diff --git a/migen/genlib/cordic.py b/migen/genlib/cordic.py new file mode 100644 index 000000000..b6895a2a6 --- /dev/null +++ b/migen/genlib/cordic.py @@ -0,0 +1,251 @@ +from math import atan, atanh, log, sqrt, pi + +from migen.fhdl.std import * + + +class TwoQuadrantCordic(Module): + """ + http://eprints.soton.ac.uk/267873/1/tcas1_cordic_review.pdf + """ + def __init__(self, width=16, stages=None, guard=0, + eval_mode="iterative", cordic_mode="rotate", + func_mode="circular"): + # validate paramters + assert eval_mode in ("combinatorial", "pipelined", "iterative") + assert cordic_mode in ("rotate", "vector") + self.cordic_mode = cordic_mode + assert func_mode in ("circular", "linear", "hyperbolic") + self.func_mode = func_mode + if guard is None: + # guard bits to guarantee "width" accuracy + guard = int(log(width)/log(2)) + if stages is None: + stages = width + guard + + # calculate the constants + if func_mode == "circular": + s = range(stages) + a = [atan(2**-i) for i in s] + g = [sqrt(1 + 2**(-2*i)) for i in s] + zmax = pi/2 + elif func_mode == "linear": + s = range(stages) + a = [2**-i for i in s] + g = [1 for i in s] + zmax = 2. + elif func_mode == "hyperbolic": + s = list(range(1, stages+1)) + # need to repeat these stages: + j = 4 + while j < stages+1: + s.append(j) + j = 3*j + 1 + s.sort() + stages = len(s) + a = [atanh(2**-i) for i in s] + g = [sqrt(1 - 2**(-2*i)) for i in s] + zmax = 1. + + a = [Signal((width+guard, True), "{}{}".format("a", i), + reset=int(round(ai*2**(width + guard - 1)/zmax))) + for i, ai in enumerate(a)] + self.zmax = zmax #/2**(width - 1) + self.gain = 1. + for gi in g: + self.gain *= gi + + exec_target, num_reg, self.latency, self.interval = { + "combinatorial": (self.comb, stages + 1, 0, 1), + "pipelined": (self.sync, stages + 1, stages, 1), + "iterative": (self.sync, 3, stages + 1, stages + 1), + }[eval_mode] + + # i/o and inter-stage signals + self.fresh = Signal() + self.xi, self.yi, self.zi, self.xo, self.yo, self.zo = ( + Signal((width, True), l + io) for io in "io" for l in "xyz") + x, y, z = ([Signal((width + guard, True), "{}{}".format(l, i)) + for i in range(num_reg)] for l in "xyz") + + self.comb += [ + x[0].eq(self.xi<>guard), + self.yo.eq(y[-1]>>guard), + self.zo.eq(z[-1]>>guard), + ] + + if eval_mode in ("combinatorial", "pipelined"): + self.comb += self.fresh.eq(1) + for i in range(stages): + exec_target += self.stage(x[i], y[i], z[i], + x[i + 1], y[i + 1], z[i + 1], i, a[i]) + elif eval_mode == "iterative": + # we afford one additional iteration for register in/out + # shifting, trades muxes for registers + i = Signal(max=stages + 1) + ai = Signal((width+guard, True)) + self.comb += ai.eq(Array(a)[i]) + exec_target += [ + i.eq(i + 1), + If(i == stages, + i.eq(0), + self.fresh.eq(1), + Cat(x[1], y[1], z[1]).eq(Cat(x[0], y[0], z[0])), + Cat(x[2], y[2], z[2]).eq(Cat(x[1], y[1], z[1])), + ).Else( + self.fresh.eq(0), + # in-place stages + self.stage(x[1], y[1], z[1], x[1], y[1], z[1], i, ai), + )] + + def stage(self, xi, yi, zi, xo, yo, zo, i, a): + """ + x_{i+1} = x_{i} - m*d_i*y_i*r**(-s_{m,i}) + y_{i+1} = d_i*x_i*r**(-s_{m,i}) + y_i + z_{i+1} = z_i - d_i*a_{m,i} + + d_i: clockwise or counterclockwise + r: radix of the number system + m: 1: circular, 0: linear, -1: hyperbolic + s_{m,i}: non decreasing integer shift sequence + a_{m,i}: elemetary rotation angle + """ + dx, dy, dz = xi>>i, yi>>i, a + # FIXME need 1'sd0 here, "Signal((n, True)) >= 0" is always true + # as 1'd0 makes the comparison unsigned + direction = {"rotate": zi[-1], "vector": ~yi[-1]}[self.cordic_mode] + dy = {"circular": dy, "linear": 0, "hyperbolic": -dy}[self.func_mode] + ret = If(direction, + xo.eq(xi + dy), + yo.eq(yi - dx), + zo.eq(zi + dz), + ).Else( + xo.eq(xi - dy), + yo.eq(yi + dx), + zo.eq(zi - dz), + ) + return ret + + + +class Cordic(TwoQuadrantCordic): + def __init__(self, **kwargs): + TwoQuadrantCordic.