# # This file is part of LiteX. # # Copyright (c) 2020 Antmicro # SPDX-License-Identifier: BSD-2-Clause import unittest import random from migen import * from litex.soc.interconnect.axi import * from litex.soc.interconnect import wishbone, csr_bus # Helpers ------------------------------------------------------------------------------------------ def _int_or_call(int_or_func): if callable(int_or_func): return int_or_func() return int_or_func @passive def timeout_generator(ticks): import os for i in range(ticks): if os.environ.get("TIMEOUT_DEBUG", "") == "1": print("tick {}".format(i)) yield raise TimeoutError("Timeout after %d ticks" % ticks) class AXILiteChecker: def __init__(self, ready_latency=0, response_latency=0, rdata_generator=None): self.ready_latency = ready_latency self.response_latency = response_latency self.rdata_generator = rdata_generator or (lambda adr: 0xbaadc0de) self.writes = [] # (addr, data, strb) self.reads = [] # (addr, data) def delay(self, latency): for _ in range(_int_or_call(latency)): yield def handle_write(self, axi_lite): # aw while not (yield axi_lite.aw.valid): yield yield from self.delay(self.ready_latency) addr = (yield axi_lite.aw.addr) yield axi_lite.aw.ready.eq(1) yield yield axi_lite.aw.ready.eq(0) while not (yield axi_lite.w.valid): yield yield from self.delay(self.ready_latency) # w data = (yield axi_lite.w.data) strb = (yield axi_lite.w.strb) yield axi_lite.w.ready.eq(1) yield yield axi_lite.w.ready.eq(0) yield from self.delay(self.response_latency) # b yield axi_lite.b.valid.eq(1) yield axi_lite.b.resp.eq(RESP_OKAY) yield while not (yield axi_lite.b.ready): yield yield axi_lite.b.valid.eq(0) self.writes.append((addr, data, strb)) def handle_read(self, axi_lite): # ar while not (yield axi_lite.ar.valid): yield yield from self.delay(self.ready_latency) addr = (yield axi_lite.ar.addr) yield axi_lite.ar.ready.eq(1) yield yield axi_lite.ar.ready.eq(0) yield from self.delay(self.response_latency) # r data = self.rdata_generator(addr) yield axi_lite.r.valid.eq(1) yield axi_lite.r.resp.eq(RESP_OKAY) yield axi_lite.r.data.eq(data) yield while not (yield axi_lite.r.ready): yield yield axi_lite.r.valid.eq(0) yield axi_lite.r.data.eq(0) self.reads.append((addr, data)) @passive def handler(self, axi_lite): while True: if (yield axi_lite.aw.valid): yield from self.handle_write(axi_lite) if (yield axi_lite.ar.valid): yield from self.handle_read(axi_lite) yield @passive def _write_handler(self, axi_lite): while True: yield from self.handle_write(axi_lite) yield @passive def _read_handler(self, axi_lite): while True: yield from self.handle_read(axi_lite) yield def parallel_handlers(self, axi_lite): return self._write_handler(axi_lite), self._read_handler(axi_lite) class AXILitePatternGenerator: def __init__(self, axi_lite, pattern, delay=0): # patter: (rw, addr, data) self.axi_lite = axi_lite self.pattern = pattern self.delay = delay self.errors = 0 self.read_errors = [] self.resp_errors = {"w": 0, "r": 0} def handler(self): for rw, addr, data in self.pattern: assert rw in ["w", "r"] if rw == "w": strb = 2**len(self.axi_lite.w.strb) - 1 resp = (yield from self.axi_lite.write(addr, data, strb)) else: rdata, resp = (yield from self.axi_lite.read(addr)) if rdata != data: self.read_errors.append((rdata, data)) self.errors += 1 if resp != RESP_OKAY: self.resp_errors[rw] += 1 self.errors += 1 for _ in range(_int_or_call(self.delay)): yield for _ in range(16): yield # TestAXILite -------------------------------------------------------------------------------------- class TestAXILite(unittest.TestCase): def test_wishbone2axilite2wishbone(self, data_width=32, address_width=32): class DUT(Module): def __init__(self): self.wishbone = wishbone.Interface( data_width = data_width, adr_width = address_width - log2_int(data_width // 8), addressing = "word", ) # # # axi_lite = AXILiteInterface(data_width=data_width, address_width=address_width) wb = wishbone.Interface( data_width = data_width, adr_width = address_width - log2_int(data_width // 8), addressing = "word", ) wishbone2axi = Wishbone2AXILite(self.wishbone, axi_lite) axi2wishbone = AXILite2Wishbone(axi_lite, wb) self.submodules += wishbone2axi, axi2wishbone sram = wishbone.SRAM(1024, init=[0x12345678, 0xa55aa55a]) self.submodules += sram self.comb += wb.connect(sram.bus) def generator(dut): dut.errors = 0 if (yield from dut.wishbone.read(0)) != 0x12345678: dut.errors += 1 if (yield from dut.wishbone.read(1)) != 0xa55aa55a: dut.errors += 1 for i in range(32): yield from dut.wishbone.write(i, i) for i in range(32): if (yield from dut.wishbone.read(i)) != i: dut.errors += 1 dut = DUT() run_simulation(dut, [generator(dut)]) self.assertEqual(dut.errors, 0) def test_wishbone2axilite2wishbone_dw64(self): return self.test_wishbone2axilite2wishbone(data_width=64) def test_axilite2axi2mem(self, data_width=32, address_width=32): class DUT(Module): def __init__(self, mem_bus="wishbone"): self.axi_lite = AXILiteInterface(data_width=data_width, address_width=address_width) axi = AXIInterface(data_width=data_width, address_width=address_width) self.submodules.axil2axi = AXILite2AXI(self.axi_lite, axi) interface_cls, converter_cls, sram_cls = { "wishbone": (wishbone.Interface, AXI2Wishbone, wishbone.SRAM), "axi_lite": (AXILiteInterface, AXI2AXILite, AXILiteSRAM), }[mem_bus] bus_kwargs = {"data_width": data_width} if mem_bus == "wishbone": bus_kwargs["adr_width"] = address_width - log2_int(data_width // 8) bus = interface_cls(**bus_kwargs) self.submodules += converter_cls(axi, bus) sram = sram_cls(1024, init=[0x12345678, 0xa55aa55a], bus=bus) self.submodules += sram def generator(axi_lite, datas, resps): dw_bytes = data_width // 8 data, resp = (yield from axi_lite.read(0x00)) resps.append((resp, RESP_OKAY)) datas.append((data, 0x12345678)) data, resp = (yield from axi_lite.read(dw_bytes * 1)) resps.append((resp, RESP_OKAY)) datas.append((data, 0xa55aa55a)) for i in range(32): resp = (yield from axi_lite.write(dw_bytes * i, i)) resps.append((resp, RESP_OKAY)) for i in range(32): data, resp = (yield from axi_lite.read(dw_bytes * i)) resps.append((resp, RESP_OKAY)) datas.append((data, i)) for mem_bus in ["wishbone", "axi_lite"]: with self.subTest(mem_bus=mem_bus): # to have more verbose error messages store errors in list((actual, expected)) datas = [] resps = [] def actual_expected(results): # split into (list(actual), list(expected)) return list(zip(*results)) dut = DUT(mem_bus) run_simulation(dut, [generator(dut.axi_lite, datas, resps)]) self.assertEqual(*actual_expected(resps)) msg = "\n".join("0x{:08x} vs 0x{:08x}".format(actual, expected) for actual, expected in datas) self.assertEqual(*actual_expected(datas), msg="actual vs expected:\n" + msg) def test_axilite2axi2mem_dw64(self): return self.test_axilite2axi2mem(data_width=64) def test_axilite2csr(self): @passive def csr_mem_handler(csr, mem): while True: adr = (yield csr.adr) yield csr.dat_r.eq(mem[adr]) if (yield csr.we): mem[adr] = (yield csr.dat_w) yield class DUT(Module): def __init__(self): self.axi_lite = AXILiteInterface(data_width=32) self.csr = csr_bus.Interface(data_width=32) self.submodules.axilite2csr = AXILite2CSR(self.axi_lite, self.csr) self.errors = 0 prng = random.Random(42) mem_ref = [prng.randrange(255) for i in range(100)] def generator(dut): dut.errors = 0 for adr, ref in enumerate(mem_ref): adr = adr << 2 data, resp = (yield from dut.axi_lite.read(adr)) self.assertEqual(resp, 0b00) if data != ref: dut.errors += 