PicoRV32 - A Size-Optimized RISC-V CPU ====================================== PicoRV32 is a CPU core that implements the [RISC-V RV32I Instruction Set](http://riscv.org/). Tools (gcc, binutils, etc..) can be obtained via the [RISC-V Website](http://riscv.org/download.html#tab_tools). PicoRV32 is free and open hardware licensed under the [ISC license](http://en.wikipedia.org/wiki/ISC_license) (a license that is similar in terms to the MIT license or the 2-clause BSD license). Features and Typical Applications: ---------------------------------- - Small (~1000 LUTs in a 7-Series Xilinx FGPA) - High fMAX (>250 MHz on 7-Series Xilinx FGPAs) - Selectable native memory interface or AXI4-Lite master This CPU is meant to be used as auxiliary processor in FPGA designs and ASICs. Due to its high fMAX it can be integrated in most existing designs without crossing clock domains. When operated on a lower frequency, it will have a lot of timing slack and thus can be added to a design without compromising timing closure. For even smaller size it is possible disable support for registers `x16`..`x31` as well as `RDCYCLE[H]`, `RDTIME[H]`, and `RDINSTRET[H]` instructions, turning the processor into an RV32E core. *Note: In architectures that implement the register file in dedicated memory resources, such as many FPGAs, disabling the 16 upper registers may not further reduce the core size.* The core exists in two variations: `picorv32` and `picorv32_axi`. The former provides a simple native memory interface, that is easy to use in simple environments, and the latter provides an AXI-4 Lite Master interface that can easily be integrated with existing systems that are already using the AXI standard. A separate core `picorv32_axi_adapter` is provided to bridge between the native memory interface and AXI4. This core can be used to create custom cores that include one or more PicoRV32 cores together with local RAM, ROM, and memory-mapped peripherals, communicating with each other using the native interface, and communicating with the outside world via AXI4. Parameters: ----------- The following Verilog module parameters can be used to configure the PicoRV32 core. ### ENABLE_COUNTERS (default = 1) This parameter enables support for the `RDCYCLE[H]`, `RDTIME[H]`, and `RDINSTRET[H]` instructions. This instructions will cause a hardware trap (like any other unsupported instruction) if `ENABLE_COUNTERS` is set to zero. *Note: Strictly speaking the `RDCYCLE[H]`, `RDTIME[H]`, and `RDINSTRET[H]` instructions are not optional for an RV32I core. But chances are they are not going to be missed after the application code has been debugged and profiled. This instructions are optional for an RV32E core.* ### ENABLE_REGS_16_31 (default = 1) This parameter enables support for registers the `x16`..`x31`. The RV32E ISA excludes this registers. However, the RV32E ISA spec requires a hardware trap for when code tries to access this registers. This is not implemented in PicoRV32. ### ENABLE_REGS_DUALPORT (default = 1) The register file can be implemented with two or one read ports. A dual ported register file improves performance a bit, but can also increase the size of the core. Performance: ------------ *A short reminder: This core is optimized for size, not performance.* Unless stated otherwise, the following numbers apply to a PicoRV32 with ENABLE_REGS_DUALPORT active and connected to a memory that can accomodate requests within one clock cycle. The average Cycles per Instruction (CPI) is 4 to 5, depending on the mix of instructions in the code. The CPI numbers for the individual instructions can be found in the following table. (The column "CPI (SP)" contains the CPI numbers for a core built without ENABLE_REGS_DUALPORT.) | Instruction | CPI | CPI (SP) | | ---------------------| ----:| --------:| | direct jump (jal) | 3 | 3 | | ALU reg + immediate | 3 | 3 | | ALU reg + reg | 3 | 4 | | branch (not taken) | 3 | 4 | | memory load | 5 | 5 | | memory store | 5 | 6 | | branch (taken) | 5 | 6 | | indirect jump (jalr) | 6 | 6 | | shift operations | 4-14 | 4-15 | Dhrystone benchmark results: 0.309 DMIPS/MHz (544 Dhrystones/Second/MHz) For the Dryhstone benchmark the average CPI is 4.167. Todos: ------ - Optional IRQ support - Optional write-through cache - Optional support for compressed ISA