number > $rtoi(number)) ceil = $rtoi(number) + 1; else ceil = number; endfunction function integer floor; input number; real number; // LMR 4.1.7 // When either operand of a relational expression is a real operand then the other operand shall be converted // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values. if (number < $rtoi(number)) floor = $rtoi(number) - 1; else floor = number; endfunction function int max( input int a, b ); max = (a < b) ? b : a; endfunction function int min( input int a, b ); min = (a > b) ? b : a; endfunction `ifdef MAX_MEM function integer open_bank_file( input integer bank ); integer fd; reg [2048:1] filename; begin $sformat( filename, "%0s/%m.%0d", tmp_model_dir, bank ); fd = $fopen(filename, "wb+"); if (fd == 0) begin $display("%m: at time %0t ERROR: failed to open %0s.", $time, filename); $finish; end else begin if (DEBUG) $display("%m: at time %0t INFO: opening %0s.", $time, filename); open_bank_file = fd; end end endfunction function [RFF_BITS:1] read_from_file( input integer fd, input integer index ); integer code; integer offset; reg [1024:1] msg; reg [RFF_BITS:1] read_value; begin offset = index * RFF_CHUNK; code = $fseek( fd, offset, 0 ); // $fseek returns 0 on success, -1 on failure if (code != 0) begin $display("%m: at time %t ERROR: fseek to %d failed", $time, offset); $finish; end code = $fscanf(fd, "%z", read_value); // $fscanf returns number of items read if (code != 1) begin if ($ferror(fd,msg) != 0) begin $display("%m: at time %t ERROR: fscanf failed at %d", $time, index); $display(msg); $finish; end else read_value = 'hx; end /* when reading from unwritten portions of the file, 0 will be returned. * Use 0 in bit 1 as indicator that invalid data has been read. * A true 0 is encoded as Z. */ if (read_value[1] === 1'bz) // true 0 encoded as Z, data is valid read_value[1] = 1'b0; else if (read_value[1] === 1'b0) // read from file section that has not been written read_value = 'hx; read_from_file = read_value; end endfunction task write_to_file( input integer fd, input integer index, input [RFF_BITS:1] data ); integer code; integer offset; begin offset = index * RFF_CHUNK; code = $fseek( fd, offset, 0 ); if (code != 0) begin $display("%m: at time %t ERROR: fseek to %d failed", $time, offset); $finish; end // encode a valid data if (data[1] === 1'bz) data[1] = 1'bx; else if (data[1] === 1'b0) data[1] = 1'bz; $fwrite( fd, "%z", data ); end endtask `else function get_index; input [`MAX_BITS-1:0] addr; begin : index get_index = 0; for (memory_index=0; memory_index>(ROW_BITS+COL_BITS-BL_BITS)); if (!banks[ba]) begin //bank is selected to keep address[i] = address[memory_index]; memory[i] = memory[memory_index]; i = i + 1; end end // clean up the unused banks for (memory_index=i; memory_index TRAS_MAX) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank); if ($time - tm_bank_activate[bank] < TRAS_MIN-TJIT_PER) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end {1'bx, SAME_BANK , ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC-TJIT_PER) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'bx, SAME_BANK , ACTIVATE , WRITE } , {1'bx, SAME_BANK , ACTIVATE , READ } : ; // tRCD is checked outside this task {1'b0, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD) || (ck_cntr - ck_activate < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_group_activate[bank[1]] < TRRD) || (ck_cntr - ck_group_activate[bank[1]] < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_GROUP, ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD_DG) || (ck_cntr - ck_activate < TRRD_DG_TCK)) $display ("%m: at time %t ERROR: tRRD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'bx, DIFF_BANK , ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC-TJIT_PER) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end {1'bx, DIFF_BANK , ACTIVATE , PWR_DOWN } : begin if (ck_cntr - ck_activate < TACTPDEN) $display ("%m: at time %t ERROR: tACTPDEN violation during %s", $time, cmd_string[cmd]); end // write {1'bx, SAME_BANK , WRITE , PRECHARGE} : begin if (($time - tm_bank_write_end[bank] < TWR-TJIT_PER) || (ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_group_write[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_group_write[bank[1]] < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_GROUP, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_GROUP, WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_DG_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'bx, DIFF_BANK , WRITE , PWR_DOWN } : begin if (($time - tm_write_end < TWR-TJIT_PER) || (ck_cntr - ck_write < write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWRPDEN violation during %s", $time, cmd_string[cmd]); end // read {1'bx, SAME_BANK , READ , PRECHARGE} : begin if (($time - tm_bank_read_end[bank] < TRTP-TJIT_PER) || (ck_cntr - ck_bank_read[bank] < additive_latency + TRTP_TCK)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task {1'b1, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task {1'b0, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_group_read[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, DIFF_GROUP, READ , WRITE } : ; // tRTW is checked outside this task {1'b1, DIFF_GROUP, READ , READ } : begin if (ck_cntr - ck_read < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'bx, DIFF_BANK , READ , PWR_DOWN } : begin if (ck_cntr - ck_read < read_latency + 5) $display ("%m: at time %t ERROR: tRDPDEN violation during %s", $time, cmd_string[cmd]); end // zq {1'bx, DIFF_BANK , ZQ , LOAD_MODE} : ; // 1 tCK {1'bx, DIFF_BANK , ZQ , REFRESH } , {1'bx, DIFF_BANK , ZQ , PRECHARGE} , {1'bx, DIFF_BANK , ZQ , ACTIVATE } , {1'bx, DIFF_BANK , ZQ , ZQ } , {1'bx, DIFF_BANK , ZQ , PWR_DOWN } , {1'bx, DIFF_BANK , ZQ , SELF_REF } : begin if (ck_cntr - ck_zqinit < TZQINIT) $display ("%m: at time %t ERROR: tZQinit violation during %s", $time, cmd_string[cmd]); if (ck_cntr - ck_zqoper < TZQOPER) $display ("%m: at time %t ERROR: tZQoper violation during %s", $time, cmd_string[cmd]); if (ck_cntr - ck_zqcs < TZQCS) $display ("%m: at time %t ERROR: tZQCS violation during %s", $time, cmd_string[cmd]); end // power down {1'bx, DIFF_BANK , PWR_DOWN , LOAD_MODE} , {1'bx, DIFF_BANK , PWR_DOWN , REFRESH } , {1'bx, DIFF_BANK , PWR_DOWN , PRECHARGE} , {1'bx, DIFF_BANK , PWR_DOWN , ACTIVATE } , {1'bx, DIFF_BANK , PWR_DOWN , WRITE } , {1'bx, DIFF_BANK , PWR_DOWN , ZQ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end {1'bx, DIFF_BANK , PWR_DOWN , READ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); else if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]); end {1'bx, DIFF_BANK , PWR_DOWN , PWR_DOWN } , {1'bx, DIFF_BANK , PWR_DOWN , SELF_REF } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); if ((tm_power_down > tm_refresh) && ($time - tm_refresh < TRFC_MIN)) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); if ((tm_refresh > tm_power_down) && (($time - tm_power_down < TXPDLL) || (ck_cntr - ck_power_down < TXPDLL_TCK))) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]); if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end // self refresh {1'bx, DIFF_BANK , SELF_REF , LOAD_MODE} , {1'bx, DIFF_BANK , SELF_REF , REFRESH } , {1'bx, DIFF_BANK , SELF_REF , PRECHARGE} , {1'bx, DIFF_BANK , SELF_REF , ACTIVATE } , {1'bx, DIFF_BANK , SELF_REF , WRITE } , {1'bx, DIFF_BANK , SELF_REF , ZQ } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]); end {1'bx, DIFF_BANK , SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSDLL) $display ("%m: at time %t ERROR: tXSDLL violation during %s", $time, cmd_string[cmd]); end {1'bx, DIFF_BANK , SELF_REF , PWR_DOWN } , {1'bx, DIFF_BANK , SELF_REF , SELF_REF } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]); if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end endcase end endtask task cmd_task; inout prev_cke; input cke; input [2:0] cmd; input [BA_BITS-1:0] bank; input [ADDR_BITS-1:0] addr; reg [`BANKS:0] i; integer j; reg [`BANKS:0] tfaw_cntr; reg [COL_BITS-1:0] col; reg group; begin // tRFC max check if (!er_trfc_max && !in_self_refresh) begin if ($time - tm_refresh > TRFC_MAX && check_strict_timing) begin $display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]); er_trfc_max = 1; end end if (cke) begin if ((cmd < NOP) && (cmd != PRECHARGE)) begin if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK)) $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]); for (j=0; j<=SELF_REF; j=j+1) begin chk_err(SAME_BANK , bank, j, cmd); chk_err(DIFF_BANK , bank, j, cmd); chk_err(DIFF_GROUP, bank, j, cmd); end end case (cmd) LOAD_MODE : begin if (|odt_pipeline) $display ("%m: at time %t ERROR: ODTL violation during %s", $time, cmd_string[cmd]); if (odt_state && !feature_odt_hi) $display ("%m: at time %t ERROR: ODT must be off prior to %s", $time, cmd_string[cmd]); if (|active_bank) begin $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank); if (bank>>2) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bank bits must be programmed to