1 write_data = [prng.randrange(255) for _ in mem_ref] for adr, wdata in enumerate(write_data): adr = adr << 2 resp = (yield from dut.axi_lite.write(adr, wdata)) self.assertEqual(resp, 0b00) rdata, resp = (yield from dut.axi_lite.read(adr)) self.assertEqual(resp, 0b00) if rdata != wdata: dut.errors += 1 dut = DUT() mem = [v for v in mem_ref] run_simulation(dut, [generator(dut), csr_mem_handler(dut.csr, mem)]) self.assertEqual(dut.errors, 0) def test_axilite_sram(self): class DUT(Module): def __init__(self, size, init): self.axi_lite = AXILiteInterface() self.submodules.sram = AXILiteSRAM(size, init=init, bus=self.axi_lite) self.errors = 0 def generator(dut, ref_init): for adr, ref in enumerate(ref_init): adr = adr << 2 data, resp = (yield from dut.axi_lite.read(adr)) self.assertEqual(resp, 0b00) if data != ref: dut.errors += 1 write_data = [prng.randrange(255) for _ in ref_init] for adr, wdata in enumerate(write_data): adr = adr << 2 resp = (yield from dut.axi_lite.write(adr, wdata)) self.assertEqual(resp, 0b00) rdata, resp = (yield from dut.axi_lite.read(adr)) self.assertEqual(resp, 0b00) if rdata != wdata: dut.errors += 1 prng = random.Random(42) init = [prng.randrange(2**32) for i in range(100)] dut = DUT(size=len(init)*4, init=[v for v in init]) run_simulation(dut, [generator(dut, init)]) self.assertEqual(dut.errors, 0) def converter_test(self, width_from, width_to, parallel_rw=False, write_pattern=None, write_expected=None, read_pattern=None, read_expected=None): assert not (write_pattern is None and read_pattern is None) if write_pattern is None: write_pattern = [] write_expected = [] elif len(write_pattern[0]) == 2: # add w.strb write_pattern = [(adr, data, 2**(width_from//8)-1) for adr, data in write_pattern] if read_pattern is None: read_pattern = [] read_expected = [] class DUT(Module): def __init__(self, width_from, width_to): self.master = AXILiteInterface(data_width=width_from) self.slave = AXILiteInterface(data_width=width_to) self.submodules.converter = AXILiteConverter(self.master, self.slave) prng = random.Random(42) def write_generator(axi_lite): for addr, data, strb in write_pattern or []: resp = (yield from axi_lite.write(addr, data, strb)) self.assertEqual(resp, RESP_OKAY) for _ in range(prng.randrange(3)): yield for _ in range(16): yield def read_generator(axi_lite): for addr, refdata in read_pattern or []: data, resp = (yield from axi_lite.read(addr)) self.assertEqual(resp, RESP_OKAY) self.assertEqual(data, refdata) for _ in range(prng.randrange(3)): yield for _ in range(4): yield def sequential_generator(axi_lite): yield from write_generator(axi_lite) yield from read_generator(axi_lite) def rdata_generator(adr): for a, v in read_expected: if a == adr: return v return 0xbaadc0de _latency = 0 def latency(): nonlocal _latency _latency = (_latency + 1) % 3 return _latency dut = DUT(width_from=width_from, width_to=width_to) checker = AXILiteChecker(ready_latency=latency, rdata_generator=rdata_generator) if parallel_rw: generators = [write_generator(dut.master), read_generator(dut.master)] else: generators = [sequential_generator(dut.master)] generators += checker.parallel_handlers(dut.slave) run_simulation(dut, generators) self.assertEqual(checker.writes, write_expected) self.assertEqual(checker.reads, read_expected) def test_axilite_down_converter_32to16(self): write_pattern = [ (0x00000000, 0x22221111), (0x00000004, 0x44443333), (0x00000008, 0x66665555), (0x00000100, 0x88887777), ] write_expected = [ (0x00000000, 0x1111, 0b11), (0x00000002, 0x2222, 0b11), (0x00000004, 0x3333, 0b11), (0x00000006, 0x4444, 0b11), (0x00000008, 0x5555, 0b11), (0x0000000a, 0x6666, 0b11), (0x00000100, 0x7777, 0b11), (0x00000102, 0x8888, 0b11), ] read_pattern = write_pattern