from functools import partial from operator import itemgetter from migen.fhdl.structure import * from migen.fhdl.structure import _Operator, _Slice, _Assign, _Fragment from migen.fhdl.tools import * from migen.fhdl.bitcontainer import bits_for, flen from migen.fhdl.namer import build_namespace from migen.fhdl.conv_output import ConvOutput _reserved_keywords = { "always", "and", "assign", "automatic", "begin", "buf", "bufif0", "bufif1", "case", "casex", "casez", "cell", "cmos", "config", "deassign", "default", "defparam", "design", "disable", "edge", "else", "end", "endcase", "endconfig", "endfunction", "endgenerate", "endmodule", "endprimitive", "endspecify", "endtable", "endtask", "event", "for", "force", "forever", "fork", "function", "generate", "genvar", "highz0", "highz1", "if", "ifnone", "incdir", "include", "initial", "inout", "input", "instance", "integer", "join", "large", "liblist", "library", "localparam", "macromodule", "medium", "module", "nand", "negedge", "nmos", "nor", "noshowcancelled", "not", "notif0", "notif1", "or", "output", "parameter", "pmos", "posedge", "primitive", "pull0", "pull1" "pulldown", "pullup", "pulsestyle_onevent", "pulsestyle_ondetect", "remos", "real", "realtime", "reg", "release", "repeat", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "scalared", "showcancelled", "signed", "small", "specify", "specparam", "strong0", "strong1", "supply0", "supply1", "table", "task", "time", "tran", "tranif0", "tranif1", "tri", "tri0", "tri1", "triand", "trior", "trireg", "unsigned", "use", "vectored", "wait", "wand", "weak0", "weak1", "while", "wire", "wor","xnor", "xor" } def _printsig(ns, s): if s.signed: n = "signed " else: n = "" if flen(s) > 1: n += "[" + str(flen(s)-1) + ":0] " n += ns.get_name(s) return n def _printconstant(node): if node.signed: return (str(node.nbits) + "'sd" + str(2**node.nbits + node.value), True) else: return str(node.nbits) + "'d" + str(node.value), False def _printexpr(ns, node): if isinstance(node, Constant): return _printconstant(node) elif isinstance(node, Signal): return ns.get_name(node), node.signed elif isinstance(node, _Operator): arity = len(node.operands) r1, s1 = _printexpr(ns, node.operands[0]) if arity == 1: if node.op == "-": if s1: r = node.op + r1 else: r = "-$signed({1'd0, " + r1 + "})" s = True else: r = node.op + r1 s = s1 elif arity == 2: r2, s2 = _printexpr(ns, node.operands[1]) if node.op not in ["<<<", ">>>"]: if s2 and not s1: r1 = "$signed({1'd0, " + r1 + "})" if s1 and not s2: r2 = "$signed({1'd0, " + r2 + "})" r = r1 + " " + node.op + " " + r2 s = s1 or s2 elif arity == 3: assert node.op == "m" r2, s2 = _printexpr(ns, node.operands[1]) r3, s3 = _printexpr(ns, node.operands[2]) if s2 and not s3: r3 = "$signed({1'd0, " + r3 + "})" if s3 and not s2: r2 = "$signed({1'd0, " + r2 + "})" r = r1 + " ? " + r2 + " : " + r3 s = s2 or s3 else: raise TypeError return "(" + r + ")", s elif isinstance(node, _Slice): # Verilog does not like us slicing non-array signals... if isinstance(node.value, Signal) \ and flen(node.value) == 1 \ and node.start == 0 and node.stop == 1: return _printexpr(ns, node.value) if node.start + 1 == node.stop: sr = "[" + str(node.start) + "]" else: sr = "[" + str(node.stop-1) + ":" + str(node.start) + "]" r, s = _printexpr(ns, node.value) return r + sr, s elif isinstance(node, Cat): l = [_printexpr(ns, v)[0] for v in reversed(node.l)] return "{" + ", ".join(l) + "}", False elif isinstance(node, Replicate): return "{" + str(node.n) + "{" + _printexpr(ns, node.v)[0] + "}}", False else: raise TypeError("Expression of unrecognized type: '{}'".format(type(node).