#!/usr/bin/env python3 # This file is Copyright (c) 2019 Sean Cross # This file is Copyright (c) 2018 David Shah # This file is Copyright (c) 2020 Piotr Esden-Tempski # License: BSD # This target was originally based on the Fomu target. import argparse from migen import * from migen.genlib.resetsync import AsyncResetSynchronizer from litex.soc.cores import up5kspram, spi_flash from litex.soc.integration.soc_core import SoCCore from litex.soc.integration.builder import Builder, builder_argdict, builder_args from litex.soc.integration.soc_core import soc_core_argdict, soc_core_args from litex.soc.integration.doc import AutoDoc from litex_boards.platforms.icebreaker import Platform from litex.soc.interconnect import wishbone from litex.soc.cores.uart import UARTWishboneBridge from litex.soc.cores.gpio import GPIOOut class JumpToAddressROM(wishbone.SRAM): def __init__(self, size, addr): data = [ 0x00000537 | ((addr & 0xfffff000) << 0), # lui a0,%hi(addr) 0x00052503 | ((addr & 0x00000fff) << 20), # lw a0,%lo(addr)(a0) 0x000500e7, # jalr a0 ] wishbone.SRAM.__init__(self, size, read_only=True, init=data) # CRG ---------------------------------------------------------------------------------------------- class _CRG(Module, AutoDoc): """Icebreaker Clock Resource Generator The following clock domains are available on this design: +---------+------------+---------------------------------+ | Name | Frequency | Description | +=========+============+=================================+ +---------+------------+---------------------------------+ | clk_12 | 12 MHz | Main control logic | +---------+------------+---------------------------------+ | sys | 12 MHz | System CPU and wishbone bus | +---------+------------+---------------------------------+ """ def __init__(self, platform): clk12 = platform.request("clk12") reset_delay = Signal(12, reset=4095) self.clock_domains.cd_por = ClockDomain() self.reset = Signal() self.clock_domains.cd_sys = ClockDomain() self.clock_domains.cd_clk_12 = ClockDomain() platform.add_period_constraint(self.cd_sys.clk, 1e9 / 12e6) platform.add_period_constraint(self.cd_clk_12.clk, 1e9 / 12e6) # POR reset logic- POR generated from sys clk, POR logic feeds sys clk # reset. self.comb += [ self.cd_por.clk.eq(self.cd_sys.clk), self.cd_sys.rst.eq(reset_delay != 0), self.cd_clk_12.rst.eq(reset_delay != 0), ] self.comb += self.cd_sys.clk.eq(clk12) self.comb += self.cd_clk_12.clk.eq(clk12) self.sync.por += \ If(reset_delay != 0, reset_delay.eq(reset_delay - 1)) self.specials += AsyncResetSynchronizer(self.cd_por, self.reset) # BaseSoC ------------------------------------------------------------------------------------------ class BaseSoC(SoCCore): """A SoC on iCEBreaker, optionally with a softcore CPU""" # Statically-define the memory map, to prevent it from shifting across # various litex versions. SoCCore.mem_map = { "rom": 0x00000000, # (default shadow @0x80000000) "sram": 0x10000000, # (default shadow @0xa0000000) "spiflash": 0x20000000, # (default shadow @0xa0000000) "csr": 0xe0000000, # (default shadow @0x60000000) "vexriscv_debug": 0xf00f0000, } def __init__(self, debug=True, boot_vector=0x2001a000, **kwargs): """Create a basic SoC for iCEBreaker. Create a basic SoC for iCEBreaker. The `sys` frequency will run at 12 MHz. Returns: Newly-constructed SoC """ platform = Platform() if "cpu_type" not in kwargs: kwargs["cpu_type"] = None kwargs["cpu_variant"] = None else: kwargs["cpu_reset_address"] = boot_vector clk_freq = int(12e6) # Force the SRAM size to 0, because we add our own SRAM with SPRAM kwargs["integrated_sram_size"] = 0 kwargs["integrated_rom_size"] = 0 if debug: kwargs["uart_name"] = "crossover" if kwargs["cpu_type"] == "vexriscv": kwargs["cpu_variant"] = kwargs["cpu_variant"] + "+debug" SoCCore.