# # This file is part of LiteX. # # Copyright (c) 2019-2022 Florent Kermarrec # SPDX-License-Identifier: BSD-2-Clause import unittest import random from migen import * from litex.soc.interconnect.axi import * from litex.soc.interconnect import wishbone # Software Models ---------------------------------------------------------------------------------- class Burst: def __init__(self, addr, type=BURST_FIXED, len=0, size=0): self.addr = addr self.type = type self.len = len self.size = size def to_beats(self): r = [] burst_length = self.len + 1 burst_size = 2**self.size for i in range(burst_length): if self.type == BURST_INCR: offset = i*2**(self.size) r += [Beat(self.addr + offset)] elif self.type == BURST_WRAP: assert burst_length in [2, 4, 8, 16] assert (self.addr % burst_size) == 0 burst_base = self.addr - self.addr % (burst_length * burst_size) burst_offset = self.addr % (burst_length * burst_size) burst_addr = burst_base + (burst_offset + i*burst_size) % (burst_length * burst_size) #print("0x{:08x}".format(burst_addr)) r += [Beat(burst_addr)] else: r += [Beat(self.addr)] return r class Beat: def __init__(self, addr): self.addr = addr class Access(Burst): def __init__(self, addr, data, id, **kwargs): Burst.__init__(self, addr, **kwargs) self.data = data self.id = id class Write(Access): pass class Read(Access): pass # TestAXI ------------------------------------------------------------------------------------------ class TestAXI(unittest.TestCase): def test_burst2beat(self): def bursts_generator(ax, bursts, valid_rand=50): prng = random.Random(42) for burst in bursts: yield ax.valid.eq(1) yield ax.addr.eq(burst.addr) yield ax.burst.eq(burst.type) yield ax.len.eq(burst.len) yield ax.size.eq(burst.size) while (yield ax.ready) == 0: yield yield ax.valid.eq(0) while prng.randrange(100) < valid_rand: yield yield @passive def beats_checker(ax, beats, ready_rand=50): self.errors = 0 yield ax.ready.eq(0) prng = random.Random(42) for beat in beats: while ((yield ax.valid) and (yield ax.ready)) == 0: if prng.randrange(100) > ready_rand: yield ax.ready.eq(1) else: yield ax.ready.eq(0) yield ax_addr = (yield ax.addr) #print("0x{:08x}".format(ax_addr)) if ax_addr != beat.addr: self.errors += 1 yield # DUT ax_burst = AXIStreamInterface(layout=ax_description(32), id_width=32) ax_beat = AXIStreamInterface(layout=ax_description(32), id_width=32) dut = AXIBurst2Beat(ax_burst, ax_beat) # Generate DUT input (bursts). prng = random.Random(42) bursts = [] for i in range(32): bursts.append(Burst(prng.randrange(2**32), BURST_FIXED, prng.randrange(255), log2_int(32//8))) bursts.append(Burst(prng.randrange(2**32), BURST_INCR, prng.randrange(255), log2_int(32//8))) bursts.append(Burst(4, BURST_WRAP, 4-1, log2_int(2))) bursts.append(Burst(0x80000160, BURST_WRAP, 0x3, 0b100)) # Generate expected DUT output (beats for reference). beats = [] for burst in bursts: beats += burst.to_beats() # Simulation generators = [ bursts_generator(ax_burst, bursts), beats_checker(ax_beat, beats) ] run_simulation(dut, generators) self.assertEqual(self.errors, 0) def _test_axi2wishbone(self, naccesses=16, simultaneous_writes_reads=False, # Random: 0: min (no random), 100: max. # Burst randomness. id_rand_enable = False, len_rand_enable = False, data_rand_enable = False, # Flow valid randomness. aw_valid_random = 0, w_valid_random = 0, ar_valid_random = 0, r_valid_random = 0, # Flow ready randomness. w_ready_random = 0, b_ready_random = 0, r_ready_random = 0 ): def writes_cmd_generator(axi_port, writes): prng = random.Random(42) for write in writes: while prng.randrange(100) < aw_valid_random: yield # Send command. yield axi_port.aw.valid.eq(1) yield axi_port.aw.addr.eq(write.addr<<2) yield axi_port.aw.burst.eq(write.type) yield axi_port.aw.len.eq(write.len) yield axi_port.aw.size.eq(write.size) yield axi_port.aw.id.eq(write.id) yield