__init__(self, **kwargs) + if not (self.func_mode, self.cordic_mode) == ("circular", "rotate"): + return # no need to remap quadrants + cxi, cyi, czi, cxo, cyo, czo = (self.xi, self.yi, self.zi, + self.xo, self.yo, self.zo) + width = flen(self.xi) + for l in "xyz": + for d in "io": + setattr(self, l+d, Signal((width, True), l+d)) + qin = Signal() + qout = Signal() + if self.latency == 0: + self.comb += qout.eq(qin) + elif self.latency == 1: + self.sync += qout.eq(qin) + else: + sr = Signal(self.latency-1) + self.sync += Cat(sr, qout).eq(Cat(qin, sr)) + pi2 = (1<<(width-2))-1 + self.zmax *= 2 + self.comb += [ + # zi, zo are scaled to cover the range, this also takes + # care of mapping the zi quadrants + Cat(cxi, cyi, czi).eq(Cat(self.xi, self.yi, self.zi<<1)), + Cat(self.xo, self.yo, self.zo).eq(Cat(cxo, cyo, czo>>1)), + # shift in the (2,3)-quadrant flag + qin.eq((-self.zi < -pi2) | (self.zi+1 < -pi2)), + # need to remap xo/yo quadrants (2,3) -> (4,1) + If(qout, + self.xo.eq(-cxo), + self.yo.eq(-cyo), + )] + + +class TB(Module): + def __init__(self, n, **kwargs): + self.submodules.cordic = Cordic(**kwargs) + self.xi = [.9/self.cordic.gain] * n + self.yi = [0] * n + self.zi = [2*i/n-1 for i in range(n)] + self.xo = [] + self.yo = [] + self.zo = [] + + def do_simulation(self, s): + c = 2**(flen(self.cordic.xi)-1) + if s.rd(self.cordic.fresh): + self.xo.append(s.rd(self.cordic.xo)) + self.yo.append(s.rd(self.cordic.yo)) + self.zo.append(s.rd(self.cordic.zo)) + if not self.xi: + s.interrupt = True + return + for r, v in zip((self.cordic.xi, self.cordic.yi, self.cordic.zi), + (self.xi, self.yi, self.zi)): + s.wr(r, int(v.pop(0)*c)) + + +def main(): + from migen.fhdl import verilog + from migen.sim.generic import Simulator, TopLevel + from matplotlib import pyplot as plt + import numpy as np + + c = Cordic(width=16, eval_mode="iterative", + cordic_mode="rotate", func_mode="circular") + print(verilog.convert(c, ios={c.xi, c.yi, c.zi, c.xo, + c.yo, c.zo})) + + n = 200 + tb = TB(n, width=8, guard=3, eval_mode="pipelined", + cordic_mode="rotate", func_mode="circular") + sim = Simulator(tb, TopLevel("cordic.vcd")) + sim.run(n*16+20) + plt.plot(tb.xo) + plt.plot(tb.yo) + plt.plot(tb.zo) + plt.show() + + +def rms_err(width, stages, n): + from migen.sim.generic import Simulator + import numpy as np + import matplotlib.pyplot as plt + + tb = TB(width=int(width), stages=int(stages), n=n, + eval_mode="combinatorial") + sim = Simulator(tb) + sim.run(n+100) + z = tb.cordic.zmax*(np.arange(n)/n*2-1) + x = np.cos(z)*.9 + y = np.sin(z)*.9 + dx = tb.xo[1:]-x*2**(width-1) + dy = tb.yo[1:]-y*2**(width-1) + return ((dx**2+dy**2)**.5).sum()/n + + +def test_err(): + from matplotlib import pyplot as plt + import numpy as np + + widths, stages = np.mgrid[4:33:1, 4:33:1] + err = np.vectorize(lambda w, s: rms_err(w, s, 173))(widths, stages) + err = -np.log2(err)/widths + print(err) + plt.contour(widths, stages, err, 50, cmap=plt.cm.Greys) + plt.plot(widths[:, 0], stages[0, np.argmax(err, 1)], "bx-") + print(widths[:, 0], stages[0, np.argmax(err, 1)]) + plt.colorbar() + plt.grid("on") + plt.show() + + +if __name__ == "__main__": + main() + #rms_err(16, 16, 345) + #test_err()