from migen.fhdl.structure import * from migen.fhdl.module import Module, FinalizeError from migen.genlib.misc import optree from migen.genlib import roundrobin from migen.bus.transactions import * from migen.sim.generic import Proxy (SLOT_EMPTY, SLOT_PENDING, SLOT_PROCESSING) = range(3) class Slot(Module): def __init__(self, aw, time): self.state = Signal(2) self.we = Signal() self.adr = Signal(aw) if time: self.mature = Signal() self.allocate = Signal() self.allocate_we = Signal() self.allocate_adr = Signal(aw) self.process = Signal() self.call = Signal() ### self.sync += [ If(self.allocate, self.state.eq(SLOT_PENDING), self.we.eq(self.allocate_we), self.adr.eq(self.allocate_adr) ), If(self.process, self.state.eq(SLOT_PROCESSING)), If(self.call, self.state.eq(SLOT_EMPTY)) ] if time: _counter = Signal(max=time+1) self.comb += self.mature.eq(self._counter == 0) self.sync += [ If(self.allocate, self._counter.eq(self.time) ).Elif(self._counter != 0, self._counter.eq(self._counter - 1) ) ] class Port(Module): def __init__(self, hub, base, nslots): self.hub = hub self.base = base self.submodules.slots = [Slot(self.hub.aw, self.hub.time) for i in range(nslots)] # request issuance self.adr = Signal(self.hub.aw) self.we = Signal() self.stb = Signal() # tag_issue is created by finalize() self.ack = Signal() # request completion self.call = Signal() # tag_call is created by finalize() self.dat_r = Signal(self.hub.dw) self.dat_w = Signal(self.hub.dw) self.dat_wm = Signal(self.hub.dw//8) def do_finalize(self): nslots = len(self.slots) if nslots > 1: self.tag_issue = Signal(max=nslots) self.tag_call = Signal(self.hub.tagbits) # allocate for s in self.slots: self.comb += [ s.allocate_we.eq(self.we), s.allocate_adr.eq(self.adr) ] choose_slot = None needs_tags = len(self.slots) > 1 for n, s in reversed(list(enumerate(self.slots))): choose_slot = If(s.state == SLOT_EMPTY, s.allocate.eq(self.stb), self.tag_issue.eq(n) if needs_tags else None ).Else(choose_slot) self.comb += choose_slot self.comb += self.ack.eq(optree("|", [s.state == SLOT_EMPTY for s in self.slots])) # call self.comb += [s.call.eq(self.get_call_expression(n)) for n, s in enumerate(self.slots)] def get_call_expression(self, slotn=0): if not self.finalized: raise FinalizeError return self.call \ & (self.tag_call == (self.base + slotn)) class Hub(Module): def __init__(self, aw, dw, time=0): self.aw = aw self.dw = dw self.time = time self.ports = [] self._next_base = 0 self.tagbits = 0 self.call = Signal() # tag_call is created by do_finalize() self.dat_r = Signal(self.dw) self.dat_w = Signal(self.dw) self.dat_wm = Signal(self.dw//8) def get_port(self, nslots=1): if self.finalized: raise FinalizeError new_port = Port(self, self._next_base, nslots) self._next_base += nslots self.tagbits = bits_for(self._next_base-1) self.ports.append(new_port) self.submodules += new_port return new_port def do_finalize(self): self.tag_call = Signal(self.tagbits) for port in self.ports: self.comb += [ port.call.eq(self.call), port.tag_call.eq(self.tag_call), port.dat_r.eq(self.dat_r) ] self.comb += [ self.dat_w.eq(optree("|", [port.dat_w for port in self.ports])), self.dat_wm.eq(optree("|", [port.dat_wm for port in self.ports])) ] def get_slots(self): if not self.finalized: raise FinalizeError return sum([port.slots for port in self.ports], []) class Tap(Module): def __init__(self, hub, handler=print): self.hub = hub self.handler = handler self.tag_to_transaction = dict() self.transaction = None def do_simulation(self, s): hub = Proxy(s, self.hub) # Pull any data announced in the previous cycle. if isinstance(self.transaction, TWrite): self.transaction.data = hub.dat_w self.transaction.sel = ~hub.dat_wm self.handler(self.transaction) self.transaction = None if isinstance(self.transaction, TRead): self.transaction.data = hub.dat_r self.handler(self.transaction) self.transaction = None # Tag issue. Transaction objects are created here # and placed into the tag_to_transaction dictionary. for tag, slot in enumerate(self.hub.get_slots()): if s.rd(slot.allocate): adr = s.rd(slot.allocate_adr) we = s.rd(slot.allocate_we) if we: transaction = TWrite(adr) else: transaction = TRead(adr) transaction.latency = s.cycle_counter self.tag_to_transaction[tag] = transaction # Tag call. if hub.call: transaction = self.tag_to_transaction[hub.tag_call] transaction.latency = s.cycle_counter - transaction.latency + 1 self.transaction = transaction class Initiator(Module): def __init__(self, generator, port): self.generator = generator self.port = port self.done = False self._exe = None def _execute(self, s, generator, port): while True: transaction = next(generator) transaction_start = s.cycle_counter if transaction is None: yield else: # tag phase s.wr(port.adr, transaction.address) if isinstance(transaction, TWrite): s.wr(port.we, 1) else: s.wr(port.we, 0) s.wr(port.stb, 1) yield while not s.rd(port.ack): yield if hasattr(port, "tag_issue"): tag = s.rd(port.tag_issue) else: tag = 0 tag += port.base s.wr(port.stb, 0) # data phase while not (s.rd(port.call) and (s.rd(port.tag_call) == tag)): yield if isinstance(transaction, TWrite): s.wr(port.dat_w, transaction.data) s.wr(port.dat_wm, ~transaction.sel) yield s.wr(port.dat_w, 0) s.wr(port.dat_wm, 0) else: yield transaction.data = s.rd(port.dat_r) transaction.latency = s.cycle_counter - transaction_start - 1 def do_simulation(self, s): if not self.done: if self._exe is None: self._exe = self._execute(s, self.generator, self.port) try: next(self._exe) except StopIteration: self.done = True class TargetModel: def __init__(self): self.last_slot = 0 def read(self, address): return 0 def write(self, address, data, mask): pass # Round-robin scheduling. def select_slot(self, pending_slots): if not pending_slots: return -1 self.last_slot += 1 if self.last_slot > max(pending_slots): self.last_slot = 0 while self.last_slot not in pending_slots: self.last_slot += 1 return self.last_slot class Target(Module): def __init__(self, model, hub): self.model = model self.hub = hub self._calling_tag = -1 self._write_request_d = -1 self._write_request = -1 self._read_request = -1 def do_simulation(self, s): slots = self.hub.get_slots() # Data I/O if self._write_request >= 0: self.model.write(self._write_request, s.rd(self.hub.dat_w), s.rd(self.hub.dat_wm)) if self._read_request >= 0: s.wr(self.hub.dat_r, self.model.read(self._read_request)) # Request pipeline self._read_request = -1 self._write_request = self._write_request_d self._write_request_d = -1 # Examine pending slots and possibly choose one. # Note that we do not use the SLOT_PROCESSING state here. # Selected slots are immediately called. pending_slots = set() for tag, slot in enumerate(slots): if tag != self._calling_tag and s.rd(slot.state) == SLOT_PENDING: pending_slots.add(tag) slot_to_call = self.model.select_slot(pending_slots) # Call slot. if slot_to_call >= 0: slot = slots[slot_to_call] s.wr(self.hub.call, 1) s.wr(self.hub.tag_call, slot_to_call) self._calling_tag = slot_to_call if s.rd(slot.we): self._write_request_d = s.rd(slot.adr) else: self._read_request = s.rd(slot.adr) else: s.wr(self.hub.call, 0) self._calling_tag = -1 # Port sharing class SharedPort: def __init__(self, base_port): if not base_port.finalized: raise FinalizeError self.finalized = True nslots = len(base_port.slots) self.hub = base_port.hub self.base = base_port.base # 1 if that slot is assigned to us self.slots = [Signal() for i in range(nslots)] # request issuance self.adr = Signal(self.hub.aw) self.we = Signal() self.stb = Signal() if nslots > 1: self.tag_issue = Signal(max=nslots) self.ack = Signal() # request completion self.call = Signal() self.tag_call = Signal(self.hub.tagbits) self.dat_r = Signal(self.hub.dw) self.dat_w = Signal(self.hub.dw) self.dat_wm = Signal(self.hub.dw//8) def get_call_expression(self, slotn=0): if not self.finalized: raise FinalizeError return self.call \ & (self.tag_call == (self.base + slotn)) class PortSharer(Module): def __init__(self, base_port, nshares): self.shared_ports = [SharedPort(base_port) for i in range(nshares)] ### # request issuance self.submodules.rr = roundrobin.RoundRobin(nshares, roundrobin.SP_CE) self.comb += [ self.rr.request.eq(Cat(*[sp.stb for sp in self.shared_ports])), self.rr.ce.eq(base_port.ack) ] self.comb += [ base_port.adr.eq(Array(sp.adr for sp in self.shared_ports)[self.rr.grant]), base_port.we.eq(Array(sp.we for sp in self.shared_ports)[self.rr.grant]), base_port.stb.eq(Array(sp.stb for sp in self.shared_ports)[self.rr.grant]), ] if hasattr(base_port, "tag_issue"): self.comb += [sp.tag_issue.eq(base_port.tag_issue) for sp in self.shared_ports] self.comb += [sp.ack.eq(base_port.ack & (self.rr.grant == n)) for n, sp in enumerate(self.shared_ports)] # request completion self.comb += [sp.call.eq(base_port.call & Array(sp.slots)[base_port.tag_call-base_port.base]) for sp in self.shared_ports] self.comb += [sp.tag_call.eq(base_port.tag_call) for sp in self.shared_ports] self.comb += [sp.dat_r.eq(base_port.dat_r) for sp in self.shared_ports] self.comb += [ base_port.dat_w.eq(optree("|", [sp.dat_w for sp in self.shared_ports])), base_port.dat_wm.eq(optree("|", [sp.dat_wm for sp in self.shared_ports])), ] # request ownership tracking if hasattr(base_port, "tag_issue"): for sp in self.shared_ports: self.sync += If(sp.stb & sp.ack, Array(sp.slots)[sp.tag_issue].eq(1)) for n, slot in enumerate(sp.slots): self.sync += If(base_port.call & (base_port.tag_call == (base_port.base + n)), slot.eq(0)) else: for sp in self.shared_ports: self.sync += [ If(sp.stb & sp.ack, sp.slots[0].eq(1)), If(base_port.call & (base_port.tag_call == base_port.base), sp.slots[0].eq(0)) ]