read_expected = [(adr, data) for (adr, data, _) in write_expected] for parallel in [False, True]: with self.subTest(parallel=parallel): self.converter_test(width_from=32, width_to=16, parallel_rw=parallel, write_pattern=write_pattern, write_expected=write_expected, read_pattern=read_pattern, read_expected=read_expected) def test_axilite_down_converter_32to8(self): write_pattern = [ (0x00000000, 0x44332211), (0x00000004, 0x88776655), ] write_expected = [ (0x00000000, 0x11, 0b1), (0x00000001, 0x22, 0b1), (0x00000002, 0x33, 0b1), (0x00000003, 0x44, 0b1), (0x00000004, 0x55, 0b1), (0x00000005, 0x66, 0b1), (0x00000006, 0x77, 0b1), (0x00000007, 0x88, 0b1), ] read_pattern = write_pattern read_expected = [(adr, data) for (adr, data, _) in write_expected] for parallel in [False, True]: with self.subTest(parallel=parallel): self.converter_test(width_from=32, width_to=8, parallel_rw=parallel, write_pattern=write_pattern, write_expected=write_expected, read_pattern=read_pattern, read_expected=read_expected) def test_axilite_down_converter_64to32(self): write_pattern = [ (0x00000000, 0x2222222211111111), (0x00000008, 0x4444444433333333), ] write_expected = [ (0x00000000, 0x11111111, 0b1111), (0x00000004, 0x22222222, 0b1111), (0x00000008, 0x33333333, 0b1111), (0x0000000c, 0x44444444, 0b1111), ] read_pattern = write_pattern read_expected = [(adr, data) for (adr, data, _) in write_expected] for parallel in [False, True]: with self.subTest(parallel=parallel): self.converter_test(width_from=64, width_to=32, parallel_rw=parallel, write_pattern=write_pattern, write_expected=write_expected, read_pattern=read_pattern, read_expected=read_expected) def test_axilite_down_converter_strb(self): write_pattern = [ (0x00000000, 0x22221111, 0b1100), (0x00000004, 0x44443333, 0b1111), (0x00000008, 0x66665555, 0b1011), (0x00000100, 0x88887777, 0b0011), ] write_expected = [ (0x00000002, 0x2222, 0b11), (0x00000004, 0x3333, 0b11), (0x00000006, 0x4444, 0b11), (0x00000008, 0x5555, 0b11), (0x0000000a, 0x6666, 0b10), (0x00000100, 0x7777, 0b11), ] self.converter_test(width_from=32, width_to=16, write_pattern=write_pattern, write_expected=write_expected) def test_axilite_up_converter_16to32(self): write_pattern = [ (0x00000000, 0x1111), (0x00000002, 0x2222), (0x00000006, 0x3333), (0x00000004, 0x4444), (0x00000102, 0x5555), ] write_expected = [ (0x00000000, 0x00001111, 0b0011), (0x00000000, 0x22220000, 0b1100), (0x00000004, 0x33330000, 0b1100), (0x00000004, 0x00004444, 0b0011), (0x00000100, 0x55550000, 0b1100), ] read_pattern = write_pattern read_expected = [ (0x00000000, 0x22221111), (0x00000000, 0x22221111), (0x00000004, 0x33334444), (0x00000004, 0x33334444), (0x00000100, 0x55550000), ] for parallel in [False, True]: with self.subTest(parallel=parallel): self.converter_test(width_from=16, width_to=32, parallel_rw=parallel, write_pattern=write_pattern, write_expected=write_expected, read_pattern=read_pattern, read_expected=read_expected) def test_axilite_up_converter_8to32(self): write_pattern = [ (0x00000000, 0x11), (0x00000001, 0x22), (0x00000003, 0x33), (0x00000002, 0x44), (0x00000101, 0x55), ] write_expected = [ (0x00000000, 0x00000011, 0b0001), (0x00000000, 0x00002200, 0b0010), (0x00000000, 0x33000000, 0b1000), (0x00000000, 0x00440000, 0b0100), (0x00000100, 0x00005500, 0b0010), ] read_pattern = write_pattern read_expected = [ (0x00000000, 0x33442211), (0x00000000, 0x33442211), (0x00000000, 0x33442211), (0x00000000, 0x33442211), (0x00000100, 0x00005500), ] for parallel in [False, True]: with self.subTest(parallel=parallel): self.converter_test(width_from=8, width_to=32, parallel_rw=parallel, write_pattern=write_pattern, write_expected=write_expected, read_pattern=read_pattern, read_expected=read_expected) def