while (yield axi_port.aw.ready) == 0: yield yield axi_port.aw.valid.eq(0) def writes_data_generator(axi_port, writes): prng = random.Random(42) yield axi_port.w.strb.eq(2**(len(axi_port.w.data)//8) - 1) for write in writes: for i, data in enumerate(write.data): while prng.randrange(100) < w_valid_random: yield # Send data. yield axi_port.w.valid.eq(1) if (i == (len(write.data) - 1)): yield axi_port.w.last.eq(1) else: yield axi_port.w.last.eq(0) yield axi_port.w.data.eq(data) yield while (yield axi_port.w.ready) == 0: yield yield axi_port.w.valid.eq(0) axi_port.reads_enable = True def writes_response_generator(axi_port, writes): prng = random.Random(42) self.writes_id_errors = 0 for write in writes: # wait response yield axi_port.b.ready.eq(0) yield while (yield axi_port.b.valid) == 0: yield while prng.randrange(100) < b_ready_random: yield yield axi_port.b.ready.eq(1) yield if (yield axi_port.b.id) != write.id: self.writes_id_errors += 1 def reads_cmd_generator(axi_port, reads): prng = random.Random(42) while not axi_port.reads_enable: yield for read in reads: while prng.randrange(100) < ar_valid_random: yield # Send command. yield axi_port.ar.valid.eq(1) yield axi_port.ar.addr.eq(read.addr<<2) yield axi_port.ar.burst.eq(read.type) yield axi_port.ar.len.eq(read.len) yield axi_port.ar.size.eq(read.size) yield axi_port.ar.id.eq(read.id) yield while (yield axi_port.ar.ready) == 0: yield yield axi_port.ar.valid.eq(0) def reads_response_data_generator(axi_port, reads): prng = random.Random(42) self.reads_data_errors = 0 self.reads_id_errors = 0 self.reads_last_errors = 0 while not axi_port.reads_enable: yield for read in reads: for i, data in enumerate(read.data): # Wait data / response. yield axi_port.r.ready.eq(0) yield while (yield axi_port.r.valid) == 0: yield while prng.randrange(100) < r_ready_random: yield yield axi_port.r.ready.eq(1) yield if (yield axi_port.r.data) != data: self.reads_data_errors += 1 if (yield axi_port.r.id) != read.id: self.reads_id_errors += 1 if i == (len(read.data) - 1): if (yield axi_port.r.last) != 1: self.reads_last_errors += 1 else: if (yield axi_port.r.last) != 0: self.reads_last_errors += 1 # DUT class DUT(Module): def __init__(self): self.axi = AXIInterface(data_width=32, address_width=32, id_width=8) self.wishbone = wishbone.Interface(data_width=32, adr_width=30) axi2wishbone = AXI2Wishbone(self.axi, self.wishbone) self.submodules += axi2wishbone wishbone_mem = wishbone.SRAM(1024, bus=self.wishbone) self.submodules += wishbone_mem dut = DUT() # Generate writes/reads. prng = random.Random(42) writes = [] offset = 1 for i in range(naccesses): _id = prng.randrange(2**8) if id_rand_enable else i _len = prng.randrange(32) if len_rand_enable else i _data = [prng.randrange(2**32) if data_rand_enable else j for j in range(_len + 1)] writes.append(Write(offset, _data, _id, type=BURST_INCR, len=_len, size=log2_int(32//8))) offset += _len + 1 # Dummy reads to ensure datas have been written before the effective reads start. dummy_reads = [Read(1023, [0], 0, type=BURST_FIXED, len=0, size=log2_int(32//8)) for _ in range(32)] reads = writes # Simulation if simultaneous_writes_reads: dut.axi.reads_enable = True else: dut.axi.reads_enable = False # Will be set by writes_data_generator. generators = [ writes_cmd_generator(dut.axi, writes), writes_data_generator(dut.axi, writes), writes_response_generator(dut.axi, writes), reads_cmd_generator(dut.axi, reads), reads_response_data_generator(dut.axi, reads) ] run_simulation(dut, generators) self.assertEqual(self.writes_id_errors, 0) self.assertEqual(self.reads_data_errors, 0) self.assertEqual(self.reads_id_errors, 0) self.assertEqual(self.reads_last_errors, 0) # Test with no randomness. def test_axi2wishbone_writes_then_reads_no_random(self): self._test_axi2wishbone(simultaneous_writes_reads=False) # Test randomness one