# Copyright (C) 2012 Vermeer Manufacturing Co. # License: GPLv3 with additional permissions (see README). from math import cos, pi from scipy import signal import matplotlib.pyplot as plt from migen.fhdl.structure import * from migen.fhdl import verilog from migen.genlib.misc import optree from migen.fhdl import autofragment from migen.sim.generic import Simulator, PureSimulable # A synthesizable FIR filter. class FIR: def __init__(self, coef, wsize=16): self.coef = coef self.wsize = wsize self.i = Signal((self.wsize, True)) self.o = Signal((self.wsize, True)) def get_fragment(self): muls = [] sync = [] src = self.i for c in self.coef: sreg = Signal((self.wsize, True)) sync.append(sreg.eq(src)) src = sreg c_fp = int(c*2**(self.wsize - 1)) muls.append(c_fp*sreg) sum_full = Signal((2*self.wsize-1, True)) sync.append(sum_full.eq(optree("+", muls))) comb = [self.o.eq(sum_full[self.wsize-1:])] return Fragment(comb, sync) # A test bench for our FIR filter. # Generates a sine wave at the input and records the output. class TB(PureSimulable): def __init__(self, fir, frequency): self.fir = fir self.frequency = frequency self.inputs = [] self.outputs = [] def do_simulation(self, s): f = 2**(self.fir.wsize - 1) v = 0.1*cos(2*pi*self.frequency*s.cycle_counter) s.wr(self.fir.i, int(f*v)) self.inputs.append(v) self.outputs.append(s.rd(self.fir.o)/f) def main(): # Compute filter coefficients with SciPy. coef = signal.remez(80, [0, 0.1, 0.1, 0.5], [1, 0]) fir = FIR(coef) # Simulate for different frequencies and concatenate # the results. in_signals = [] out_signals = [] for frequency in [0.05, 0.07, 0.1, 0.15, 0.2]: tb = TB(fir, frequency) fragment = autofragment.from_local() sim = Simulator(fragment) sim.run(100) del sim in_signals += tb.inputs out_signals += tb.outputs # Plot data from the input and output waveforms. plt.plot(in_signals) plt.plot(out_signals) plt.show() # Print the Verilog source for the filter. print(verilog.convert(fir.get_fragment(), ios={fir.i, fir.o})) main()