zero", $time, cmd_string[cmd], bank); end case (bank) 0 : begin // Burst Length if (addr[1:0] == 2'b00) begin burst_length = 8; blotf = 0; truebl4 = 0; if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length); end else if (addr[1:0] == 2'b01) begin burst_length = 8; blotf = 1; if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Select via A12", $time, cmd_string[cmd], bank); end else if (addr[1:0] == 2'b10) begin burst_length = 4; blotf = 0; if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Fixed %d (chop)", $time, cmd_string[cmd], bank, burst_length); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, addr[1:0]); end // Burst Order burst_order = addr[3]; if (!burst_order) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank); end else if (burst_order) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order); end // CAS Latency cas_latency = {addr[2],addr[6:4]} + 4; set_latency; if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); end else begin $display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); end // Reserved if (addr[7] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end // DLL Reset dll_reset = addr[8]; if (!dll_reset) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank); end else if (dll_reset) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank); dll_locked = 0; init_dll_reset = 1; ck_dll_reset <= ck_cntr; end else begin $display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset); end // Write Recovery if (addr[11:9] == 0) begin write_recovery = 16; end else if (addr[11:9] < 4) begin write_recovery = addr[11:9] + 4; end else begin write_recovery = 2*addr[11:9]; end if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); end // Power Down Mode low_power = !addr[12]; if (!low_power) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL on", $time, cmd_string[cmd], bank); end else if (low_power) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL off", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power); end // Reserved if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end end 1 : begin // DLL Enable dll_en = !addr[0]; if (!dll_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank); if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d DLL off mode is not fully modeled", $time, cmd_string[cmd], bank); end else if (dll_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en); end // Output Drive Strength if ({addr[5], addr[1]} == 2'b00) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/6); end else if ({addr[5], addr[1]} == 2'b01) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/7); end else if ({addr[5], addr[1]} == 2'b11) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/5); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, {addr[5], addr[1]}); end // ODT Rtt (Rtt_NOM) odt_rtt_nom = {addr[9], addr[6], addr[2]}; if (odt_rtt_nom == 3'b000) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank); odt_en = 0; end else if ((odt_rtt_nom < 4) || ((!addr[7] || (addr[7] && addr[12])) && (odt_rtt_nom < 6))) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_nom(odt_rtt_nom)); odt_en = 1; end else begin $display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt_nom); odt_en = 0; end // Report the additive latency value al = addr[4:3]; set_latency; if (al == 0) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, al); end else if ((al >= AL_MIN) && (al <= AL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = CL - %d", $time, cmd_string[cmd], bank, al); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, al); end // Write Levelization write_levelization = addr[7]; if (!write_levelization) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Disabled", $time, cmd_string[cmd], bank); end else if (write_levelization) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Write Levelization = %d", $time, cmd_string[cmd], bank, write_levelization); end // Reserved if (addr[8] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end // Reserved if (addr[10] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end // TDQS Enable tdqs_en = addr[11]; if (!tdqs_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Disabled", $time, cmd_string[cmd], bank); end else if (tdqs_en) begin if (8 == DQ_BITS) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t WARNING: %s %d Illegal TDQS Enable. TDQS only exists on a x8 part", $time, cmd_string[cmd], bank); tdqs_en = 0; end end else begin $display ("%m: at time %t ERROR: %s %d Illegal TDQS Enable = %d", $time, cmd_string[cmd], bank, tdqs_en); end // Output Enable out_en = !addr[12]; if (!out_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Disabled", $time, cmd_string[cmd], bank); end else if (out_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Qoff = %d", $time, cmd_string[cmd], bank, out_en); end // Reserved if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end end 2 : begin if (feature_pasr) begin // Partial Array Self Refresh pasr = addr[2:0]; case (pasr) 3'b000 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-7", $time, cmd_string[cmd], bank); 3'b001 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-3", $time, cmd_string[cmd], bank); 3'b010 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-1", $time, cmd_string[cmd], bank); 3'b011 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0", $time, cmd_string[cmd], bank); 3'b100 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 2-7", $time, cmd_string[cmd], bank); 3'b101 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 4-7", $time, cmd_string[cmd], bank); 3'b110 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 6-7", $time, cmd_string[cmd], bank); 3'b111 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 7", $time, cmd_string[cmd], bank); default : $display ("%m: at time %t ERROR: %s %d Illegal Partial Array Self Refresh = %d", $time, cmd_string[cmd], bank, pasr); endcase end else if (addr[2:0] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end // CAS Write Latency cas_write_latency = addr[5:3]+5; set_latency; if ((cas_write_latency >= CWL_MIN) && (cas_write_latency <= CWL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency); end else begin $display ("%m: at time %t ERROR: %s %d Illegal CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency); end // Auto Self Refresh Method asr = addr[6]; if (!asr) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Disabled", $time, cmd_string[cmd], bank); end else if (asr) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Enabled", $time, cmd_string[cmd], bank); if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Auto Self Refresh is not modeled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Auto Self Refresh = %d", $time, cmd_string[cmd], bank, asr); end // Self Refresh Temperature srt = addr[7]; if (!srt) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Normal", $time, cmd_string[cmd], bank); end else if (srt) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Extended", $time, cmd_string[cmd], bank); if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Self Refresh Temperature is not modeled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Self Refresh Temperature = %d", $time, cmd_string[cmd], bank, srt); end if (asr && srt) $display ("%m: at time %t ERROR: %s %d SRT must be set to 0 when ASR is enabled.", $time, cmd_string[cmd], bank); // Reserved if (addr[8] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end // Dynamic ODT (Rtt_WR) odt_rtt_wr = addr[10:9]; if (odt_rtt_wr == 2'b00) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT = Disabled", $time, cmd_string[cmd], bank); dyn_odt_en = 0; end else if ((odt_rtt_wr > 0) && (odt_rtt_wr < 3)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_wr(odt_rtt_wr)); dyn_odt_en = 1; end else begin $display ("%m: at time %t ERROR: %s %d Illegal Dynamic ODT = %d", $time, cmd_string[cmd], bank, odt_rtt_wr); dyn_odt_en = 0; end // Reserved if (ADDR_BITS>13 && addr[13:11] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end end 3 : begin mpr_select = addr[1:0]; // MultiPurpose Register Select if (mpr_select == 2'b00) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Select = Pre-defined pattern", $time, cmd_string[cmd], bank); end else begin if (check_strict_mrbits) $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Select = %d", $time, cmd_string[cmd], bank, mpr_select); end // MultiPurpose Register Enable mpr_en = addr[2]; if (!mpr_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Disabled", $time, cmd_string[cmd], bank); end else if (mpr_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Enable = %d", $time, cmd_string[cmd], bank, mpr_en); end if (feature_truebl4 && (addr[11] == 1'b1)) begin if (addr[11] == 1'b1) begin truebl4 = 1; $display(" EMRS3 Set True Bl4 mode only "); end end // Reserved if (ADDR_BITS>13 && addr[13:3] !