__name__)) (_AT_BLOCKING, _AT_NONBLOCKING, _AT_SIGNAL) = range(3) def _printnode(ns, at, level, node): if node is None: return "" elif isinstance(node, _Assign): if at == _AT_BLOCKING: assignment = " = " elif at == _AT_NONBLOCKING: assignment = " <= " elif is_variable(node.l): assignment = " = " else: assignment = " <= " return "\t"*level + _printexpr(ns, node.l)[0] + assignment + _printexpr(ns, node.r)[0] + ";\n" elif isinstance(node, (list, tuple)): return "".join(list(map(partial(_printnode, ns, at, level), node))) elif isinstance(node, If): r = "\t"*level + "if (" + _printexpr(ns, node.cond)[0] + ") begin\n" r += _printnode(ns, at, level + 1, node.t) if node.f: r += "\t"*level + "end else begin\n" r += _printnode(ns, at, level + 1, node.f) r += "\t"*level + "end\n" return r elif isinstance(node, Case): if node.cases: r = "\t"*level + "case (" + _printexpr(ns, node.test)[0] + ")\n" css = [(k, v) for k, v in node.cases.items() if isinstance(k, Constant)] css = sorted(css, key=lambda x: x[0].value) for choice, statements in css: r += "\t"*(level + 1) + _printexpr(ns, choice)[0] + ": begin\n" r += _printnode(ns, at, level + 2, statements) r += "\t"*(level + 1) + "end\n" if "default" in node.cases: r += "\t"*(level + 1) + "default: begin\n" r += _printnode(ns, at, level + 2, node.cases["default"]) r += "\t"*(level + 1) + "end\n" r += "\t"*level + "endcase\n" return r else: return "" else: raise TypeError("Node of unrecognized type: "+str(type(node))) def _list_comb_wires(f): r = set() groups = group_by_targets(f.comb) for g in groups: if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r |= g[0] return r def _printheader(f, ios, name, ns, reg_initialization): sigs = list_signals(f) | list_special_ios(f, True, True, True) special_outs = list_special_ios(f, False, True, True) inouts = list_special_ios(f, False, False, True) targets = list_targets(f) | special_outs wires = _list_comb_wires(f) | special_outs r = "module " + name + "(\n" firstp = True for sig in sorted(ios, key=lambda x: x.duid): if not firstp: r += ",\n" firstp = False if sig in inouts: r += "\tinout " + _printsig(ns, sig) elif sig in targets: if sig in wires: r += "\toutput " + _printsig(ns, sig) else: r += "\toutput reg " + _printsig(ns, sig) else: r += "\tinput " + _printsig(ns, sig) r += "\n);\n\n" for sig in sorted(sigs - ios, key=lambda x: x.duid): if sig in wires: r += "wire " + _printsig(ns, sig) + ";\n" else: if reg_initialization: r += "reg " + _printsig(ns, sig) + " = " + _printexpr(ns, sig.reset)[0] + ";\n" else: r += "reg " + _printsig(ns, sig) + ";\n" r += "\n" return r def _printcomb(f, ns, display_run, dummy_signal, blocking_assign): r = "" if f.comb: if dummy_signal: # Generate a dummy event to get the simulator # to run the combinatorial process once at the beginning. syn_off = "// synthesis translate_off\n" syn_on = "// synthesis translate_on\n" dummy_s = Signal(name_override="dummy_s") r += syn_off r += "reg " + _printsig(ns, dummy_s) + ";\n" r += "initial " + ns.get_name(dummy_s) + " <= 1'd0;\n" r += syn_on groups = group_by_targets(f.comb) for n, g in enumerate(groups): if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r += "assign " + _printnode(ns, _AT_BLOCKING, 