diff --git a/litex/soc/interconnect/packet.py b/litex/soc/interconnect/packet.py index 5264aab0a..40c0cf6d3 100644 --- a/litex/soc/interconnect/packet.py +++ b/litex/soc/interconnect/packet.py @@ -254,85 +254,6 @@ class Packetizer(Module): ) ) - # Last BE. - # FIXME: Switch to a simpler Data Qualifier and remove Last BE handling/section. - if hasattr(sink, "last_be") and hasattr(source, "last_be"): - # For an 8-bit data path, last_be really should be 1 when last is - # asserted, other values do not make sense. However, legacy code - # might not set last_be at all, and thus it will be set to 0. To - # remain compatible with this code, this "corrects" last_be for - # 8-bit paths by setting it to the value of last. - if len(sink.last_be) == 1: - sink_last_be = Signal.like(sink.last_be) - self.comb += [ sink_last_be.eq(sink.last) ] - else: - sink_last_be = sink.last_be - - # last_be needs to be right-rotated by the number of bytes which - # would be required to have a properly aligned header. - right_rot_by = header_leftover - - # Calculate a rotated last_be - new_last_be = Signal.like(sink_last_be) - self.comb += [ - new_last_be.eq(Cat([ - sink_last_be[(i - right_rot_by) % bytes_per_clk] - for i in range(bytes_per_clk) - ])) - ] - - # Conditionally delay the calculated last_be for one clock cycle, if - # it now applies to the next bus word OR if the source is not ready. - delayed_last_be = Signal.like(sink_last_be) - - # FSM used to conveniently assign combinational and synchronous - # signals in the same context. - self.submodules.last_be_fsm = last_be_fsm = FSM(reset_state="DEFAULT") - - # Whether the main FSM is in one of the DATA-COPY states. This is - # important as we overwrite sink.ready below and need to have - # different behavior depending on the Packetizer's state - in_data_copy = Signal() - self.comb += [ - in_data_copy.eq(self.fsm.ongoing("ALIGNED-DATA-COPY") | self.fsm.ongoing("UNALIGNED-DATA-COPY")) - ] - - self.last_be_fsm.act("DEFAULT", - # Test whether our right-shift causes a wrap-around. In that - # case apply the last value to the current bus word. Otherwise - # delay it to the next. - If(in_data_copy & sink.last & (sink_last_be > new_last_be), - # Right shift did not wrap around, need to delay the - # calculated last_be value and last by one cycle. - source.last.eq(0), - source.last_be.eq(0), - If(source.ready & source.valid, - NextValue(delayed_last_be, new_last_be), - NextState("DELAYED"), - ), - ).Elif(in_data_copy, - # Output the calculated last_be value on the current packet - # already. For the next sink packet, ignore any last_be - source.last.eq(sink.last), - source.last_be.eq(new_last_be), - ), - If(in_data_copy, - sink.ready.eq(source.ready), - ).Elif(self.fsm.ongoing("IDLE"), - sink.ready.eq(~sink.valid), - ) - ) - - self.last_be_fsm.act("DELAYED", - # Output the delayed last and last_be signals - source.last.eq(1), - source.last_be.eq(delayed_last_be), - sink.ready.eq(0), - If(source.ready, - NextState("DEFAULT"), - ), - ) - # Error. if hasattr(sink, "error") and hasattr(source, "error"): self.comb += source.error.eq(sink.error) @@ -438,102 +359,6 @@ class Depacketizer(Module): if hasattr(sink, "error") and hasattr(source, "error"): self.comb += source.error.eq(sink.error) - # Last BE. - # FIXME: Switch to a simpler Data Qualifier and remove Last BE handling/section. - if hasattr(sink, "last_be") and hasattr(source, "last_be"): - # For an 8-bit data path, last_be really should be 1 when last is - # asserted, other values do not make sense. However, legacy code - # might not set last_be at all, and thus it will be set to 0. To - # remain compatible with this code, this "corrects" last_be for - # 8-bit paths by setting it to the value of last. - if len(sink.last_be) == 1: - sink_last_be = Signal.like(sink.last_be) - self.comb += [ sink_last_be.eq(sink.last) ] - else: - sink_last_be = sink.last_be - - # last_be needs to be left-rotated by the number of bytes which - # would be required to have a properly aligned header. - left_rot_by = (bytes_per_clk - header_leftover) % bytes_per_clk - - # Calculate a rotated last_be - new_last_be = Signal.like(sink_last_be) - self.comb += [ - new_last_be.eq(Cat([ - sink_last_be[(i - left_rot_by) % bytes_per_clk] - for i in range(bytes_per_clk) - ])) - ] - - # Conditionally delay the calculated last_be for one clock cycle, if - # it now applies to the next bus word. - delayed_last_be = Signal.like(sink_last_be) - - # FSM used to conveniently assign combinational and synchronous - # signals in the same context. - self.submodules.last_be_fsm = last_be_fsm = FSM(reset_state="DEFAULT") - - # Whether the main FSM is / was in one of the DATA-COPY states. This - # is important as we must handle a special case when last is - # asserted while the Depacketizer has just transitioned out of - # writing the header, which we can then detect by checking - # (~was_in_copy & is_in_copy). - is_in_copy = Signal() - was_in_copy = Signal() - self.comb += [ - is_in_copy.eq( - self.fsm.ongoing("ALIGNED-DATA-COPY") | self.fsm.ongoing("UNALIGNED-DATA-COPY") - ) - ] - self.sync += [ - was_in_copy.eq(is_in_copy) - ] - - self.last_be_fsm.act("DEFAULT", - # Test whether our left-shift has caused an wrap-around, in that - # case delay last and last_be and apply to the next bus word. - If(sink.valid & sink.last & (sink_last_be > new_last_be), - # last_be did wrap around. Need to delay the calculated - # last_be value and last by one cycle. - source.last.eq(0), - source.last_be.eq(0), - # Normally just wait until a source bus transaction occurred - # (ready + valid) until the delayed last_be can be - # output. However, if the first word is also the last, this - # will mean that the source isn't valid currently as the - # header is still being sent. Thus, if sink.valid and - # sink.last and we've just transitioned into the data copy - # phase, we can immediately jump into the DELAYED state (as - # the very first bus word containing proper data is also the - # last one, and we've just transitioned to putting that on - # the bus). - If((source.ready & source.valid) | (~was_in_copy & is_in_copy), - NextValue(delayed_last_be, new_last_be), - NextState("DELAYED"), - ), - ).Elif(sink.last, - # Simply forward the calculated last_be value. - source.last.eq(1), - source.last_be.eq(new_last_be), - ), - If(self.fsm.ongoing("ALIGNED-DATA-COPY") \ - | (self.fsm.ongoing("UNALIGNED-DATA-COPY") & ~fsm_from_idle), - sink.ready.eq(source.ready), - ).Else( - sink.ready.eq(1), - ), - ) - - self.last_be_fsm.act("DELAYED", - # Output the delayed last and last_be signals - source.last.eq(1), - source.last_be.eq(delayed_last_be), - sink.ready.eq(0), - If(source.ready & source.valid, - NextState("DEFAULT"), - ), - ) - # PacketFIFO --------------------------------------------------------------------------------------- class PacketFIFO(Module): diff --git a/test/test_packet2.py b/test/test_packet2.py deleted file mode 100644 index 8a9f9e990..000000000 --- a/test/test_packet2.py +++ /dev/null @@ -1,188 +0,0 @@ -# -# This file is part of LiteX. -# -# Copyright (c) 2021 Leon Schuermann -# SPDX-License-Identifier: BSD-2-Clause - -import unittest -import random - -from migen import * - -from litex.soc.interconnect.stream import * -from litex.soc.interconnect.packet import * - -from .test_stream2 import StreamPacket, stream_inserter, stream_collector, compare_packets - -def mask_last_be(dw, data, last_be): - masked_data = 0 - - for byte in range(dw // 8): - if 2**byte > last_be: - break - masked_data |= data & (0xFF << (byte * 8)) - - return masked_data - -class TestPacket(unittest.TestCase): - def loopback_test(self, dw, seed=42, with_last_be=False, debug_print=False): - # Independent random number generator to ensure we're the - # stream_inserter and stream_collectors still have - # reproducible behavior independent of the headers - prng = random.Random(seed + 5) - - # Generate a random number of differently sized header fields - nheader_fields = prng.randrange(16) - i = 0 - packet_header_length = 0 - packet_header_fields = {} - while packet_header_length < dw // 8 or i < nheader_fields: - # Header field size can be 1, 2, 4, 8, 16 bytes - field_length = 2**prng.randrange(5) - packet_header_fields["field{}_{}b".format(i, field_length * 8)] = \ - HeaderField(packet_header_length, 0, field_length * 8) - packet_header_length += field_length - i += 1 - - packet_header = Header( - fields = packet_header_fields, - length = packet_header_length, - swap_field_bytes = bool(prng.getrandbits(1))) - - def packet_description(dw): - param_layout = packet_header.get_layout() - payload_layout = [("data", dw)] - - if with_last_be: - payload_layout += [("last_be", dw // 8)] - - return EndpointDescription(payload_layout, param_layout) - - def raw_description(dw): - payload_layout = [("data", dw)] - - if with_last_be: - payload_layout += [("last_be", dw // 8)] - - return EndpointDescription(payload_layout) - - # Prepare packets - npackets = 32 - packets = [] - for n in range(npackets): - header = {} - for name, headerfield in packet_header_fields.items(): - header[name] = prng.randrange(2**headerfield.width) - datas = [prng.randrange(2**8) for _ in