== 0 && check_strict_mrbits) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank); end end endcase if (dyn_odt_en && write_levelization) $display ("%m: at time %t ERROR: Dynamic ODT is not available during Write Leveling mode.", $time); init_mode_reg[bank] = 1; mode_reg[bank] = addr; // dll_reset bit self clear if(bank==0 && addr[8]==1'b1) mode_reg[0][8] <= #($rtoi(tck_avg)) 1'b0; tm_load_mode <= $time; ck_load_mode <= ck_cntr; end end REFRESH : begin if (mpr_en) begin $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (|active_bank) begin $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]); er_trfc_max = 0; ref_cntr = ref_cntr + 1; tm_refresh <= $time; ck_refresh <= ck_cntr; end end PRECHARGE : begin if (addr[AP]) begin if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]); end // PRECHARGE command will be treated as a NOP if there is no open row in that bank (idle state), // or if the previously open row is already in the process of precharging if (|active_bank) begin if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK)) $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]); if (mpr_en) begin $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin for (i=0; i<`BANKS; i=i+1) begin if (active_bank[i]) begin if (addr[AP] || (i == bank)) begin for (j=0; j<=SELF_REF; j=j+1) begin chk_err(SAME_BANK, i, j, cmd); chk_err(DIFF_BANK, i, j, cmd); end if (auto_precharge_bank[i]) begin $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], i); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], i); active_bank[i] = 1'b0; tm_bank_precharge[i] <= $time; tm_precharge <= $time; ck_precharge <= ck_cntr; end end end end end end // if (|active_bank) else begin chk_err(DIFF_BANK, 0, REFRESH, PRECHARGE); end end ACTIVATE : begin tfaw_cntr = 0; for (i=0; i<`BANKS; i=i+1) begin if ($time - tm_bank_activate[i] < TFAW) begin tfaw_cntr = tfaw_cntr + 1; end end if (tfaw_cntr > 3) begin $display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank); end if (mpr_en) begin $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (!init_done) begin $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (active_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else begin if (addr >= 1< AP `else col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP `endif if (col >= 1< AP `else col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP `endif if (col >= 1< TPD_MAX) $display ("%m: at time %t ERROR: tPD maximum violation during Power Down Exit", $time); if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time); in_power_down = 0; if ((active_bank == 0) && low_power) begin // precharge power down with dll off if (ck_cntr - ck_odt < write_latency - 1) $display ("%m: at time %t WARNING: tANPD violation during Power Down Exit. Synchronous or asynchronous change in termination resistance is possible.", $time); tm_slow_exit_pd <= $time; ck_slow_exit_pd <= ck_cntr; end tm_power_down <= $time; ck_power_down <= ck_cntr; end if (in_self_refresh) begin if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK)) $display ("%m: at time %t ERROR: tCKSRX violation during Self Refresh Exit", $time); if (ck_cntr - ck_cke_cmd < TCKESR_TCK) $display ("%m: at time %t ERROR: tCKESR violation during Self Refresh Exit", $time); if ($time - tm_cke < TISXR) $display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time); if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time); in_self_refresh = 0; ck_dll_reset <= ck_cntr; ck_self_refresh <= ck_cntr; tm_self_refresh <= $time; tm_refresh <= $time; end end endcase if ((prev_cke !== 1) && (cmd !== NOP)) begin $display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time); end if (!init_done) begin case (init_step) 0 : begin if ($time - tm_rst_n < 500000000 && check_strict_timing) $display ("%m at time %t WARNING: 500 us is required after RST_N goes inactive before CKE goes active.", $time); tm_txpr <= $time; ck_txpr <= ck_cntr; init_step = init_step + 1; end 1 : begin if (dll_en) init_step = init_step + 1; end 2 : begin if (&init_mode_reg && init_dll_reset && zq_set) begin if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time); init_done = 1; end end endcase end end else if (prev_cke) begin if ((!init_done) && (init_step > 1)) begin $display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time); if (STOP_ON_ERROR) $stop(0); end case (cmd) REFRESH : begin if ($time - tm_txpr < TXPR) $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[SELF_REF]); for (j=0; j<=SELF_REF; j=j+1) begin chk_err(DIFF_BANK, bank, j, SELF_REF); end if (mpr_en) begin $display ("%m: at time %t ERROR: Self Refresh Failure. Multipurpose Register must be disabled.", $time); if (STOP_ON_ERROR) $stop(0); end else if (|active_bank) begin $display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time); if (STOP_ON_ERROR) $stop(0); end else if (odt_state) begin $display ("%m: at time %t ERROR: Self Refresh Failure. ODT must be off prior to entering Self Refresh", $time); if (STOP_ON_ERROR) $stop(0); end else if (!init_done) begin $display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time); if (feature_pasr) // Partial Array Self Refresh case (pasr) 3'b000 : ;//keep Bank 0-7 3'b001 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 4-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hF0); end 3'b010 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 2-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFC); end 3'b011 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 1-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFE); end 3'b100 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-1 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h03); end 3'b101 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-3 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h0F); end 3'b110 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-5 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h3F); end 3'b111 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-6 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h7F); end endcase in_self_refresh = 1; dll_locked = 0; end end NOP : begin // entering precharge power down with dll off and tANPD has not been satisfied if (low_power && (active_bank == 0) && |odt_pipeline) $display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]); if ($time - tm_txpr < TXPR) $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[PWR_DOWN]); for (j=0; j<=SELF_REF; j=j+1) begin chk_err(DIFF_BANK, bank, j, PWR_DOWN); end if (mpr_en) begin $display ("%m: at time %t ERROR: Power Down Failure. Multipurpose Register must be disabled.", $time); if (STOP_ON_ERROR) $stop(0); end else if (!init_done) begin $display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) begin if (|active_bank) begin $display ("%m: at time %t INFO: Active Power Down Enter", $time); end else begin $display ("%m: at time %t INFO: Precharge Power Down Enter", $time); end end in_power_down = 1; end end default : begin $display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time); end endcase end else if (in_self_refresh || in_power_down) begin if ((ck_cntr - ck_cke_cmd <= TCPDED) && (cmd !== NOP)) $display ("%m: at time %t ERROR: tCPDED violation during Power Down or Self Refresh Entry. NOP or Deselect is required.", $time); end prev_cke = cke; end endtask task data_task; reg [BA_BITS-1:0] bank; reg [ROW_BITS-1:0] row; reg [COL_BITS-1:0] col; integer i; integer j; begin if (diff_ck) begin for (i=0; i<64; i=i+1) begin if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg))) $display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/32], i%32); if (check_write_dqs_high[i]) $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/32], i%32); end check_write_dqs_high <= 0; end else begin for (i=0; i<64; i=i+1) begin if (dll_locked && dq_in_valid) begin tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]); if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg)) $display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/32], i%32); end if (check_write_dqs_low[i]) $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/32], i%32); end check_write_preamble <= 0; check_write_postamble <= 0; check_write_dqs_low <= 0; end if (wr_pipeline[0] || rd_pipeline[0]) begin bank = ba_pipeline[0]; row = row_pipeline[0]; col = col_pipeline[0]; burst_cntr = 0; memory_read(bank, row, col, memory_data); end // burst counter if (burst_cntr < burst_length) begin burst_position = col ^ burst_cntr; if (!burst_order) begin burst_position[BO_BITS-1:0] = col + burst_cntr; end burst_cntr = burst_cntr + 1; end // write dqs counter if (wr_pipeline[WDQS_PRE + 1]) begin wdqs_cntr = WDQS_PRE + bl_pipeline[WDQS_PRE + 1] + WDQS_PST - 1; end // write dqs if ((wr_pipeline[2]) && (wdq_cntr == 0)) begin //write preamble check_write_preamble <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}}; end if (wdqs_cntr > 1) begin // write data if ((wdqs_cntr - WDQS_PST)%2) begin check_write_dqs_high <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}}; end else begin check_write_dqs_low <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}}; end end if (wdqs_cntr == WDQS_PST) begin // write postamble check_write_postamble <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}}; end if (wdqs_cntr > 0) begin wdqs_cntr = wdqs_cntr - 1; end // write dq if (dq_in_valid) begin // write data bit_mask = 0; if (diff_ck) begin for (i=0; i>(burst_position*DQ_BITS); if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); if (burst_cntr%BL_MIN == 0) begin memory_write(bank, row, col, memory_data); end end if (wr_pipeline[1]) begin wdq_cntr = bl_pipeline[1]; end if (wdq_cntr > 0) begin wdq_cntr = wdq_cntr - 1; dq_in_valid = 1'b1; end else begin dq_in_valid = 1'b0; dqs_in_valid <= 1'b0; for (i=0; i<63; i=i+1) begin wdqs_pos_cntr[i] <= 0; end end if (wr_pipeline[0]) begin b2b_write <= 1'b0; end if (wr_pipeline[2]) begin if (dqs_in_valid) begin b2b_write <= 1'b1; end dqs_in_valid <= 1'b1; wr_burst_length = bl_pipeline[2]; end // read dqs enable counter if (rd_pipeline[RDQSEN_PRE]) begin rdqsen_cntr = RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1; end if (rdqsen_cntr > 0) begin rdqsen_cntr = rdqsen_cntr - 1; dqs_out_en = 1'b1; end else begin dqs_out_en = 1'b0; end // read dqs counter if (rd_pipeline[RDQS_PRE]) begin rdqs_cntr = RDQS_PRE + bl_pipeline[RDQS_PRE] + RDQS_PST - 1; end // read dqs if (((rd_pipeline>>1 & {RDQS_PRE{1'b1}}) > 0) && (rdq_cntr == 0)) begin //read preamble dqs_out = 1'b0; end else if (rdqs_cntr > RDQS_PST) begin // read data dqs_out = rdqs_cntr - RDQS_PST; end else if (rdqs_cntr > 0) begin // read postamble dqs_out = 1'b0; end else begin dqs_out = 1'b1; end if (rdqs_cntr > 0) begin rdqs_cntr = rdqs_cntr - 1; end // read dq enable counter if (rd_pipeline[RDQEN_PRE]) begin rdqen_cntr = RDQEN_PRE + bl_pipeline[RDQEN_PRE] + RDQEN_PST; end if (rdqen_cntr > 0) begin rdqen_cntr = rdqen_cntr - 1; dq_out_en = 1'b1; end else begin dq_out_en = 1'b0; end // read dq if (rd_pipeline[0]) begin rdq_cntr = bl_pipeline[0]; end if (rdq_cntr > 0) begin // read data if (mpr_en) begin `ifdef MPR_DQ0 // DQ0 output MPR data, other DQ low if (mpr_select == 2'b00) begin // Calibration Pattern dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, calibration_pattern[burst_position]}}; end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS) dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, temp_sensor[burst_position]}}; end else begin // Reserved dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, 1'bx}}; end `else // all DQ output MPR data if (mpr_select == 2'b00) begin // Calibration Pattern dq_temp = {DQS_BITS{{`DQ_PER_DQS{calibration_pattern[burst_position]}}}}; end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS) dq_temp = {DQS_BITS{{`DQ_PER_DQS{temp_sensor[burst_position]}}}}; end else begin // Reserved dq_temp = {DQS_BITS{{`DQ_PER_DQS{1'bx}}}}; end `endif if (DEBUG) $display ("%m: at time %t READ @ DQS MultiPurpose Register %d, col = %d, data = %b", $time, mpr_select, burst_position, dq_temp[0]); end else begin dq_temp = memory_data>>(burst_position*DQ_BITS); if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); end dq_out = dq_temp; rdq_cntr = rdq_cntr - 1; end else begin dq_out = {DQ_BITS{1'b1}}; end // delay signals prior to output if (RANDOM_OUT_DELAY && (dqs_out_en || (|dqs_out_en_dly) || dq_out_en || (|dq_out_en_dly))) begin for (i=0; i dqsck[i] + TQH*tck_avg + TDQSQ) begin dqsck_max = dqsck[i] + TQH*tck_avg + TDQSQ; end dqsck_min = -1*TDQSCK; if (dqsck_min < dqsck[i] - TQH*tck_avg - TDQSQ) begin dqsck_min = dqsck[i] - TQH*tck_avg - TDQSQ; end // DQSQ requirements // 1.) less than tDQSQ // 2.) greater than 0 // 3.) greater than tQH from the previous DQS edge dqsq_min = 0; if (dqsq_min < dqsck[i] - TQH*tck_avg) begin dqsq_min = dqsck[i] - TQH*tck_avg; end if (dqsck_min == dqsck_max) begin dqsck[i] = dqsck_min; end else begin dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max); end dqsq_max = TDQSQ + dqsck[i]; dqs_out_en_dly[i] <= #(tck_avg/2) dqs_out_en; dqs_out_dly[i] <= #(tck_avg/2 + dqsck[i]) dqs_out; if (!write_levelization) begin for (j=0; j<`DQ_PER_DQS; j=j+1) begin dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2) dq_out_en; if (dqsq_min == dqsq_max) begin dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + dqsq_min) dq_out[i*`DQ_PER_DQS + j]; end else begin dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j]; end end end end end else begin if (dll_en) if(diff_ck) out_delay = ($rtoi(tch_avg) > 50000) ? 0 : $rtoi(tch_avg); else out_delay = ($rtoi(tcl_avg) > 50000) ? 0 : $rtoi(tcl_avg); else if(diff_ck) out_delay = ($rtoi(tch_avg) > 50000) ? 0 : $rtoi(tch_avg) + TDQSCK_DLLDIS; else out_delay = ($rtoi(tcl_avg) > 50000) ? 0 : $rtoi(tcl_avg) + TDQSCK_DLLDIS; dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}}; dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }}; if (write_levelization !== 1'b1) begin dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }}; dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }}; end end end endtask always @ (posedge rst_n_in) begin : reset integer i; if (rst_n_in) begin if ($time < 200000000 && check_strict_timing) $display ("%m at time %t WARNING: 200 us is required before RST_N goes inactive.", $time); if (cke_in !== 1'b0) $display ("%m: at time %t ERROR: CKE must be inactive when RST_N goes inactive.", $time); if ($time - tm_cke < 10000) $display ("%m: at time %t ERROR: CKE must be maintained inactive for 10 ns before RST_N goes inactive.", $time); // clear memory `ifdef MAX_MEM // verification group does not erase memory // for (banki = 0; banki < `BANKS; banki = banki + 1) begin // $fclose(memfd[banki]); // memfd[banki] = open_bank_file(banki); // end `else memory_used <= 0; //erase memory `endif end end always @(negedge rst_n_in or posedge diff_ck or negedge diff_ck) begin : main integer i; if (!rst_n_in) begin reset_task; end else begin if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1)) $display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time); data_task; // Clock Frequency Change is legal: // 1.) During Self Refresh // 2.) During Precharge Power Down (DLL on or off) if (in_self_refresh || (in_power_down && (active_bank == 0))) begin if (diff_ck) begin tjit_per_rtime = $time - tm_ck_pos - tck_avg; end else begin tjit_per_rtime = $time - tm_ck_neg - tck_avg; end if (dll_locked && (abs_value(tjit_per_rtime) > TJIT_PER)) begin if ((tm_ck_pos - tm_cke_cmd < TCKSRE) || (ck_cntr - ck_cke_cmd < TCKSRE_TCK)) $display ("%m: at time %t ERROR: tCKSRE violation during Self Refresh or Precharge Power Down Entry", $time); if (odt_state) begin $display ("%m: at time %t ERROR: Clock Frequency Change Failure. ODT must be off prior to Clock Frequency Change.", $time); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: Clock Frequency Change detected. DLL Reset is Required.", $time); tm_freq_change <= $time; ck_freq_change <= ck_cntr; dll_locked = 0; end end end if (diff_ck) begin // check setup of command signals if ($time > TIS) begin if ($time - tm_cke < TIS) $display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time); if (cke_in) begin for (i=0; i<3; i=i+1) begin if ($time - tm_cmd_addr[i] < TIS) $display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time); end end if (cke_in & !(cs_n_in | (ras_n_in & cas_n_in & we_n_in))) begin // Bank and Address are don't care when DES or NOP for (i=4; i<23; i=i+1) begin if ($time - tm_cmd_addr[i] < TIS) $display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time); end end end // update current state if (dll_locked) begin if (mr_chk == 0) begin mr_chk = 1; end else if (init_mode_reg[0] && (mr_chk == 1)) begin // check CL value against the clock frequency // check WR value against the clock frequency if (ceil(write_recovery*tck_avg) < TWR) $display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg); // check the CWL value against the clock frequency if (check_strict_timing) begin case (cas_write_latency) 5 : if (tck_avg < 2500.0) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); 6 : if ((tck_avg < 1875.0) || (tck_avg >= 2500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); 7 : if ((tck_avg < 1500.0) || (tck_avg >= 1875.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); 8 : if ((tck_avg < 1250.0) || (tck_avg >= 1500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); 9 : if ((tck_avg < 1071.0) || (tck_avg >= 1250.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); 10: if ((tck_avg < 937.5) || (tck_avg >= 1071.