module m1crg #( parameter in_period = 0.0, parameter f_mult = 0, parameter f_div = 0, parameter clk2x_period = (in_period*f_div)/(2.0*f_mult) ) ( input clkin, input trigger_reset, output sys_clk, output reg sys_rst, /* Reset off-chip devices */ output ac97_rst_n, output videoin_rst_n, output flash_rst_n, /* DDR PHY clocks */ output clk2x_270, output clk4x_wr, output clk4x_wr_strb, output clk4x_rd, output clk4x_rd_strb, /* Ethernet PHY clock */ output reg phy_clk ); /* * Reset */ reg [19:0] rst_debounce; always @(posedge sys_clk) begin if(trigger_reset) rst_debounce <= 20'hFFFFF; else if(rst_debounce != 20'd0) rst_debounce <= rst_debounce - 20'd1; sys_rst <= rst_debounce != 20'd0; end assign ac97_rst_n = ~sys_rst; assign videoin_rst_n = ~sys_rst; /* * We must release the Flash reset before the system reset * because the Flash needs some time to come out of reset * and the CPU begins fetching instructions from it * as soon as the system reset is released. * From datasheet, minimum reset pulse width is 100ns * and reset-to-read time is 150ns. */ reg [7:0] flash_rstcounter; always @(posedge sys_clk) begin if(trigger_reset) flash_rstcounter <= 8'd0; else if(~flash_rstcounter[7]) flash_rstcounter <= flash_rstcounter + 8'd1; end assign flash_rst_n = flash_rstcounter[7]; /* * Clock management. Inspired by the NWL reference design. */ wire sdr_clkin; wire clkdiv; IBUF #( .IOSTANDARD("DEFAULT") ) clk2_iob ( .I(clkin), .O(sdr_clkin) ); BUFIO2 #( .DIVIDE(1), .DIVIDE_BYPASS("FALSE"), .I_INVERT("FALSE") ) bufio2_inst2 ( .I(sdr_clkin), .IOCLK(), .DIVCLK(clkdiv), .SERDESSTROBE() ); wire pll_lckd; wire buf_pll_fb_out; wire pllout0; wire pllout1; wire pllout2; wire pllout3; wire pllout4; PLL_ADV #( .BANDWIDTH("OPTIMIZED"), .CLKFBOUT_MULT(4*f_mult), .CLKFBOUT_PHASE(0.0), .CLKIN1_PERIOD(in_period), .CLKIN2_PERIOD(in_period), .CLKOUT0_DIVIDE(f_div), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), .CLKOUT1_DIVIDE(f_div), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(0), .CLKOUT2_DIVIDE(2*f_div), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(270.0), .CLKOUT3_DIVIDE(4*f_div), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0.0), .CLKOUT4_DIVIDE(4*f_mult), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT5_DIVIDE(7), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0.0), .COMPENSATION("INTERNAL"), .DIVCLK_DIVIDE(1), .REF_JITTER(0.100), .CLK_FEEDBACK("CLKFBOUT"), .SIM_DEVICE("SPARTAN6") ) pll ( .CLKFBDCM(), .CLKFBOUT(buf_pll_fb_out), .CLKOUT0(pllout0), /* < x4 clock for writes */ .CLKOUT1(pllout1), /* < x4 clock for reads */ .CLKOUT2(pllout2), /* < x2 90 clock to generate memory clock, clock DQS and memory address and control signals. */ .CLKOUT3(pllout3), /* < x1 clock for system and memory controller */ .CLKOUT4(pllout4), /* < buffered clkin */ .CLKOUT5(), .CLKOUTDCM0(), .CLKOUTDCM1(), .CLKOUTDCM2(), .CLKOUTDCM3(), .CLKOUTDCM4(), .CLKOUTDCM5(), .DO(), .DRDY(), .LOCKED(pll_lckd), .CLKFBIN(buf_pll_fb_out), .CLKIN1(clkdiv), .CLKIN2(1'b0), .CLKINSEL(1'b1), .DADDR(5'b00000), .DCLK(1'b0), .DEN(1'b0), .DI(16'h0000), .DWE(1'b0), .RST(1'b0), .REL(1'b0) ); BUFPLL #( .DIVIDE(4) ) wr_bufpll ( .PLLIN(pllout0), .GCLK(sys_clk), .LOCKED(pll_lckd), .IOCLK(clk4x_wr), .LOCK(), .SERDESSTROBE(clk4x_wr_strb) ); BUFPLL #( .DIVIDE(4) ) rd_bufpll ( .PLLIN(pllout1), .GCLK(sys_clk), .LOCKED(pll_lckd), .IOCLK(clk4x_rd), .LOCK(), .SERDESSTROBE(clk4x_rd_strb) ); BUFG bufg_x2_2( .I(pllout2), .O(clk2x_270) ); BUFG bufg_x1( .I(pllout3), .O(sys_clk) ); /* Ethernet PHY */ always @(posedge pllout4) phy_clk <= ~phy_clk; endmodule