range(prng.randrange(dw - 1) + 1)] - packets.append(StreamPacket(datas, header)) - - class DUT(Module): - def __init__(self): - self.submodules.packetizer = Packetizer( - packet_description(dw), - raw_description(dw), - packet_header, - ) - self.submodules.depacketizer = Depacketizer( - raw_description(dw), - packet_description(dw), - packet_header, - ) - self.comb += self.packetizer.source.connect(self.depacketizer.sink) - self.sink, self.source = self.packetizer.sink, self.depacketizer.source - - dut = DUT() - recvd_packets = [] - run_simulation( - dut, - [ - stream_inserter( - dut.sink, - src=packets, - seed=seed, - debug_print=debug_print, - valid_rand=50, - ), - stream_collector( - dut.source, - dest=recvd_packets, - expect_npackets=npackets, - seed=seed, - debug_print=debug_print, - ready_rand=50, - ), - ], - ) - - # When we don't have a last_be signal, the Packetizer will simply throw - # away the partial bus word. The Depacketizer will then fill up these - # values with garbage again. Thus we also have to remove the proper - # amount of bytes from the sent packets so the comparson will work. - if not with_last_be and dw != 8: - # Modulo operation which returns the divisor instead of zero. - def upmod(a, b): - return b if a % b == 0 else a % b - - for (packet, recvd_packet) in zip(packets, recvd_packets): - # How many bytes of the header have to be interleaved with the - # first data word on the bus. - header_leftover = packet_header_length % (dw // 8) - - # If the last word of our data would fit together with the - # header_leftover bytes in a single bus word, all data (plus - # some trailing garbage) will arrive. Otherwise, some data bytes - # will be missing. - if header_leftover != 0 and \ - header_leftover + upmod(len(packet.data), dw // 8) <= (dw // 8): - # The entire data will arrive, plus some trailing - # garbage. Remove that. - garbage_bytes = -len(packet.data) % (dw // 8) - recvd_packet.data = recvd_packet.data[:-garbage_bytes] - else: - # header_leftover bytes in received data have been replaced - # with garbage. Remove these bytes from the received and - # sent data. - recvd_packet.data = recvd_packet.data[:-header_leftover] - packet.data = packet.data[:len(recvd_packet.data)] - - self.assertTrue(compare_packets(packets, recvd_packets)) - -# def test_8bit_loopback(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=8, seed=seed) -# -# def test_8bit_loopback_last_be(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=8, seed=seed, with_last_be=True) -# -# def test_32bit_loopback(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=32, seed=seed) -# -# def test_32bit_loopback_last_be(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=32, seed=seed, with_last_be=True) -# -# def test_64bit_loopback(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=64, seed=seed) -# -# def test_64bit_loopback_last_be(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=64, seed=seed, with_last_be=True) -# -# def test_128bit_loopback(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=128, seed=seed) -# -# def test_128bit_loopback_last_be(self): -# for seed in range(42, 48): -# with self.subTest(seed=seed): -# self.loopback_test(dw=128, seed=seed, with_last_be=True) diff --git a/test/test_stream2.py b/test/test_stream2.py deleted file mode 100644 index 609a4c976..000000000 --- a/test/test_stream2.py +++ /dev/null @@ -1,339 +0,0 @@ -# -# This file is part of LiteX. -# -# Copyright (c) 2021 Leon Schuermann -# SPDX-License-Identifier: BSD-2-Clause - -import unittest -import unittest -import random -import itertools -import sys - -from migen import * - -from litex.soc.interconnect.stream import * - -# Function to iterate over chunks of data, from -# https://docs.python.org/3/library/itertools.html#itertools-recipes -def grouper(iterable, n, fillvalue=None): - "Collect data into fixed-length chunks or blocks" - # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" - args = [iter(iterable)] * n - return itertools.zip_longest(*args, fillvalue=fillvalue) - -class StreamPacket: - def __init__(self, data, params={}): - # Data must be a list of bytes - assert type(data) == list - for b in data: - assert type(b) == int and b >= 0 and b < 256 - - # Params must be a dictionary of strings mapping to integers - assert type(params) == dict - for param_key, param_value in params.items(): - assert type(param_key) == str - assert type(param_value) == int - - self.data = data - self.params = params - - def compare(self, other, quiet=True, output_target=sys.stdout): - if len(self.data) != len(other.data): - if not quiet: - print("Length