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); default : $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg); endcase // check the CL value against the clock frequency if (!valid_cl(cas_latency, cas_write_latency)) $display ("%m: at time %t ERROR: CAS Latency = %d is not valid when CAS Write Latency = %d", $time, cas_latency, cas_write_latency); end mr_chk = 2; end end else if (!in_self_refresh) begin mr_chk = 0; if (ck_cntr - ck_dll_reset == TDLLK) begin dll_locked = 1; end end if (|auto_precharge_bank) begin for (i=0; i<`BANKS; i=i+1) begin // Write with Auto Precharge Calculation // 1. Meet minimum tRAS requirement // 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command if (write_precharge_bank[i]) begin if ($time - tm_bank_activate[i] >= TRAS_MIN) begin if (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery) begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); write_precharge_bank[i] = 0; active_bank[i] = 0; auto_precharge_bank[i] = 0; tm_bank_precharge[i] = $time; tm_precharge = $time; ck_precharge = ck_cntr; end end end // Read with Auto Precharge Calculation // 1. Meet minimum tRAS requirement // 2. Additive Latency plus 4 cycles after Read command // 3. tRTP after the last 8-bit prefetch if (read_precharge_bank[i]) begin if (($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_read[i] >= additive_latency + TRTP_TCK)) begin read_precharge_bank[i] = 0; // In case the internal precharge is pushed out by tRTP, tRP starts at the point where // the internal precharge happens (not at the next rising clock edge after this event). if ($time - tm_bank_read_end[i] < TRTP) begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i); active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; ck_precharge = ck_cntr; end else begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); active_bank[i] = 0; auto_precharge_bank[i] = 0; tm_bank_precharge[i] = $time; tm_precharge = $time; ck_precharge = ck_cntr; end end end end end // respond to incoming command if (cke_in ^ prev_cke) begin tm_cke_cmd <= $time; ck_cke_cmd <= ck_cntr; end cmd_task(prev_cke, cke_in, cmd_n_in, ba_in, addr_in); if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin al_pipeline[2*additive_latency] = 1'b1; end if (al_pipeline[0]) begin // check tRCD after additive latency if ((rd_pipeline[2*cas_latency - 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD)) $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]); if ((wr_pipeline[2*cas_write_latency + 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_write_latency + 1]] < TRCD)) $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]); // check tWTR after additive latency if (rd_pipeline[2*cas_latency - 1]) begin //{ if (truebl4) begin //{ i = ba_pipeline[2*cas_latency - 1]; if ($time - tm_group_write_end[i[1]] < TWTR) $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]); if ($time - tm_write_end < TWTR_DG) $display ("%m: at time %t ERROR: tWTR_DG violation during %s", $time, cmd_string[READ]); end else begin if ($time - tm_write_end < TWTR) $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]); end end end if (rd_pipeline) begin if (rd_pipeline[2*cas_latency - 1]) begin tm_bank_read_end[ba_pipeline[2*cas_latency - 1]] <= $time; end end for (i=0; i<`BANKS; i=i+1) begin if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin tm_bank_write_end[i] <= $time; tm_group_write_end[i[1]] <= $time; tm_write_end <= $time; end end // clk pin is disabled during self refresh if (!in_self_refresh && tm_ck_pos ) begin tjit_cc_time = $time - tm_ck_pos - tck_i; tck_i = $time - tm_ck_pos; tck_avg = tck_avg - tck_sample[ck_cntr%PERTCKAVG]/$itor(PERTCKAVG); tck_avg = tck_avg + tck_i/$itor(PERTCKAVG); tck_sample[ck_cntr%PERTCKAVG] = tck_i; tjit_per_rtime = tck_i - tck_avg; if (dll_locked && check_strict_timing) begin // check accumulated error terr_nper_rtime = 0; for (i=0; i<12; i=i+1) begin terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg; terr_nper_rtime = abs_value(terr_nper_rtime); case (i) 0 :; 1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER); 2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER); 3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER); 4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER); 5 : if (terr_nper_rtime - TERR_6PER >= 1.0) $display ("%m: at time %t ERROR: tERR(6per) violation by %f ps.", $time, terr_nper_rtime - TERR_6PER); 6 : if (terr_nper_rtime - TERR_7PER >= 1.0) $display ("%m: at time %t ERROR: tERR(7per) violation by %f ps.", $time, terr_nper_rtime - TERR_7PER); 7 : if (terr_nper_rtime - TERR_8PER >= 1.0) $display ("%m: at time %t ERROR: tERR(8per) violation by %f ps.", $time, terr_nper_rtime - TERR_8PER); 8 : if (terr_nper_rtime - TERR_9PER >= 1.0) $display ("%m: at time %t ERROR: tERR(9per) violation by %f ps.", $time, terr_nper_rtime - TERR_9PER); 9 : if (terr_nper_rtime - TERR_10PER >= 1.0) $display ("%m: at time %t ERROR: tERR(10per) violation by %f ps.", $time, terr_nper_rtime - TERR_10PER); 10 : if (terr_nper_rtime - TERR_11PER >= 1.0) $display ("%m: at time %t ERROR: tERR(11per) violation by %f ps.", $time, terr_nper_rtime - TERR_11PER); 11 : if (terr_nper_rtime - TERR_12PER >= 1.0) $display ("%m: at time %t ERROR: tERR(12per) violation by %f ps.", $time, terr_nper_rtime - TERR_12PER); endcase end // check tCK min/max/jitter if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0) $display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER); if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0) $display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC); if (TCK_MIN - tck_avg >= 1.0) $display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg); if (tck_avg - TCK_MAX >= 1.0) $display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX); // check tCL if (tm_ck_neg - $time < TCL_ABS_MIN*tck_avg) $display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, TCL_ABS_MIN*tck_avg - tm_ck_neg + $time); if (tcl_avg < TCL_AVG_MIN*tck_avg) $display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_AVG_MIN*tck_avg - tcl_avg); if (tcl_avg > TCL_AVG_MAX*tck_avg) $display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_AVG_MAX*tck_avg); end // calculate the tch avg jitter tch_avg = tch_avg - tch_sample[ck_cntr%PERTCKAVG]/$itor(PERTCKAVG); tch_avg = tch_avg + tch_i/$itor(PERTCKAVG); tch_sample[ck_cntr%PERTCKAVG] = tch_i; tjit_ch_rtime = tch_i - tch_avg; duty_cycle = $rtoi(tch_avg*100/tck_avg); // update timers/counters tcl_i <= $time - tm_ck_neg; end prev_odt <= odt_in; // update timers/counters ck_cntr <= ck_cntr + 1; tm_ck_pos = $time; end else begin // clk pin is disabled during self refresh if (!in_self_refresh) begin if (dll_locked && check_strict_timing) begin if ($time - tm_ck_pos < TCH_ABS_MIN*tck_avg) $display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, TCH_ABS_MIN*tck_avg - $time + tm_ck_pos); if (tch_avg < TCH_AVG_MIN*tck_avg) $display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_AVG_MIN*tck_avg - tch_avg); if (tch_avg > TCH_AVG_MAX*tck_avg) $display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_AVG_MAX*tck_avg); end // calculate the tcl avg jitter tcl_avg = tcl_avg - tcl_sample[ck_cntr%PERTCKAVG]/$itor(PERTCKAVG); tcl_avg = tcl_avg + tcl_i/$itor(PERTCKAVG); tcl_sample[ck_cntr%PERTCKAVG] = tcl_i; // update timers/counters tch_i <= $time - tm_ck_pos; end tm_ck_neg = $time; end // on die termination if (odt_en || dyn_odt_en) begin // odt pin is disabled during self refresh if (!in_self_refresh && diff_ck) begin if ($time - tm_odt < TIS) $display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time); if (prev_odt ^ odt_in) begin if (!dll_locked) $display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time); if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time); if (ck_cntr - ck_zqinit < TZQINIT) $display ("%m: at time %t ERROR: TZQinit violation during ODT transition", $time); if (ck_cntr - ck_zqoper < TZQOPER) $display ("%m: at time %t ERROR: TZQoper violation during ODT transition", $time); if (ck_cntr - ck_zqcs < TZQCS) $display ("%m: at time %t ERROR: tZQcs violation during ODT transition", $time); // if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) // $display ("%m: at time %t ERROR: tXPDLL violation during ODT transition", $time); if (ck_cntr - ck_self_refresh < TXSDLL) $display ("%m: at time %t ERROR: tXSDLL violation during ODT transition", $time); if (in_self_refresh) $display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time); if (!odt_in && (ck_cntr - ck_odt < ODTH4)) $display ("%m: at time %t ERROR: ODTH4 violation during ODT transition", $time); if (!odt_in && (ck_cntr - ck_odth8 < ODTH8)) $display ("%m: at time %t ERROR: ODTH8 violation during ODT transition", $time); if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) $display ("%m: at time %t WARNING: tXPDLL during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time); // async ODT mode applies: // 1.) during precharge power down with DLL off // 2.) if tANPD has not been satisfied // 3.) until tXPDLL has been satisfied if ((in_power_down && low_power && (active_bank == 0)) || ($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) begin odt_state = odt_in; if (DEBUG && odt_en) $display ("%m: at time %t INFO: Async On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom)); if (odt_state) begin odt_state_dly <= #(TAONPD) odt_state; end else begin odt_state_dly <= #(TAOFPD) odt_state; end // sync ODT mode applies: // 1.) during normal operation // 2.) during active power down // 3.) during precharge power down with DLL on end else begin odt_pipeline[2*(write_latency - 2)] = 1'b1; // ODTLon, ODTLoff end ck_odt <= ck_cntr; end end if (odt_pipeline[0]) begin