from migen.fhdl.std import * from migen.flow.actor import * from migen.fhdl.specials import * from migen.sim.generic import run_simulation from misoclib.com.liteusb.common import * from misoclib.com.liteusb.phy.ft245 import FT245PHYAsynchronous from misoclib.com.liteusb.test.common import * # XXX for now use it from liteeth to avoid duplication from misoclib.com.liteeth.test.common import * class FT245AsynchronousModel(Module): def __init__(self, clk_freq, rd_data): self.clk_freq = clk_freq self.rd_data = [0] + rd_data self.rd_idx = 0 # timings self.tRDInactive = self.ns(49) # RXF# inactive after RD# cycle self.tWRInactive = self.ns(49) # TXE# inactive after WR# cycle # pads self.data = Signal(8) self.rxf_n = Signal(reset=1) self.txe_n = Signal(reset=1) self.rd_n = Signal(reset=1) self.wr_n = Signal(reset=1) self.init = True self.wr_data = [] self.wait_wr_n = False self.rd_done = 0 self.data_w = Signal(8) self.data_r = Signal(8) self.specials += Tristate(self.data, self.data_r, ~self.rd_n, self.data_w) self.last_wr_n = 1 self.last_rd_n = 1 self.wr_delay = 0 self.rd_delay = 0 def wr_sim(self, selfp): if self.wr_delay: selfp.txe_n = 1 self.wr_delay = self.wr_delay - 1 else: if (not selfp.wr_n and self.last_wr_n) and not selfp.txe_n: self.wr_data.append(selfp.data_w) self.wr_delay = self.tWRInactive self.last_wr_n = selfp.wr_n selfp.txe_n = 0 def rd_sim(self, selfp): if self.rd_delay: selfp.rxf_n = 1 self.rd_delay = self.rd_delay - 1 else: rxf_n = selfp.rxf_n if self.rd_idx < len(self.rd_data)-1: self.rd_done = selfp.rxf_n selfp.rxf_n = 0 else: selfp.rxf_n = self.rd_done if not selfp.rd_n and self.last_rd_n: if self.rd_idx < len(self.rd_data)-1: self.rd_idx += not rxf_n selfp.data_r = self.rd_data[self.rd_idx] self.rd_done = 1 if selfp.rd_n and not self.last_rd_n: self.rd_delay = self.tRDInactive self.last_rd_n = selfp.rd_n def do_simulation(self, selfp): if self.init: selfp.rxf_n = 0 self.wr_data = [] self.init = False self.wr_sim(selfp) self.rd_sim(selfp) def ns(self, t, margin=True): clk_period_ns = 1000000000/self.clk_freq if margin: t += clk_period_ns/2 return math.ceil(t/clk_period_ns) test_packet = [i%256 for i in range(128)] class TB(Module): def __init__(self): clk_freq = 50*1000000 self.submodules.model = FT245AsynchronousModel(clk_freq, test_packet) self.submodules.phy = FT245PHYAsynchronous(self.model, clk_freq) self.submodules.streamer = PacketStreamer(phy_description(8)) self.submodules.streamer_randomizer = AckRandomizer(phy_description(8), level=10) self.submodules.logger_randomizer = AckRandomizer(phy_description(8), level=10) self.submodules.logger = PacketLogger(phy_description(8)) self.comb += [ Record.connect(self.streamer.source, self.streamer_randomizer.sink), self.phy.sink.stb.eq(self.streamer_randomizer.source.stb), self.phy.sink.data.eq(self.streamer_randomizer.source.data), self.streamer_randomizer.source.ack.eq(self.phy.sink.ack), self.logger_randomizer.sink.stb.eq(self.phy.source.stb), self.logger_randomizer.sink.data.eq(self.phy.source.data), self.phy.source.ack.eq(self.logger_randomizer.sink.ack), Record.connect(self.logger_randomizer.source, self.logger.sink) ] def gen_simulation(self, selfp): yield from self.streamer.send(Packet(test_packet)) for i in range(4000): yield s, l, e = check(test_packet, self.model.wr_data) print("shift " + str(s) + " / length " + str(l) + " / errors " + str(e)) s, l, e = check(test_packet, self.logger.packet) print("shift " + str(s) + " / length " + str(l) + " / errors " + str(e)) def main(): run_simulation(TB(), ncycles=8000, vcd_name="my.vcd", keep_files=True) if __name__ == "__main__": main()