mismatch in number of received bytes of packet:" \ - " {} {}".format(len(self.data), len(other.data)), - file=sys.stdout) - return False - - - for nbyte, (byte_a, byte_b) in enumerate(zip(self.data, other.data)): - if byte_a != byte_b: - if not quiet: - print("Mismatch between sent and received bytes {}: " \ - "0x{:02x} 0x{:02x}".format(nbyte, byte_a, byte_b), - file=sys.stdout) - return False - - if set(self.params.keys()) != set(other.params.keys()): - if not quiet: - print("Sent and received packets have different param fields:" \ - " {} {}".format(self.params.keys(), other.params.keys()), - file=sys.stdout) - return False - - for param_name, self_param_value in self.params.items(): - other_param_value = other.params[param_name] - if self_param_value != other_param_value: - if not quiet: - print("Sent and received packets have different value for" \ - " param signal \"{}\": 0x{:x} 0x{:x}".format( - param_name, - self_param_value, - other_param_value), - file=sys.stdout) - return False - - return True - -def stream_inserter( - sink, - src, - seed=42, - valid_rand=50, - debug_print=False, - broken_8bit_last_be=True): - """Insert a list of packets of bytes on to the stream interface `sink`. If - `sink` has a `last_be` signal, that is set accordingly. - - """ - - prng = random.Random(seed) - - # Extract the data width from the provided sink Endpoint - dw = len(sink.data) - - # Make sure dw is evenly divisible by 8 as the logic below relies on - # that. Also, last_be wouldn't make much sense otherwise. - assert dw % 8 == 0 - - # If a last_be signal is provided, it must contain one bit per byte of data, - # i.e. be dw // 8 long. - if hasattr(sink, "last_be"): - assert dw // 8 == len(sink.last_be) - - # src is a list of lists. Each list represents a packet of bytes. Send each - # packet over the bus. - for pi, packet in enumerate(src): - assert len(packet.data) > 0, "Packets of length 0 are not compatible " \ - "with the ready/valid stream interface" - - # Each packet is a list. We must send dw // 8 bytes at a time. Use the - # grouper method to get a chunked iterator over the packet bytes and - # shift them to their correct position. Use a random filler byte to - # complete a bus word. - words = [] - for chunk in grouper(packet.data, dw // 8, prng.randrange(256)): - word = 0 - for i, b in enumerate(chunk): - assert b >= 0 and b < 256 - word |= b << (i * 8) - words += [word] - - if hasattr(sink, "last_be"): - encoded_last_be = Constant( - 1 << ((len(packet.data) - 1) % (dw // 8)), - bits_sign=len(sink.last_be) - ) - - # In legacy code for 8bit data paths last_be might not be set - # properly: while last_be should always be equal to last for 8bit - # data paths, if new code interacts with old code which is not yet - # last_be aware, it might always be deasserted. If - # broken_8bit_last_be is set and we have an 8bit data path, randomly - # set last_be to either one or zero to check whether the DUT handles - # these cases properly. - if broken_8bit_last_be and dw == 8: - encoded_last_be = Constant(prng.randrange(2), bits_sign=1) - - # At the very beginning of the packet transmission, set the param - # signals - for param_signal, param_value in packet.params.items(): - yield getattr(sink, param_signal).eq(param_value) - - for i, word in enumerate(words): - last = i == len(words) - 1 - - # Place the word on the bus, if its the last word set last and - # last_be accordingly and finally set sink to valid - yield sink.data.eq(word) - yield sink.last.eq(last) - if hasattr(sink, "last_be"): - if last: - yield sink.last_be.eq(encoded_last_be) - else: - yield sink.last_be.eq(0) - yield sink.valid.eq(1) - yield - - # Wait until the sink has become ready for one clock cycle - while not (yield sink.ready): - yield - - # Set sink to not valid for a random amount of time - yield sink.valid.eq(0) - while prng.randrange(100) < valid_rand: - yield - - # Okay, we've transmitted a packet. We must set sink.valid to false, for - # good measure clear all other signals as well. We don't explicitly - # yield, given a there might be a new packet waiting already. - yield sink.data.eq(0) - yield sink.last.eq(0) - if hasattr(sink, "last_be"): - yield sink.last_be.eq(0) - for param_signal in packet.params.keys(): - yield getattr(sink, param_signal).eq(0) - yield sink.valid.eq(0) - - if debug_print: - print("Sent packet {}.".format(pi), file=sys.stderr) - - # All packets have been transmitted. sink.valid has already been - # deasserted, yield once to properly apply that value. - yield - -def stream_collector( - source, - dest=[], - expect_npackets=None, - seed=42, - ready_rand=50, - debug_print=False): - """Consume