from functools import partial from operator import itemgetter from migen.fhdl.structure import * from migen.fhdl.structure import _Operator, _Slice, _Assign from migen.fhdl.tools import * from migen.fhdl.namer import Namespace, build_namespace from migen.fhdl import verilog_mem_behavioral def _printsig(ns, s): if s.signed: n = "signed " else: n = "" if len(s) > 1: n += "[" + str(len(s)-1) + ":0] " n += ns.get_name(s) return n def _printintbool(node): if isinstance(node, bool): if node: return "1'd1" else: return "1'd0" elif isinstance(node, int): if node >= 0: return str(bits_for(node)) + "'d" + str(node) else: return "-" + str(bits_for(node)) + "'sd" + str(-node) else: raise TypeError def _printexpr(ns, node): if isinstance(node, (int, bool)): return _printintbool(node) elif isinstance(node, Signal): return ns.get_name(node) elif isinstance(node, _Operator): arity = len(node.operands) if arity == 1: r = node.op + _printexpr(ns, node.operands[0]) elif arity == 2: r = _printexpr(ns, node.operands[0]) + " " + node.op + " " + _printexpr(ns, node.operands[1]) else: raise TypeError return "(" + r + ")" elif isinstance(node, _Slice): # Verilog does not like us slicing non-array signals... if isinstance(node.value, Signal) \ and len(node.value) == 1 \ and node.start == 0 and node.stop == 1: return _printexpr(ns, node.value) if node.start + 1 == node.stop: sr = "[" + str(node.start) + "]" else: sr = "[" + str(node.stop-1) + ":" + str(node.start) + "]" return _printexpr(ns, node.value) + sr elif isinstance(node, Cat): l = list(map(partial(_printexpr, ns), node.l)) l.reverse() return "{" + ", ".join(l) + "}" elif isinstance(node, Replicate): return "{" + str(node.n) + "{" + _printexpr(ns, node.v) + "}}" else: raise TypeError (_AT_BLOCKING, _AT_NONBLOCKING, _AT_SIGNAL) = range(3) def _printnode(ns, at, level, node): if node is None: return "" elif isinstance(node, _Assign): if at == _AT_BLOCKING: assignment = " = " elif at == _AT_NONBLOCKING: assignment = " <= " elif is_variable(node.l): assignment = " = " else: assignment = " <= " return "\t"*level + _printexpr(ns, node.l) + assignment + _printexpr(ns, node.r) + ";\n" elif isinstance(node, list): return "".join(list(map(partial(_printnode, ns, at, level), node))) elif isinstance(node, If): r = "\t"*level + "if (" + _printexpr(ns, node.cond) + ") begin\n" r += _printnode(ns, at, level + 1, node.t) if node.f: r += "\t"*level + "end else begin\n" r += _printnode(ns, at, level + 1, node.f) r += "\t"*level + "end\n" return r elif isinstance(node, Case): if node.cases: r = "\t"*level + "case (" + _printexpr(ns, node.test) + ")\n" css = sorted([(k, v) for (k, v) in node.cases.items() if k != "default"], key=itemgetter(0)) for choice, statements in css: r += "\t"*(level + 1) + _printexpr(ns, choice) + ": begin\n" r += _printnode(ns, at, level + 2, statements) r += "\t"*(level + 1) + "end\n" if "default" in node.cases: r += "\t"*(level + 1) + "default: begin\n" r += _printnode(ns, at, level + 2, node.cases["default"]) r += "\t"*(level + 1) + "end\n" r += "\t"*level + "endcase\n" return r else: return "" else: raise TypeError def _list_comb_wires(f): r = set() groups = group_by_targets(f.comb) for g in groups: if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r |= g[0] return r def _printheader(f, ios, name, ns): sigs = list_signals(f) | list_inst_ios(f, True, True, True) | list_mem_ios(f, True, True) inst_mem_outs = list_inst_ios(f, False, True, False) | list_mem_ios(f, False, True) inouts = list_inst_ios(f, False, False, True) targets = list_targets(f) | inst_mem_outs wires = _list_comb_wires(f) | inst_mem_outs r = "module " + name + "(\n" firstp = True for sig in sorted(ios, key=lambda x: x.huid): if not firstp: r += ",\n" firstp = False if sig in inouts: r += "\tinout " + _printsig(ns, sig) elif sig in targets: if sig in wires: r += "\toutput " + _printsig(ns, sig) else: r += "\toutput reg " + _printsig(ns, sig) else: r += "\tinput " + _printsig(ns, sig) r += "\n);\n\n" for sig in sorted(sigs - ios, key=lambda x: x.huid): if sig in wires: r += "wire " + _printsig(ns, sig) + ";\n" else: r += "reg " + _printsig(ns, sig) + ";\n" r += "\n" return r def _printcomb(f, ns, display_run): r = "" if f.comb: # Generate a dummy event to get the simulator # to run the combinatorial process once at the beginning. syn_off = "// synthesis translate off\n" syn_on = "// synthesis translate on\n" dummy_s = Signal(name_override="dummy_s") r += syn_off r += "reg " + _printsig(ns, dummy_s) + ";\n" r += "initial " + ns.get_name(dummy_s) + " <= 1'd0;\n" r += syn_on groups = group_by_targets(f.comb) for n, g in enumerate(groups): if len(g[1]) == 1 and isinstance(g[1][0], _Assign): r += "assign " + _printnode(ns, _AT_BLOCKING, 0, g[1][0]) else: dummy_d = Signal(name_override="dummy_d") r += "\n" + syn_off r += "reg " + _printsig(ns, dummy_d) + ";\n" r += syn_on r += "always @(*) begin\n" if display_run: r += "\t$display(\"Running comb block #" + str(n) + "\");\n" for t in g[0]: r += "\t" + ns.get_name(t) + " <= " + _printexpr(ns, t.reset) + ";\n" r += _printnode(ns, _AT_NONBLOCKING, 1, g[1]) r += syn_off r += "\t" + ns.get_name(dummy_d) + " <= " + ns.get_name(dummy_s) + ";\n" r += syn_on r += "end\n" r += "\n" return r def _printsync(f, ns, clock_domains): r = "" for k, v in sorted(f.sync.items(), key=itemgetter(0)): r += "always @(posedge " + ns.get_name(clock_domains[k].clk) + ") begin\n" r += _printnode(ns, _AT_SIGNAL, 1, insert_reset(clock_domains[k].rst, v)) r += "end\n\n" return r def _printinstances(f, ns, clock_domains): r = "" for x in f.instances: parameters = list(filter(lambda i: isinstance(i, Instance.Parameter), x.items)) r += x.of + " " if parameters: r += "#(\n" firstp = True for p in parameters: if not firstp: r += ",\n" firstp = False r += "\t." + p.name + "(" if isinstance(p.value, (int, bool)): r += _printintbool(p.value) elif isinstance(p.value, float): r += str(p.value) elif isinstance(p.value, str): r += "\"" + p.value + "\"" else: raise TypeError r += ")" r += "\n) " r += ns.get_name(x) if parameters: r += " " r += "(\n" firstp = True for p in x.items: if isinstance(p, Instance._IO): name_inst = p.name name_design = _printexpr(ns, p.expr) elif isinstance(p, Instance.ClockPort): name_inst = p.name_inst name_design = ns.get_name(clock_domains[p.domain].clk) if p.invert: name_design = "~" + name_design elif isinstance(p, Instance.ResetPort): name_inst = p.name_inst name_design = ns.get_name(clock_domains[p.domain].rst) else: continue if not firstp: r += ",\n" firstp = False r += "\t." + name_inst + "(" + name_design + ")" if not firstp: r += "\n" r += ");\n\n" return r def _printmemories(f, ns, handler, clock_domains): r = "" for memory in f.memories: r += handler(memory, ns, clock_domains) return r def _printinit(f, ios, ns): r = "" signals = list_signals(f) \ - ios \ - list_targets(f) \ - list_inst_ios(f, False, True, False) \ - list_mem_ios(f, False, True) if signals: r += "initial begin\n" for s in sorted(signals, key=lambda x: x.huid): r += "\t" + ns.get_name(s) + " <= " + _printexpr(ns, s.reset) + ";\n" r += "end\n\n" return r def convert(f, ios=set(), name="top", clock_domains=None, return_ns=False, memory_handler=verilog_mem_behavioral.handler, display_run=False): if clock_domains is None: clock_domains = dict() for d in f.get_clock_domains(): cd = ClockDomain(d) clock_domains[d] = cd ios.add(cd.clk) ios.add(cd.rst) f = lower_arrays(f) ns = build_namespace(list_signals(f) \ | list_inst_ios(f, True, True, True) \ | list_mem_ios(f, True, True) \ | ios) r = "/* Machine-generated using Migen */\n" r += _printheader(f, ios, name, ns) r += _printcomb(f, ns, display_run) r += _printsync(f, ns, clock_domains) r += _printinstances(f, ns, clock_domains) r += _printmemories(f, ns, memory_handler, clock_domains) r += _printinit(f, ios, ns) r += "endmodule\n" if return_ns: return r, ns else: return r