test_axilite_up_converter_strb(self): write_pattern = [ (0x00000000, 0x1111, 0b10), (0x00000002, 0x2222, 0b11), (0x00000006, 0x3333, 0b11), (0x00000004, 0x4444, 0b01), (0x00000102, 0x5555, 0b01), ] write_expected = [ (0x00000000, 0x00001111, 0b0010), (0x00000000, 0x22220000, 0b1100), (0x00000004, 0x33330000, 0b1100), (0x00000004, 0x00004444, 0b0001), (0x00000100, 0x55550000, 0b0100), ] self.converter_test(width_from=16, width_to=32, write_pattern=write_pattern, write_expected=write_expected) # TestAXILiteInterconnet --------------------------------------------------------------------------- class TestAXILiteInterconnect(unittest.TestCase): def test_interconnect_p2p(self): class DUT(Module): def __init__(self): self.master = master = AXILiteInterface() self.slave = slave = AXILiteInterface() self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave) pattern = [ ("w", 0x00000004, 0x11111111), ("w", 0x0000000c, 0x22222222), ("r", 0x00000010, 0x33333333), ("r", 0x00000018, 0x44444444), ] def rdata_generator(adr): for rw, a, v in pattern: if rw == "r" and a == adr: return v return 0xbaadc0de dut = DUT() checker = AXILiteChecker(rdata_generator=rdata_generator) generators = [ AXILitePatternGenerator(dut.master, pattern).handler(), checker.handler(dut.slave), ] run_simulation(dut, generators) self.assertEqual(checker.writes, [(addr, data, 0b1111) for rw, addr, data in pattern if rw == "w"]) self.assertEqual(checker.reads, [(addr, data) for rw, addr, data in pattern if rw == "r"]) def test_timeout(self): class DUT(Module): def __init__(self): self.master = master = AXILiteInterface() self.slave = slave = AXILiteInterface() self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave) self.submodules.timeout = AXILiteTimeout(master, 16) def generator(axi_lite): resp = (yield from axi_lite.write(0x00001000, 0x11111111)) self.assertEqual(resp, RESP_OKAY) resp = (yield from axi_lite.write(0x00002000, 0x22222222)) self.assertEqual(resp, RESP_SLVERR) data, resp = (yield from axi_lite.read(0x00003000)) self.assertEqual(resp, RESP_SLVERR) self.assertEqual(data, 0xffffffff) yield def checker(axi_lite): for _ in range(16): yield yield axi_lite.aw.ready.eq(1) yield axi_lite.w.ready.eq(1) yield yield axi_lite.aw.ready.eq(0) yield axi_lite.w.ready.eq(0) yield axi_lite.b.valid.eq(1) yield while not (yield axi_lite.b.ready): yield yield axi_lite.b.valid.eq(0) dut = DUT() generators = [ generator(dut.master), checker(dut.slave), timeout_generator(300), ] run_simulation(dut, generators) def test_arbiter_order(self): class DUT(Module): def __init__(self, n_masters): self.masters = [AXILiteInterface() for _ in range(n_masters)] self.slave = AXILiteInterface() self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave) def generator(n, axi_lite, delay=0): def gen(i): return 100*n + i for i in range(4): resp = (yield from axi_lite.write(gen(i), gen(i))) self.assertEqual(resp, RESP_OKAY) for _ in range(delay): yield for i in range(4): data, resp = (yield from axi_lite.read(gen(i))) self.assertEqual(resp, RESP_OKAY) for _ in range(delay): yield for _ in range(8): yield n_masters = 3 # with no delay each master will do all transfers at once with self.subTest(delay=0): dut = DUT(n_masters) checker = AXILiteChecker() generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)] generators += [timeout_generator(300), checker.handler(dut.slave)] run_simulation(dut, generators) order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203] self.assertEqual([addr for addr, data, strb in checker.writes], order) self.assertEqual([addr for addr, data in checker.reads], order) # with some delay, the round-robin arbiter will iterate over masters with self.subTest(delay=1): dut = DUT(n_masters) checker = AXILiteChecker() generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)] generators += [timeout_generator(300), checker.handler(dut.slave)] run_simulation(dut, generators) order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203] self.assertEqual([addr for addr, data, strb in checker.writes], order) self.assertEqual([addr for addr, data in checker.reads], order) def test_arbiter_holds_grant_until_response(self): class DUT(Module): def __init__(self, n_masters): self.masters = [AXILiteInterface() for _ in range(n_masters)] self.slave = AXILiteInterface() self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave) def generator(n, axi_lite, delay=0): def gen(i): return 100*n + i for i in range(4): resp = (yield from axi_lite.write(gen(i), gen(i))) self.assertEqual(resp, RESP_OKAY) for _ in range(delay): yield for i in range(4): data, resp = (yield from axi_lite.read(gen(i))) self.assertEqual(resp, RESP_OKAY) for _ in range(delay): yield for _ in range(8): yield n_masters = 3 # with no delay each master will do all transfers at once with self.subTest(delay=0): dut = DUT(n_masters) checker = AXILiteChecker(response_latency=lambda: 3) generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)] generators += [timeout_generator(300), checker.handler(dut.slave)] run_simulation(dut, generators) order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203] self.assertEqual([addr for addr, data, strb in checker.writes], order) self.assertEqual([addr for addr, data in checker.reads], order) # with some delay, the round-robin arbiter will iterate over masters with self.subTest(delay=1): dut = DUT(n_masters) checker = AXILiteChecker(response_latency=lambda: 3) generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)] generators += [timeout_generator(300), checker.handler(dut.slave)] run_simulation(dut, generators) order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203] self.assertEqual([addr for addr, data, strb in checker.writes], order) self.assertEqual([addr for addr, data in checker.reads], order) def address_decoder(self, i, size=0x100, python=False): # bytes to 32-bit words aligned _size = (size) >> 2 _origin = (size * i) >> 2 if python: # for python integers shift = log2_int(_size) return lambda a: ((a >> shift) == (_origin >> shift)) # for migen signals return lambda a: (a[log2_int(_size):] == (_origin >> log2_int(_size))) def decoder_test(self, n_slaves, pattern, generator_delay=0): class DUT(Module): def __init__(self, decoders): self.master = AXILiteInterface() self.slaves = [AXILiteInterface() for _ in range(len(decoders))] slaves = list(zip(decoders, self.slaves)) self.submodules.decoder = AXILiteDecoder(self.master, slaves) def rdata_generator(adr): for rw, a, v in pattern: if rw == "r" and a == adr: return v return 0xbaadc0de dut = DUT([self.address_decoder(i) for i in range(n_slaves)]) checkers = [AXILiteChecker(rdata_generator=rdata_generator) for _ in dut.slaves] generators = [AXILitePatternGenerator(dut.master, pattern, delay=generator_delay).handler()] generators += [checker.handler(slave) for (slave, checker) in zip(dut.slaves, checkers)] generators += [timeout_generator(300)] run_simulation(dut, generators) return checkers def test_decoder_write(self): for delay in [0, 1, 0]: with self.subTest(delay=delay): slaves = self.decoder_test(n_slaves=3, pattern=[ ("w", 0x010, 1), ("w", 0x110, 2), ("w", 0x210, 3), ("w", 0x011, 1), ("w", 0x012, 1), ("w", 0x111, 2), ("w", 0x112, 2), ("w", 0x211, 3), ("w", 0x212, 3), ], generator_delay=delay) def addr(checker_list): return [entry[0] for entry in checker_list] self.assertEqual(addr(slaves[0].writes), [0x010, 0x011, 0x012]) self.assertEqual(addr(slaves[1].writes), [0x110, 0x111, 0x112]) self.assertEqual(addr(slaves[2].writes), [0x210, 