odt_state = ~odt_state; if (DEBUG && odt_en) $display ("%m: at time %t INFO: Sync On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom)); if (odt_state) begin odt_state_dly <= #(TAON) odt_state; end else begin odt_state_dly <= #(TAOF*tck_avg) odt_state; end end if (rd_pipeline[RDQSEN_PRE]) begin odt_cntr = 1 + RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1; end if (odt_cntr > 0) begin if ((get_rtt_nom(odt_rtt_nom) > 0) && odt_state) begin $display ("%m: at time %t ERROR: On Die Termination must be OFF during Read data transfer.", $time); end odt_cntr = odt_cntr - 1; end if (dyn_odt_en && ( odt_state || feature_odt_hi) ) begin if (DEBUG && (dyn_odt_state ^ dyn_odt_pipeline[0])) $display ("%m: at time %t INFO: Sync On Die Termination Rtt_WR = %d Ohm", $time, {32{dyn_odt_pipeline[0]}} & get_rtt_wr(odt_rtt_wr)); dyn_odt_state = dyn_odt_pipeline[0]; end dyn_odt_state_dly <= #(TADC*tck_avg) dyn_odt_state; end if (cke_in && write_levelization) begin for (i=0; i>1; wr_pipeline = wr_pipeline>>1; rd_pipeline = rd_pipeline>>1; for (i=0; i<`MAX_PIPE; i=i+1) begin bl_pipeline[i] = bl_pipeline[i+1]; ba_pipeline[i] = ba_pipeline[i+1]; row_pipeline[i] = row_pipeline[i+1]; col_pipeline[i] = col_pipeline[i+1]; end end if (|odt_pipeline || |dyn_odt_pipeline) begin odt_pipeline = odt_pipeline>>1; dyn_odt_pipeline = dyn_odt_pipeline>>1; end end end // receiver(s) task dqs_even_receiver; input [4:0] i; reg [127:0] bit_mask; begin bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); if (dqs_even[i]) begin if (tdqs_en) begin // tdqs disables dm dm_in_pos[i] = 1'b0; end else begin dm_in_pos[i] = dm_in[i]; end dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask); end end endtask always @(posedge dqs_even[ 0]) dqs_even_receiver( 0); always @(posedge dqs_even[ 1]) dqs_even_receiver( 1); always @(posedge dqs_even[ 2]) dqs_even_receiver( 2); always @(posedge dqs_even[ 3]) dqs_even_receiver( 3); always @(posedge dqs_even[ 4]) dqs_even_receiver( 4); always @(posedge dqs_even[ 5]) dqs_even_receiver( 5); always @(posedge dqs_even[ 6]) dqs_even_receiver( 6); always @(posedge dqs_even[ 7]) dqs_even_receiver( 7); always @(posedge dqs_even[ 8]) dqs_even_receiver( 8); always @(posedge dqs_even[ 9]) dqs_even_receiver( 9); always @(posedge dqs_even[10]) dqs_even_receiver(10); always @(posedge dqs_even[11]) dqs_even_receiver(11); always @(posedge dqs_even[12]) dqs_even_receiver(12); always @(posedge dqs_even[13]) dqs_even_receiver(13); always @(posedge dqs_even[14]) dqs_even_receiver(14); always @(posedge dqs_even[15]) dqs_even_receiver(15); task dqs_odd_receiver; input [4:0] i; reg [127:0] bit_mask; begin bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); if (dqs_odd[i]) begin if (tdqs_en) begin // tdqs disables dm dm_in_neg[i] = 1'b0; end else begin dm_in_neg[i] = dm_in[i]; end dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask); end end endtask always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0); always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1); always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2); always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3); always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4); always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5); always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6); always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7); always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8); always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9); always @(posedge dqs_odd[10]) dqs_odd_receiver(10); always @(posedge dqs_odd[11]) dqs_odd_receiver(11); always @(posedge dqs_odd[12]) dqs_odd_receiver(12); always @(posedge dqs_odd[13]) dqs_odd_receiver(13); always @(posedge dqs_odd[14]) dqs_odd_receiver(14); always @(posedge dqs_odd[15]) dqs_odd_receiver(15); // Processes to check hold and pulse width of control signals always @(posedge rst_n_in) begin if ($time > 100000) begin if (tm_rst_n + 100000 > $time) $display ("%m: at time %t ERROR: RST_N pulse width violation by %t", $time, tm_rst_n + 100000 - $time); end tm_rst_n = $time; end always @(cke_in) begin if (rst_n_in) begin if ($time > TIH) begin if ($time - tm_ck_pos < TIH) $display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time); end if ($time - tm_cke < TIPW) $display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW - $time); end tm_cke = $time; end always @(odt_in) begin if (rst_n_in && odt_en && !in_self_refresh) begin if ($time - tm_ck_pos < TIH) $display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time); if ($time - tm_odt < TIPW) $display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW - $time); end tm_odt = $time; end task cmd_addr_timing_check; input i; reg [4:0] i; begin if (rst_n_in && prev_cke) begin if ((i == 0) && ($time - tm_ck_pos < TIH)) // always check tIH for CS# $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time); if ((i > 0) && (cs_n_in == 0) &&($time - tm_ck_pos < TIH)) // Only check tIH for cmd_addr if CS# is low $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time); if ((i == 0) && ($time - tm_cmd_addr[i] < TIPW)) // always check tIPW for CS# $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time); if ((i > 0) && (cs_n_in == 0) && ($time - tm_cmd_addr[i] < TIPW)) $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time); end tm_cmd_addr[i] = $time; end endtask always @(cs_n_in ) cmd_addr_timing_check( 0); always @(ras_n_in ) cmd_addr_timing_check( 1); always @(cas_n_in ) cmd_addr_timing_check( 2); always @(we_n_in ) cmd_addr_timing_check( 3); always @(ba_in [ 0]) cmd_addr_timing_check( 4); always @(ba_in [ 1]) cmd_addr_timing_check( 5); always @(ba_in [ 2]) cmd_addr_timing_check( 6); always @(addr_in[ 0]) cmd_addr_timing_check( 7); always @(addr_in[ 1]) cmd_addr_timing_check( 8); always @(addr_in[ 2]) cmd_addr_timing_check( 9); always @(addr_in[ 3]) cmd_addr_timing_check(10); always @(addr_in[ 4]) cmd_addr_timing_check(11); always @(addr_in[ 5]) cmd_addr_timing_check(12); always @(addr_in[ 6]) cmd_addr_timing_check(13); always @(addr_in[ 7]) cmd_addr_timing_check(14); always @(addr_in[ 8]) cmd_addr_timing_check(15); always @(addr_in[ 9]) cmd_addr_timing_check(16); always @(addr_in[10]) cmd_addr_timing_check(17); always @(addr_in[11]) cmd_addr_timing_check(18); always @(addr_in[12]) cmd_addr_timing_check(19); always @(addr_in[13]) cmd_addr_timing_check(20); always @(addr_in[14]) cmd_addr_timing_check(21); always @(addr_in[15]) cmd_addr_timing_check(22); always @(addr_in[16]) cmd_addr_timing_check(23); // Processes to check setup and hold of data signals task dm_timing_check; input i; reg [4:0] i; begin if (dqs_in_valid) begin if ($time - tm_dqs[i] < TDH) $display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time); if (check_dm_tdipw[i]) begin if ($time - tm_dm[i] < TDIPW) $display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW - $time); end end check_dm_tdipw[i] <= 1'b0; tm_dm[i] = $time; end endtask always @(dm_in[ 0]) dm_timing_check( 0); always @(dm_in[ 1]) dm_timing_check( 1); always @(dm_in[ 2]) dm_timing_check( 2); always @(dm_in[ 3]) dm_timing_check( 3); always @(dm_in[ 4]) dm_timing_check( 4); always @(dm_in[ 5]) dm_timing_check( 5); always @(dm_in[ 6]) dm_timing_check( 6); always @(dm_in[ 7]) dm_timing_check( 7); always @(dm_in[ 8]) dm_timing_check( 8); always @(dm_in[ 9]) dm_timing_check( 9); always @(dm_in[10]) dm_timing_check(10); always @(dm_in[11]) dm_timing_check(11); always @(dm_in[12]) dm_timing_check(12); always @(dm_in[13]) dm_timing_check(13); always @(dm_in[14]) dm_timing_check(14); always @(dm_in[15]) dm_timing_check(15); always @(dm_in[16]) dm_timing_check(16); always @(dm_in[17]) dm_timing_check(17); always @(dm_in[18]) dm_timing_check(18); always @(dm_in[19]) dm_timing_check(19); always @(dm_in[20]) dm_timing_check(20); always @(dm_in[21]) dm_timing_check(21); always @(dm_in[22]) dm_timing_check(22); always @(dm_in[23]) dm_timing_check(23); always @(dm_in[24]) dm_timing_check(24); always @(dm_in[25]) dm_timing_check(25); always @(dm_in[26]) dm_timing_check(26); always @(dm_in[27]) dm_timing_check(27); always @(dm_in[28]) dm_timing_check(28); always @(dm_in[29]) dm_timing_check(29); always @(dm_in[30]) dm_timing_check(30); always @(dm_in[31]) dm_timing_check(31); task dq_timing_check; input i; reg [6:0] i; begin if (dqs_in_valid) begin if ($time - tm_dqs[i/(`DQ_PER_DQS)] < TDH) $display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time); if (check_dq_tdipw[i]) begin if ($time - tm_dq[i] < TDIPW) $display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW - $time); end end check_dq_tdipw[i] <= 1'b0; tm_dq[i] = $time; end endtask always @(dq_in[ 0]) dq_timing_check( 0); always @(dq_in[ 1]) dq_timing_check( 1); always @(dq_in[ 2]) dq_timing_check( 2); always @(dq_in[ 3]) dq_timing_check( 3); always @(dq_in[ 4]) dq_timing_check( 4); always @(dq_in[ 5]) dq_timing_check( 5); always @(dq_in[ 6]) dq_timing_check( 6); always @(dq_in[ 7]) dq_timing_check( 7); always @(dq_in[ 8]) dq_timing_check( 8); always @(dq_in[ 9]) dq_timing_check( 9); always @(dq_in[10]) dq_timing_check(10); always @(dq_in[11]) dq_timing_check(11); always @(dq_in[12]) dq_timing_check(12); always @(dq_in[13]) dq_timing_check(13); always @(dq_in[14]) dq_timing_check(14); always @(dq_in[15]) dq_timing_check(15); always @(dq_in[16]) dq_timing_check(16); always @(dq_in[17]) dq_timing_check(17); always @(dq_in[18]) dq_timing_check(18); always @(dq_in[19]) dq_timing_check(19); always @(dq_in[20]) dq_timing_check(20); always @(dq_in[21]) dq_timing_check(21); always @(dq_in[22]) dq_timing_check(22); always @(dq_in[23]) dq_timing_check(23); always @(dq_in[24]) dq_timing_check(24); always @(dq_in[25]) dq_timing_check(25); always @(dq_in[26]) dq_timing_check(26); always @(dq_in[27]) dq_timing_check(27); always @(dq_in[28]) dq_timing_check(28); always @(dq_in[29]) dq_timing_check(29); always @(dq_in[30]) dq_timing_check(30); always @(dq_in[31]) dq_timing_check(31); always @(dq_in[32]) dq_timing_check(32); always @(dq_in[33]) dq_timing_check(33); always @(dq_in[34]) dq_timing_check(34); always @(dq_in[35]) dq_timing_check(35); always @(dq_in[36]) dq_timing_check(36); always @(dq_in[37]) dq_timing_check(37); always @(dq_in[38]) dq_timing_check(38); always @(dq_in[39]) dq_timing_check(39); always @(dq_in[40]) dq_timing_check(40); always @(dq_in[41]) dq_timing_check(41); always @(dq_in[42]) dq_timing_check(42); always @(dq_in[43]) dq_timing_check(43); always @(dq_in[44]) dq_timing_check(44); always @(dq_in[45]) dq_timing_check(45); always @(dq_in[46]) dq_timing_check(46); always @(dq_in[47]) dq_timing_check(47); always @(dq_in[48]) dq_timing_check(48); always @(dq_in[49]) dq_timing_check(49); always @(dq_in[50]) dq_timing_check(50); always @(dq_in[51]) dq_timing_check(51); always @(dq_in[52]) dq_timing_check(52); always @(dq_in[53]) dq_timing_check(53); always @(dq_in[54]) dq_timing_check(54); always @(dq_in[55]) dq_timing_check(55); always @(dq_in[56]) dq_timing_check(56); always @(dq_in[57]) dq_timing_check(57); always @(dq_in[58]) dq_timing_check(58); always @(dq_in[59]) dq_timing_check(59); always @(dq_in[60]) dq_timing_check(60); always @(dq_in[61]) dq_timing_check(61); always @(dq_in[62]) dq_timing_check(62); always @(dq_in[63]) dq_timing_check(63); always @(dq_in[64]) dq_timing_check(64); always @(dq_in[65]) dq_timing_check(65); always @(dq_in[66]) dq_timing_check(66); always @(dq_in[67]) dq_timing_check(67); always @(dq_in[68]) dq_timing_check(68); always @(dq_in[69]) dq_timing_check(69); always @(dq_in[70]) dq_timing_check(70); always @(dq_in[71]) dq_timing_check(71); always @(dq_in[72]) dq_timing_check(72); always @(dq_in[73]) dq_timing_check(73); always @(dq_in[74]) dq_timing_check(74); always @(dq_in[75]) dq_timing_check(75); always @(dq_in[76]) dq_timing_check(76); always @(dq_in[77]) dq_timing_check(77); always @(dq_in[78]) dq_timing_check(78); always @(dq_in[79]) dq_timing_check(79); always @(dq_in[80]) dq_timing_check(80); always @(dq_in[81]) dq_timing_check(81); always @(dq_in[82]) dq_timing_check(82); always @(dq_in[83]) dq_timing_check(83); always @(dq_in[84]) dq_timing_check(84); always @(dq_in[85]) dq_timing_check(85); always @(dq_in[86]) dq_timing_check(86); always @(dq_in[87]) dq_timing_check(87); always @(dq_in[88]) dq_timing_check(88); always @(dq_in[89]) dq_timing_check(89); always @(dq_in[90]) dq_timing_check(90); always @(dq_in[91]) dq_timing_check(91); always @(dq_in[92]) dq_timing_check(92); always @(dq_in[93]) dq_timing_check(93); always @(dq_in[94]) dq_timing_check(94); always @(dq_in[95]) dq_timing_check(95); always @(dq_in[96]) dq_timing_check(96); always @(dq_in[97]) dq_timing_check(97); always @(dq_in[98]) dq_timing_check(98); always @(dq_in[99]) dq_timing_check(99); always @(dq_in[100]) dq_timing_check(100); always @(dq_in[101]) dq_timing_check(101); always @(dq_in[102]) dq_timing_check(102); always @(dq_in[103]) dq_timing_check(103); always @(dq_in[104]) dq_timing_check(104); always @(dq_in[105]) dq_timing_check(105); always @(dq_in[106]) dq_timing_check(106); always @(dq_in[107]) dq_timing_check(107); always @(dq_in[108]) dq_timing_check(108); always @(dq_in[109]) dq_timing_check(109); always @(dq_in[110]) dq_timing_check(110); always @(dq_in[111]) dq_timing_check(111); always @(dq_in[112]) dq_timing_check(112); always @(dq_in[113]) dq_timing_check(113); always @(dq_in[114]) dq_timing_check(114); always @(dq_in[115]) dq_timing_check(115); always @(dq_in[116]) dq_timing_check(116); always @(dq_in[117]) dq_timing_check(117); always @(dq_in[118]) dq_timing_check(118); always @(dq_in[119]) dq_timing_check(119); always @(dq_in[120]) dq_timing_check(120); always @(dq_in[121]) dq_timing_check(121); always @(dq_in[122]) dq_timing_check(122); always @(dq_in[123]) dq_timing_check(123); always @(dq_in[124]) dq_timing_check(124); always @(dq_in[125]) dq_timing_check(125); always @(dq_in[126]) dq_timing_check(126); always @(dq_in[127]) dq_timing_check(127); task dqs_pos_timing_check; input i; reg [5:0] i; reg [4:0] j; begin if (write_levelization && i<32) begin if (ck_cntr - ck_load_mode < TWLMRD) $display ("%m: at time %t ERROR: tWLMRD violation on DQS bit %d positive edge.", $time, i); if (($time - tm_ck_pos < TWLS) || ($time - tm_ck_neg < TWLS)) $display ("%m: at time %t WARNING: tWLS violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i); if (DEBUG) $display ("%m: at time %t Write Leveling @ DQS ck = %b", $time, diff_ck); dq_out_en_dly[i*`DQ_PER_DQS] <= #(TWLO) 1'b1; dq_out_dly[i*`DQ_PER_DQS] <= #(TWLO) diff_ck; `ifdef WL_ALLDQ for (j=1; j<`DQ_PER_DQS; j=j+1) begin dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO) 1'b1; dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO) diff_ck; end `else for (j=1; j<`DQ_PER_DQS; j=j+1) begin dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b1; dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b0; end `endif end if (dqs_in_valid && ((wdqs_pos_cntr[i] < wr_burst_length/2) || b2b_write)) begin if (dqs_in[i] ^ prev_dqs_in[i]) begin if (dll_locked) begin if (check_write_preamble[i]) begin if ($time - tm_dqs_pos[i] < $rtoi(TWPRE*tck_avg)) $display ("%m: at time %t ERROR: tWPRE violation on %s bit %d", $time, dqs_string[i/32], i%32); end else if (check_write_postamble[i]) begin if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg)) $display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/32], i%32); end else begin if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg)) $display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/32], i%32); end end if ($time - tm_dm[i%32] < TDS) $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%32] + TDS - $time); if (!dq_out_en) begin for (j=0; j<`DQ_PER_DQS; j=j+1) begin if ($time - tm_dq[(i%32)*`DQ_PER_DQS+j] < TDS) $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%32)*`DQ_PER_DQS+j] + TDS - $time); check_dq_tdipw[(i%32)*`DQ_PER_DQS+j] <= 1'b1; end end if ((wdqs_pos_cntr[i] < wr_burst_length/2) && !b2b_write) begin wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1; end else begin wdqs_pos_cntr[i] <= 1; end check_dm_tdipw[i%32] <= 1'b1; check_write_preamble[i] <= 1'b0; check_write_postamble[i] <= 1'b0; check_write_dqs_low[i] <= 1'b0; tm_dqs[i%32] <= $time; end else begin $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/32], i%32); end end tm_dqss_pos[i] <= $time; tm_dqs_pos[i] = $time; prev_dqs_in[i] <= dqs_in[i]; end endtask always @(posedge dqs_in[ 0]) if ( dqs_in[ 0]) dqs_pos_timing_check( 0); always @(posedge dqs_in[ 1]) if ( dqs_in[ 1]) dqs_pos_timing_check( 1); always @(posedge dqs_in[ 2]) if ( dqs_in[ 2]) dqs_pos_timing_check( 2); always @(posedge dqs_in[ 3]) if ( dqs_in[ 3]) dqs_pos_timing_check( 3); always @(posedge dqs_in[ 4]) if ( dqs_in[ 4]) dqs_pos_timing_check( 4); always @(posedge dqs_in[ 5]) if ( dqs_in[ 5]) dqs_pos_timing_check( 5); always @(posedge dqs_in[ 6]) if ( dqs_in[ 6]) dqs_pos_timing_check( 6); always @(posedge dqs_in[ 7]) if ( dqs_in[ 7]) dqs_pos_timing_check( 7); always @(posedge dqs_in[ 8]) if ( dqs_in[ 8]) dqs_pos_timing_check( 8); always @(posedge dqs_in[ 9]) if ( dqs_in[ 9]) dqs_pos_timing_check( 9); always @(posedge dqs_in[10]) if ( dqs_in[10]) dqs_pos_timing_check(10); always @(posedge dqs_in[11]) if ( dqs_in[11]) dqs_pos_timing_check(11); always @(posedge dqs_in[12]) if ( dqs_in[12]) dqs_pos_timing_check(12); always @(posedge dqs_in[13]) if ( dqs_in[13]) dqs_pos_timing_check(13); always @(posedge dqs_in[14]) if ( dqs_in[14]) dqs_pos_timing_check(14); always @(posedge dqs_in[15]) if ( dqs_in[15]) dqs_pos_timing_check(15); always @(posedge dqs_in[16]) if ( dqs_in[16]) dqs_pos_timing_check(16); always @(posedge dqs_in[17]) if ( dqs_in[17]) dqs_pos_timing_check(17); always @(posedge dqs_in[18]) if ( dqs_in[18]) dqs_pos_timing_check(18); always @(posedge dqs_in[19]) if ( dqs_in[19]) dqs_pos_timing_check(19); always @(posedge dqs_in[20]) if ( dqs_in[20]) dqs_pos_timing_check(20); always @(posedge dqs_in[21]) if ( dqs_in[21]) dqs_pos_timing_check(21); always @(posedge