parameter at a time. def test_axi2wishbone_writes_then_reads_random_bursts(self): self._test_axi2wishbone( simultaneous_writes_reads = False, id_rand_enable = True, len_rand_enable = True, data_rand_enable = True) def test_axi2wishbone_random_w_ready(self): self._test_axi2wishbone(w_ready_random=90) def test_axi2wishbone_random_b_ready(self): self._test_axi2wishbone(b_ready_random=90) def test_axi2wishbone_random_r_ready(self): self._test_axi2wishbone(r_ready_random=90) def test_axi2wishbone_random_aw_valid(self): self._test_axi2wishbone(aw_valid_random=90) def test_axi2wishbone_random_w_valid(self): self._test_axi2wishbone(w_valid_random=90) def test_axi2wishbone_random_ar_valid(self): self._test_axi2wishbone(ar_valid_random=90) def test_axi2wishbone_random_r_valid(self): self._test_axi2wishbone(r_valid_random=90) # Now let's stress things a bit... :) def test_axi2wishbone_random_all(self): self._test_axi2wishbone( simultaneous_writes_reads = False, id_rand_enable = True, len_rand_enable = True, aw_valid_random = 50, w_ready_random = 50, b_ready_random = 50, w_valid_random = 50, ar_valid_random = 90, r_valid_random = 90, r_ready_random = 90 ) def test_axi_width_converter(self): class DUT(Module): def __init__(self, dw_from=64, dw_to=32): self.axi_master = axi_master = AXIInterface(data_width=dw_from) self.axi_slave = axi_slave = AXIInterface(data_width=dw_to) converter = AXIConverter(axi_master, axi_slave) self.submodules += converter wb = wishbone.Interface(data_width=dw_to, address_width=axi_slave.address_width) axi2wb = AXI2Wishbone(axi_slave, wb) self.submodules += axi2wb self.mem = mem = wishbone.SRAM(1024, bus=wb, init=range(256)) self.submodules += mem class DUT_ref(Module): """ An alternative configuration to the DUT above not using AXIConverter to demonstrate that the generators below are valid. Not used by default. """ def __init__(self, dw_from=64, dw_to=32): self.axi_master = axi_master = AXIInterface(data_width=dw_from) wb_from = wishbone.Interface(data_width=dw_from, address_width=axi_master.address_width) axi2wb = AXI2Wishbone(axi_master, wb_from) self.submodules += axi2wb wb_to = wishbone.Interface(data_width=dw_to, address_width=axi_master.address_width) wb2wb = wishbone.Converter(wb_from, wb_to) self.submodules += wb2wb self.mem = mem = wishbone.SRAM(1024, bus=wb_to, init=range(256)) self.submodules += mem def generator_rd(dut): axi_port = dut.axi_master addr = 0x34 yield axi_port.ar.addr.eq(addr * dut.mem.bus.data_width // 8) yield axi_port.ar.valid.eq(1) yield axi_port.ar.burst.eq(0b1) # CHECKME. yield axi_port.ar.len.eq(0) yield axi_port.ar.size.eq(log2_int(axi_port.data_width // 8)) yield axi_port.r.ready.eq(1) yield while (yield axi_port.r.valid) == 0: yield rd = (yield axi_port.r.data) mem_content = 0 i = 0 while i < axi_port.data_width // dut.mem.bus.data_width: mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width) i += 1 assert rd == mem_content, (hex(rd), hex(mem_content)) def generator_wr(dut): axi_port = dut.axi_master addr = 0x24 data = 0x98761244 yield axi_port.aw.addr.eq(addr * 4) yield axi_port.aw.valid.eq(1) yield axi_port.aw.burst.eq(0b1) # CHECKME. yield axi_port.aw.len.eq(0) yield axi_port.aw.size.eq(log2_int(axi_port.data_width // 8)) yield axi_port.w.strb.eq(2**(len(axi_port.w.data)//8) - 1) yield axi_port.w.data.eq(data) yield axi_port.w.valid.eq(1) yield axi_port.w.last.eq(1) yield while (yield axi_port.aw.ready) == 0: yield yield axi_port.aw.valid.eq(0) while (yield axi_port.w.ready) == 0: yield yield axi_port.w.valid.eq(0) mem_content = 0 i = 0 while i < axi_port.data_width // dut.mem.bus.data_width: mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width) i += 1 assert data == mem_content, (hex(data), hex(mem_content)) dut = DUT(64, 32) #dut = DUT_ref(64, 32) run_simulation(dut, [generator_rd(dut), generator_wr(dut)], vcd_name="sim.vcd")