0x211, 0x212]) for slave in slaves: self.assertEqual(slave.reads, []) def test_decoder_read(self): for delay in [0, 1]: with self.subTest(delay=delay): slaves = self.decoder_test(n_slaves=3, pattern=[ ("r", 0x010, 1), ("r", 0x110, 2), ("r", 0x210, 3), ("r", 0x011, 1), ("r", 0x012, 1), ("r", 0x111, 2), ("r", 0x112, 2), ("r", 0x211, 3), ("r", 0x212, 3), ], generator_delay=delay) def addr(checker_list): return [entry[0] for entry in checker_list] self.assertEqual(addr(slaves[0].reads), [0x010, 0x011, 0x012]) self.assertEqual(addr(slaves[1].reads), [0x110, 0x111, 0x112]) self.assertEqual(addr(slaves[2].reads), [0x210, 0x211, 0x212]) for slave in slaves: self.assertEqual(slave.writes, []) def test_decoder_read_write(self): for delay in [0, 1]: with self.subTest(delay=delay): slaves = self.decoder_test(n_slaves=3, pattern=[ ("w", 0x010, 1), ("w", 0x110, 2), ("r", 0x111, 2), ("r", 0x011, 1), ("r", 0x211, 3), ("w", 0x210, 3), ], generator_delay=delay) def addr(checker_list): return [entry[0] for entry in checker_list] self.assertEqual(addr(slaves[0].writes), [0x010]) self.assertEqual(addr(slaves[0].reads), [0x011]) self.assertEqual(addr(slaves[1].writes), [0x110]) self.assertEqual(addr(slaves[1].reads), [0x111]) self.assertEqual(addr(slaves[2].writes), [0x210]) self.assertEqual(addr(slaves[2].reads), [0x211]) def test_decoder_stall(self): with self.assertRaises(TimeoutError): self.decoder_test(n_slaves=3, pattern=[ ("w", 0x300, 1), ]) with self.assertRaises(TimeoutError): self.decoder_test(n_slaves=3, pattern=[ ("r", 0x300, 1), ]) def interconnect_test(self, master_patterns, slave_decoders, master_delay=0, slave_ready_latency=0, slave_response_latency=0, disconnected_slaves=None, timeout=300, interconnect=AXILiteInterconnectShared, **kwargs): # number of masters/slaves is defined by the number of patterns/decoders # master_patterns: list of patterns per master, pattern = list(tuple(rw, addr, data)) # slave_decoders: list of address decoders per slave # delay/latency: control the speed of masters/slaves # disconnected_slaves: list of slave numbers that shouldn't respond to any transactions class DUT(Module): def __init__(self, n_masters, decoders, **kwargs): self.masters = [AXILiteInterface(name="master") for _ in range(n_masters)] self.slaves = [AXILiteInterface(name="slave") for _ in range(len(decoders))] slaves = list(zip(decoders, self.slaves)) self.submodules.interconnect = interconnect(self.masters, slaves, **kwargs) class ReadDataGenerator: # Generates data based on decoded addresses and data defined in master_patterns def __init__(self, patterns): self.mem = {} for pattern in patterns: for rw, addr, val in pattern: if rw == "r": assert addr not in self.mem self.mem[addr] = val def getter(self, n): # on miss will give default data depending on slave n return lambda addr: self.mem.get(addr, 0xbaad0000 + n) def new_checker(rdata_generator): return AXILiteChecker(ready_latency=slave_ready_latency, response_latency=slave_response_latency, rdata_generator=rdata_generator) # perpare test dut = DUT(len(master_patterns), slave_decoders, **kwargs) rdata_generator = ReadDataGenerator(master_patterns) checkers = [new_checker(rdata_generator.getter(i)) for i, _ in enumerate(master_patterns)] pattern_generators = [AXILitePatternGenerator(dut.masters[i], pattern, delay=master_delay) for i, pattern in enumerate(master_patterns)] # run simulator generators = [gen.handler() for gen in pattern_generators] generators += [checker.handler(slave) for i, (slave, checker) in enumerate(zip(dut.slaves, checkers)) if i not in (disconnected_slaves or [])] generators += [timeout_generator(timeout)] run_simulation(dut, generators) return pattern_generators, checkers def