dqs_in[22]) if ( dqs_in[22]) dqs_pos_timing_check(22); always @(posedge dqs_in[23]) if ( dqs_in[23]) dqs_pos_timing_check(23); always @(posedge dqs_in[24]) if ( dqs_in[24]) dqs_pos_timing_check(24); always @(posedge dqs_in[25]) if ( dqs_in[25]) dqs_pos_timing_check(25); always @(posedge dqs_in[26]) if ( dqs_in[26]) dqs_pos_timing_check(26); always @(posedge dqs_in[27]) if ( dqs_in[27]) dqs_pos_timing_check(27); always @(posedge dqs_in[28]) if ( dqs_in[28]) dqs_pos_timing_check(28); always @(posedge dqs_in[29]) if ( dqs_in[29]) dqs_pos_timing_check(29); always @(posedge dqs_in[30]) if ( dqs_in[30]) dqs_pos_timing_check(30); always @(posedge dqs_in[31]) if ( dqs_in[31]) dqs_pos_timing_check(31); always @(negedge dqs_in[32]) if (!dqs_in[32]) dqs_pos_timing_check(32); always @(negedge dqs_in[33]) if (!dqs_in[33]) dqs_pos_timing_check(33); always @(negedge dqs_in[34]) if (!dqs_in[34]) dqs_pos_timing_check(34); always @(negedge dqs_in[35]) if (!dqs_in[35]) dqs_pos_timing_check(35); always @(negedge dqs_in[36]) if (!dqs_in[36]) dqs_pos_timing_check(36); always @(negedge dqs_in[37]) if (!dqs_in[37]) dqs_pos_timing_check(37); always @(negedge dqs_in[38]) if (!dqs_in[38]) dqs_pos_timing_check(38); always @(negedge dqs_in[39]) if (!dqs_in[39]) dqs_pos_timing_check(39); always @(negedge dqs_in[40]) if (!dqs_in[40]) dqs_pos_timing_check(40); always @(negedge dqs_in[41]) if (!dqs_in[41]) dqs_pos_timing_check(41); always @(negedge dqs_in[42]) if (!dqs_in[42]) dqs_pos_timing_check(42); always @(negedge dqs_in[43]) if (!dqs_in[43]) dqs_pos_timing_check(43); always @(negedge dqs_in[44]) if (!dqs_in[44]) dqs_pos_timing_check(44); always @(negedge dqs_in[45]) if (!dqs_in[45]) dqs_pos_timing_check(45); always @(negedge dqs_in[46]) if (!dqs_in[46]) dqs_pos_timing_check(46); always @(negedge dqs_in[47]) if (!dqs_in[47]) dqs_pos_timing_check(47); always @(negedge dqs_in[48]) if (!dqs_in[48]) dqs_pos_timing_check(48); always @(negedge dqs_in[49]) if (!dqs_in[49]) dqs_pos_timing_check(49); always @(negedge dqs_in[50]) if (!dqs_in[50]) dqs_pos_timing_check(50); always @(negedge dqs_in[51]) if (!dqs_in[51]) dqs_pos_timing_check(51); always @(negedge dqs_in[52]) if (!dqs_in[52]) dqs_pos_timing_check(52); always @(negedge dqs_in[53]) if (!dqs_in[53]) dqs_pos_timing_check(53); always @(negedge dqs_in[54]) if (!dqs_in[54]) dqs_pos_timing_check(54); always @(negedge dqs_in[55]) if (!dqs_in[55]) dqs_pos_timing_check(55); always @(negedge dqs_in[56]) if (!dqs_in[56]) dqs_pos_timing_check(56); always @(negedge dqs_in[57]) if (!dqs_in[57]) dqs_pos_timing_check(57); always @(negedge dqs_in[58]) if (!dqs_in[58]) dqs_pos_timing_check(58); always @(negedge dqs_in[59]) if (!dqs_in[59]) dqs_pos_timing_check(59); always @(negedge dqs_in[60]) if (!dqs_in[60]) dqs_pos_timing_check(60); always @(negedge dqs_in[61]) if (!dqs_in[61]) dqs_pos_timing_check(61); always @(negedge dqs_in[62]) if (!dqs_in[62]) dqs_pos_timing_check(62); always @(negedge dqs_in[63]) if (!dqs_in[63]) dqs_pos_timing_check(63); task dqs_neg_timing_check; input i; reg [5:0] i; reg [4:0] j; begin if (write_levelization && i<32) begin if (ck_cntr - ck_load_mode < TWLDQSEN) $display ("%m: at time %t ERROR: tWLDQSEN violation on DQS bit %d.", $time, i); if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg)) $display ("%m: at time %t ERROR: tDQSH violation on DQS bit %d by %t", $time, i, tm_dqs_pos[i] + TDQSH*tck_avg - $time); end if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i]) begin if (dqs_in[i] ^ prev_dqs_in[i]) begin if (dll_locked) begin if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg)) $display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/32], i%32); if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg)) $display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/32], i%32); end if ($time - tm_dm[i%32] < TDS) $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%32] + TDS - $time); if (!dq_out_en) begin for (j=0; j<`DQ_PER_DQS; j=j+1) begin if ($time - tm_dq[(i%32)*`DQ_PER_DQS+j] < TDS) $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%32)*`DQ_PER_DQS+j] + TDS - $time); check_dq_tdipw[(i%32)*`DQ_PER_DQS+j] <= 1'b1; end end check_dm_tdipw[i%32] <= 1'b1; tm_dqs[i%32] <= $time; end else begin $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/32], i%32); end end check_write_dqs_high[i] <= 1'b0; tm_dqs_neg[i] = $time; prev_dqs_in[i] <= dqs_in[i]; end endtask always @(negedge dqs_in[ 0]) if (!dqs_in[ 0]) dqs_neg_timing_check( 0); always @(negedge dqs_in[ 1]) if (!dqs_in[ 1]) dqs_neg_timing_check( 1); always @(negedge dqs_in[ 2]) if (!dqs_in[ 2]) dqs_neg_timing_check( 2); always @(negedge dqs_in[ 3]) if (!dqs_in[ 3]) dqs_neg_timing_check( 3); always @(negedge dqs_in[ 4]) if (!dqs_in[ 4]) dqs_neg_timing_check( 4); always @(negedge dqs_in[ 5]) if (!dqs_in[ 5]) dqs_neg_timing_check( 5); always @(negedge dqs_in[ 6]) if (!dqs_in[ 6]) dqs_neg_timing_check( 6); always @(negedge dqs_in[ 7]) if (!dqs_in[ 7]) dqs_neg_timing_check( 7); always @(negedge dqs_in[ 8]) if (!dqs_in[ 8]) dqs_neg_timing_check( 8); always @(negedge dqs_in[ 9]) if (!dqs_in[ 9]) dqs_neg_timing_check( 9); always @(negedge dqs_in[10]) if (!dqs_in[10]) dqs_neg_timing_check(10); always @(negedge dqs_in[11]) if (!dqs_in[11]) dqs_neg_timing_check(11); always @(negedge dqs_in[12]) if (!dqs_in[12]) dqs_neg_timing_check(12); always @(negedge dqs_in[13]) if (!dqs_in[13]) dqs_neg_timing_check(13); always @(negedge dqs_in[14]) if (!dqs_in[14]) dqs_neg_timing_check(14); always @(negedge dqs_in[15]) if (!dqs_in[15]) dqs_neg_timing_check(15); always @(negedge dqs_in[16]) if (!dqs_in[16]) dqs_neg_timing_check(16); always @(negedge dqs_in[17]) if (!dqs_in[17]) dqs_neg_timing_check(17); always @(negedge dqs_in[18]) if (!dqs_in[18]) dqs_neg_timing_check(18); always @(negedge dqs_in[19]) if (!dqs_in[19]) dqs_neg_timing_check(19); always @(negedge dqs_in[20]) if (!dqs_in[20]) dqs_neg_timing_check(20); always @(negedge dqs_in[21]) if (!dqs_in[21]) dqs_neg_timing_check(21); always @(negedge dqs_in[22]) if (!dqs_in[22]) dqs_neg_timing_check(22); always @(negedge dqs_in[23]) if (!dqs_in[23]) dqs_neg_timing_check(23); always @(negedge dqs_in[24]) if (!dqs_in[24]) dqs_neg_timing_check(24); always @(negedge dqs_in[25]) if (!dqs_in[25]) dqs_neg_timing_check(25); always @(negedge dqs_in[26]) if (!dqs_in[26]) dqs_neg_timing_check(26); always @(negedge dqs_in[27]) if (!dqs_in[27]) dqs_neg_timing_check(27); always @(negedge dqs_in[28]) if (!dqs_in[28]) dqs_neg_timing_check(28); always @(negedge dqs_in[29]) if (!dqs_in[29]) dqs_neg_timing_check(29); always @(negedge dqs_in[30]) if (!dqs_in[30]) dqs_neg_timing_check(30); always @(negedge dqs_in[31]) if (!dqs_in[31]) dqs_neg_timing_check(31); always @(posedge dqs_in[32]) if ( dqs_in[32]) dqs_neg_timing_check(32); always @(posedge dqs_in[33]) if ( dqs_in[33]) dqs_neg_timing_check(33); always @(posedge dqs_in[34]) if ( dqs_in[34]) dqs_neg_timing_check(34); always @(posedge dqs_in[35]) if ( dqs_in[35]) dqs_neg_timing_check(35); always @(posedge dqs_in[36]) if ( dqs_in[36]) dqs_neg_timing_check(36); always @(posedge dqs_in[37]) if ( dqs_in[37]) dqs_neg_timing_check(37); always @(posedge dqs_in[38]) if ( dqs_in[38]) dqs_neg_timing_check(38); always @(posedge dqs_in[39]) if ( dqs_in[39]) dqs_neg_timing_check(39); always @(posedge dqs_in[40]) if ( dqs_in[40]) dqs_neg_timing_check(40); always @(posedge dqs_in[41]) if ( dqs_in[41]) dqs_neg_timing_check(41); always @(posedge dqs_in[42]) if ( dqs_in[42]) dqs_neg_timing_check(42); always @(posedge dqs_in[43]) if ( dqs_in[43]) dqs_neg_timing_check(43); always @(posedge dqs_in[44]) if ( dqs_in[44]) dqs_neg_timing_check(44); always @(posedge dqs_in[45]) if ( dqs_in[45]) dqs_neg_timing_check(45); always @(posedge dqs_in[46]) if ( dqs_in[46]) dqs_neg_timing_check(46); always @(posedge dqs_in[47]) if ( dqs_in[47]) dqs_neg_timing_check(47); always @(posedge dqs_in[48]) if ( dqs_in[48]) dqs_neg_timing_check(48); always @(posedge dqs_in[49]) if ( dqs_in[49]) dqs_neg_timing_check(49); always @(posedge dqs_in[50]) if ( dqs_in[50]) dqs_neg_timing_check(50); always @(posedge dqs_in[51]) if ( dqs_in[51]) dqs_neg_timing_check(51); always @(posedge dqs_in[52]) if ( dqs_in[52]) dqs_neg_timing_check(52); always @(posedge dqs_in[53]) if ( dqs_in[53]) dqs_neg_timing_check(53); always @(posedge dqs_in[54]) if ( dqs_in[54]) dqs_neg_timing_check(54); always @(posedge dqs_in[55]) if ( dqs_in[55]) dqs_neg_timing_check(55); always @(posedge dqs_in[56]) if ( dqs_in[56]) dqs_neg_timing_check(56); always @(posedge dqs_in[57]) if ( dqs_in[57]) dqs_neg_timing_check(57); always @(posedge dqs_in[58]) if ( dqs_in[58]) dqs_neg_timing_check(58); always @(posedge dqs_in[59]) if ( dqs_in[59]) dqs_neg_timing_check(59); always @(posedge dqs_in[60]) if ( dqs_in[60]) dqs_neg_timing_check(60); always @(posedge dqs_in[61]) if ( dqs_in[61]) dqs_neg_timing_check(61); always @(posedge dqs_in[62]) if ( dqs_in[62]) dqs_neg_timing_check(62); always @(posedge dqs_in[63]) if ( dqs_in[63]) dqs_neg_timing_check(63); endmodule