0, g[1][0]) else: if dummy_signal: dummy_d = Signal(name_override="dummy_d") r += "\n" + syn_off r += "reg " + _printsig(ns, dummy_d) + ";\n" r += syn_on r += "always @(*) begin\n" if display_run: r += "\t$display(\"Running comb block #" + str(n) + "\");\n" if blocking_assign: for t in g[0]: r += "\t" + ns.get_name(t) + " = " + _printexpr(ns, t.reset)[0] + ";\n" r += _printnode(ns, _AT_BLOCKING, 1, g[1]) else: for t in g[0]: r += "\t" + ns.get_name(t) + " <= " + _printexpr(ns, t.reset)[0] + ";\n" r += _printnode(ns, _AT_NONBLOCKING, 1, g[1]) if dummy_signal: r += syn_off r += "\t" + ns.get_name(dummy_d) + " <= " + ns.get_name(dummy_s) + ";\n" r += syn_on r += "end\n" r += "\n" return r def _printsync(f, ns): r = "" for k, v in sorted(f.sync.items(), key=itemgetter(0)): r += "always @(posedge " + ns.get_name(f.clock_domains[k].clk) + ") begin\n" r += _printnode(ns, _AT_SIGNAL, 1, v) r += "end\n\n" return r def _call_special_classmethod(overrides, obj, method, *args, **kwargs): cl = obj.__class__ if cl in overrides: cl = overrides[cl] if hasattr(cl, method): return getattr(cl, method)(obj, *args, **kwargs) else: return None def _lower_specials_step(overrides, specials): f = _Fragment() lowered_specials = set() for special in sorted(specials, key=lambda x: x.duid): impl = _call_special_classmethod(overrides, special, "lower") if impl is not None: f += impl.get_fragment() lowered_specials.add(special) return f, lowered_specials def _can_lower(overrides, specials): for special in specials: cl = special.__class__ if cl in overrides: cl = overrides[cl] if hasattr(cl, "lower"): return True return False def _lower_specials(overrides, specials): f, lowered_specials = _lower_specials_step(overrides, specials) while _can_lower(overrides, f.specials): f2, lowered_specials2 = _lower_specials_step(overrides, f.specials) f += f2 lowered_specials |= lowered_specials2 f.specials -= lowered_specials2 return f, lowered_specials def _printspecials(overrides, specials, ns, add_data_file): r = "" for special in sorted(specials, key=lambda x: x.duid): pr = _call_special_classmethod(overrides, special, "emit_verilog", ns, add_data_file) if pr is None: raise NotImplementedError("Special " + str(special) + " failed to implement emit_verilog") r += pr return r def convert(f, ios=None, name="top", special_overrides=dict(), create_clock_domains=True, display_run=False, asic_syntax=False): r = ConvOutput() if not isinstance(f, _Fragment): f = f.get_fragment() if ios is None: ios = set() for cd_name in list_clock_domains(f): try: f.clock_domains[cd_name] except KeyError: if create_clock_domains: cd = ClockDomain(cd_name) f.clock_domains.append(cd) ios |= {cd.clk, cd.rst} else: raise KeyError("Unresolved clock domain: '"+cd_name+"'") f = lower_complex_slices(f) insert_resets(f) f = lower_basics(f) fs, lowered_specials = _lower_specials(special_overrides, f.specials) f += lower_basics(fs) ns = build_namespace(list_signals(f) \ | list_special_ios(f, True, True, True) \ | ios, _reserved_keywords) r.ns = ns src = "/* Machine-generated using Migen */\n" src += _printheader(f, ios, name, ns, reg_initialization=not asic_syntax) src += _printcomb(f, ns, display_run=display_run, dummy_signal=not asic_syntax, blocking_assign=asic_syntax) src += _printsync(f, ns) src += _printspecials(special_overrides, f.specials - lowered_specials, ns, r.add_data_file) src += "endmodule\n" r.set_main_source(src) return r