test_interconnect_shared_basic(self): master_patterns = [ [("w", 0x000, 0), ("w", 0x101, 0), ("w", 0x202, 0)], [("w", 0x010, 0), ("w", 0x111, 0), ("w", 0x112, 0)], [("w", 0x220, 0), ("w", 0x221, 0), ("w", 0x222, 0)], ] slave_decoders = [self.address_decoder(i) for i in range(3)] generators, checkers = self.interconnect_test(master_patterns, slave_decoders, master_delay=1) for gen in generators: self.assertEqual(gen.errors, 0) def addr(checker_list): return [entry[0] for entry in checker_list] self.assertEqual(addr(checkers[0].writes), [0x000, 0x010]) self.assertEqual(addr(checkers[1].writes), [0x101, 0x111, 0x112]) self.assertEqual(addr(checkers[2].writes), [0x220, 0x221, 0x202, 0x222]) self.assertEqual(addr(checkers[0].reads), []) self.assertEqual(addr(checkers[1].reads), []) self.assertEqual(addr(checkers[2].reads), []) def interconnect_stress_test(self, timeout=1000, **kwargs): prng = random.Random(42) n_masters = 3 n_slaves = 3 pattern_length = 64 slave_region_size = 0x10000000 # for testing purpose each master will access only its own region of a slave master_region_size = 0x1000 assert n_masters*master_region_size < slave_region_size def gen_pattern(n, length): assert length < master_region_size for i_access in range(length): rw = "w" if prng.randint(0, 1) == 0 else "r" i_slave = prng.randrange(n_slaves) addr = i_slave*slave_region_size + n*master_region_size + i_access data = addr yield rw, addr, data master_patterns = [list(gen_pattern(i, pattern_length)) for i in range(n_masters)] slave_decoders = [self.address_decoder(i, size=slave_region_size) for i in range(n_slaves)] slave_decoders_py = [self.address_decoder(i, size=slave_region_size, python=True) for i in range(n_slaves)] generators, checkers = self.interconnect_test(master_patterns, slave_decoders, timeout=timeout, **kwargs) for gen in generators: read_errors = [" 0x{:08x} vs 0x{:08x}".format(v, ref) for v, ref in gen.read_errors] msg = "\ngen.resp_errors = {}\ngen.read_errors = \n{}".format( gen.resp_errors, "\n".join(read_errors)) if not kwargs.get("disconnected_slaves", None): self.assertEqual(gen.errors, 0, msg=msg) else: # when some slaves are disconnected we should have some errors self.assertNotEqual(gen.errors, 0, msg=msg) # make sure all the accesses at slave side are in correct address region for i_slave, (checker, decoder) in enumerate(zip(checkers, slave_decoders_py)): for addr in (entry[0] for entry in checker.writes + checker.reads): # compensate for the fact that decoders work on word-aligned addresses self.assertNotEqual(decoder(addr >> 2), 0) def test_interconnect_shared_stress_no_delay(self): self.interconnect_stress_test(timeout=1000, master_delay=0, slave_ready_latency=0, slave_response_latency=0) def test_interconnect_shared_stress_rand_short(self): prng = random.Random(42) rand = lambda: prng.randrange(4) self.interconnect_stress_test(timeout=2000, master_delay=rand, slave_ready_latency=rand, slave_response_latency=rand) def test_interconnect_shared_stress_rand_long(self): prng = random.Random(42) rand = lambda: prng.randrange(16) self.interconnect_stress_test(timeout=4000, master_delay=rand, slave_ready_latency=rand, slave_response_latency=rand) def test_interconnect_shared_stress_timeout(self): self.interconnect_stress_test(timeout=4000, disconnected_slaves=[1], timeout_cycles=50) def test_crossbar_stress_no_delay(self): self.interconnect_stress_test(timeout=1000, master_delay=0, slave_ready_latency=0, slave_response_latency=0, interconnect=AXILiteCrossbar) def test_crossbar_stress_rand(self): prng = random.Random(42) rand = lambda: prng.randrange(4) self.interconnect_stress_test(timeout=2000, master_delay=rand, slave_ready_latency=rand, slave_response_latency=rand, interconnect=AXILiteCrossbar)