some packets of bytes from the stream interface - `source`. If `source` has a `last_be` signal, that is respected - properly. - - """ - - prng = random.Random(seed) - - # Extract the data width from the provided source endpoint - dw = len(source.data) - - # Make sure dw is evenly divisible by 8 as the logic below relies on - # that. Also, last_be wouldn't make much sense otherwise. - assert dw % 8 == 0 - - # If a last_be signal is provided, it must contain one bit per byte of data, - # i.e. be dw // 8 long. - if hasattr(source, "last_be"): - assert dw // 8 == len(source.last_be) - - # Extract "param_signals" from the source Endpoint. They are extracted on - # the first valid word of a packet. If dest will be a list of tuples with - # data and param signals if there are any, otherwise just a list of lists. - param_signals = [ - signal_name for signal_name, _, _ in source.param.layout - ] if hasattr(source, "param") else [] - - # Loop for collecting individual packets, separated by source.last - while expect_npackets == None or len(dest) < expect_npackets: - # Buffer for the current packet - collected_bytes = [] - param_signal_states = {} - - # Iterate until "last" has been seen. That concludes the end of a bus - # transaction / packet. - read_last = False - first_word = True - while not read_last: - # We are ready to accept another bus word - yield source.ready.eq(1) - yield - - # Wait for data to become valid - while (yield source.valid) == 0: - yield - - # Data is now valid, read it byte by byte - data = yield source.data - for byte in range(dw // 8): - if (yield source.last) == 1: - read_last = True - if hasattr(source, "last_be") and \ - 2**byte > (yield source.last_be): - break - collected_bytes += [((data >> (byte * 8)) & 0xFF)] - - # Also, if this is the first loop iteration, latch all param signals - for param_signal in param_signals: - param_signal_states[param_signal] = \ - yield getattr(source, param_signal) - - # Set source to not valid for a random amount of time - yield source.ready.eq(0) - while prng.randrange(100) < ready_rand: - yield - - # This is no longer the first loop iteration - first_word = False - - # A full packet has been read. Append it to dest. - dest += [StreamPacket(collected_bytes, param_signal_states)] - if debug_print: - print("Received packet {}.".format(len(dest) - 1), file=sys.stderr) - -def generate_test_packets(npackets, seed=42): - # Generate a number of last-terminated bus transaction byte contents (dubbed - # packets) - prng = random.Random(42) - - packets = [] - for _ in range(npackets): - # With a random number of bytes from [1, 1024) - values = [] - for _ in range(prng.randrange(1023) + 1): - # With random values from [0, 256). - values += [prng.randrange(256)] - packets += [StreamPacket(values)] - - return packets - -def compare_packets(packets_a, packets_b): - if len(packets_a) != len(packets_b): - print("Length mismatch in number of received packets: {} {}" - .format(len(packets_a), len(packets_b)), file=sys.stderr) - return False - - for npacket, (packet_a, packet_b) in enumerate(zip(packets_a, packets_b)): - if not packet_a.compare(packet_b): - print("Error in packet", npacket) - packet_a.compare(packet_b, quiet=False) - return False - - return True - -class TestStream(unittest.TestCase): - def pipe_test(self, dut, seed=42, npackets=64, debug_print=False): - # Get some data to test with - packets = generate_test_packets(npackets, seed=seed) - - # Buffer for received packets (filled by collector) - recvd_packets = [] - - run_simulation( - dut, - [ - stream_inserter( - dut.sink, - src=packets, - debug_print=debug_print, - seed=seed, - ), - stream_collector( - dut.source, - dest=recvd_packets, - expect_npackets=npackets, - debug_print=debug_print, - seed=seed, - ), - ], - ) - self.assertTrue(compare_packets(packets, recvd_packets)) - - def test_pipe_valid(self): - # PipeValid either connects the entire payload or not. Thus we don't - # need to test for 8bit support or a missing last_be signal - # specifically. This test does however ensure that last_be will continue - # to be respected in the future. - dut = PipeValid([("data", 32), ("last_be", 4)]) - self.pipe_test(dut) - - def test_pipe_ready(self): - # PipeReady either connects the entire stream Endpoint or not. Thus we - # don't need to test for 8bit support or a missing last_be signal - # specifically. This test does however ensure that last_be will continue - # to be respected in the future. - dut = PipeReady([("data", 64), ("last_be", 8)]) - self.pipe_test(dut)