__init__(self, platform, clk_freq, with_uart=True, with_ctrl=True, **kwargs) # If there is a VexRiscv CPU, add a fake ROM that simply tells the CPU # to jump to the given address. if hasattr(self, "cpu") and self.cpu.name == "vexriscv": self.add_memory_region("rom", 0, 16) self.submodules.rom = JumpToAddressROM(16, boot_vector) self.submodules.crg = _CRG(platform) # UP5K has single port RAM, which is a dedicated 128 kilobyte block. # Use this as CPU RAM. spram_size = 128 * 1024 self.submodules.spram = up5kspram.Up5kSPRAM(size=spram_size) self.register_mem("sram", self.mem_map["sram"], self.spram.bus, spram_size) # The litex SPI module supports memory-mapped reads, as well as a bit-banged mode # for doing writes. spi_pads = platform.request("spiflash4x") self.submodules.lxspi = spi_flash.SpiFlash(spi_pads, dummy=6, endianness="little") self.register_mem("spiflash", self.mem_map["spiflash"], self.lxspi.bus, size=16 * 1024 * 1024) self.add_csr("lxspi") # In debug mode, add a UART bridge. This takes over from the normal UART bridge, # however you can use the "crossover" UART to communicate with this over the bridge. if debug: self.submodules.uart_bridge = UARTWishboneBridge(platform.request("serial"), clk_freq, baudrate=115200) self.add_wb_master(self.uart_bridge.wishbone) if hasattr(self, "cpu") and self.cpu.name == "vexriscv": self.register_mem("vexriscv_debug", 0xf00f0000, self.cpu.debug_bus, 0x100) self.submodules.leds = GPIOOut(Cat( platform.request("user_ledr_n"), platform.request("user_ledg_n"))) self.add_csr("leds") # self.add_memory_region("rom", 0x2001a000, 16 * 1024 * 1024 - 0x1a000, type="cached+linker") # self.add_memory_region("boot", 0, 16, type="cached+linker") # self.mem_regions["rom"] = SoCMemRegion(0x2001a000, 16 * 1024 * 1024 - 0x1a000, "cached") # self.mem_regions["boot"] = SoCMemRegion(0, 16, "cached") def set_yosys_nextpnr_settings(self, nextpnr_seed=0, nextpnr_placer="heap"): """Set Yosys/Nextpnr settings by overriding default LiteX's settings. Args: nextpnr_seed (int): Seed to use in Nextpnr nextpnr_placer (str): Placer to use in Nextpnr """ assert hasattr(self.platform.toolchain, "yosys_template") assert hasattr(self.platform.toolchain, "build_template") self.platform.toolchain.yosys_template = [ "{read_files}", "attrmap -tocase keep -imap keep=\"true\" keep=1 -imap keep=\"false\" keep=0 -remove keep=0", # Use "-relut -dffe_min_ce_use 4" to the synth_ice40 command. The "-reult" adds an additional # LUT pass to pack more stuff in, and the "-dffe_min_ce_use 4" flag prevents Yosys from # generating a Clock Enable signal for a LUT that has fewer than 4 flip-flops. This increases # density, and lets us use the FPGA more efficiently. "synth_ice40 -json {build_name}.json -top {build_name} -relut -abc2 -dffe_min_ce_use 4 -relut", ] self.platform.toolchain.build_template = [ "yosys -q -l {build_name}.rpt {build_name}.ys", "nextpnr-ice40 --json {build_name}.json --pcf {build_name}.pcf --asc {build_name}.txt" + " --pre-pack {build_name}_pre_pack.py --{architecture} --package {package}" + " --seed {}".format(nextpnr_seed) + " --placer {}".format(nextpnr_placer), # Disable final deep-sleep power down so firmware words are loaded onto softcore's address bus. "icepack -s {build_name}.txt {build_name}.bin" ] # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on iCEBreaker") parser.add_argument("--nextpnr-seed", default=0, help="Seed to use in Nextpnr") parser.add_argument("--nextpnr-placer", default="heap", choices=["sa", "heap"], help="Placer implementation to use in Nextpnr") parser.add_argument( "--cpu", action="store_true", help="Add a CPU to the build" ) builder_args(parser) soc_core_args(parser) args = parser.parse_args() kwargs = builder_argdict(args) if args.cpu: kwargs["cpu_type"] = "vexriscv" kwargs["cpu_variant"] = "lite" soc = BaseSoC(debug=True, **kwargs) soc.set_yosys_nextpnr_settings(nextpnr_seed=args.nextpnr_seed, nextpnr_placer=args.nextpnr_placer) kwargs = builder_argdict(args) # Don't build software -- we don't include it since we just jump # to SPI flash. kwargs["compile_software"] = False builder = Builder(soc, **kwargs) builder.build() if __name__ == "__main__": main()