// This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or // distribute this software, either in source code form or as a compiled // binary, for any purpose, commercial or non-commercial, and by any // means. `timescale 1 ns / 1 ps `ifndef VERILATOR module testbench #( parameter AXI_TEST = 0, parameter VERBOSE = 0 ); reg clk = 1; reg resetn = 0; wire trap; always #5 clk = ~clk; initial begin repeat (100) @(posedge clk); resetn <= 1; end initial begin if ($test$plusargs("vcd")) begin $dumpfile("testbench.vcd"); $dumpvars(0, testbench); end repeat (1000000) @(posedge clk); $display("TIMEOUT"); $finish; end wire trace_valid; wire [35:0] trace_data; integer trace_file; initial begin if ($test$plusargs("trace")) begin trace_file = $fopen("testbench.trace", "w"); repeat (10) @(posedge clk); while (!trap) begin @(posedge clk); if (trace_valid) $fwrite(trace_file, "%x\n", trace_data); end $fclose(trace_file); $display("Finished writing testbench.trace."); end end picorv32_wrapper #( .AXI_TEST (AXI_TEST), .VERBOSE (VERBOSE) ) top ( .clk(clk), .resetn(resetn), .trap(trap), .trace_valid(trace_valid), .trace_data(trace_data) ); endmodule `endif module picorv32_wrapper #( parameter AXI_TEST = 0, parameter VERBOSE = 0 ) ( input clk, input resetn, output trap, output trace_valid, output [35:0] trace_data ); wire tests_passed; reg [31:0] irq; always @* begin irq = 0; irq[4] = &uut.picorv32_core.count_cycle[12:0]; irq[5] = &uut.picorv32_core.count_cycle[15:0]; end wire mem_axi_awvalid; wire mem_axi_awready; wire [31:0] mem_axi_awaddr; wire [ 2:0] mem_axi_awprot; wire mem_axi_wvalid; wire mem_axi_wready; wire [31:0] mem_axi_wdata; wire [ 3:0] mem_axi_wstrb; wire mem_axi_bvalid; wire mem_axi_bready; wire mem_axi_arvalid; wire mem_axi_arready; wire [31:0] mem_axi_araddr; wire [ 2:0] mem_axi_arprot; wire mem_axi_rvalid; wire mem_axi_rready; wire [31:0] mem_axi_rdata; axi4_memory #( .AXI_TEST (AXI_TEST), .VERBOSE (VERBOSE) ) mem ( .clk (clk ), .mem_axi_awvalid (mem_axi_awvalid ), .mem_axi_awready (mem_axi_awready ), .mem_axi_awaddr (mem_axi_awaddr ), .mem_axi_awprot (mem_axi_awprot ), .mem_axi_wvalid (mem_axi_wvalid ), .mem_axi_wready (mem_axi_wready ), .mem_axi_wdata (mem_axi_wdata ), .mem_axi_wstrb (mem_axi_wstrb ), .mem_axi_bvalid (mem_axi_bvalid ), .mem_axi_bready (mem_axi_bready ), .mem_axi_arvalid (mem_axi_arvalid ), .mem_axi_arready (mem_axi_arready ), .mem_axi_araddr (mem_axi_araddr ), .mem_axi_arprot (mem_axi_arprot ), .mem_axi_rvalid (mem_axi_rvalid ), .mem_axi_rready (mem_axi_rready ), .mem_axi_rdata (mem_axi_rdata ), .tests_passed (tests_passed ) ); picorv32_axi #( `ifndef SYNTH_TEST `ifdef SP_TEST .ENABLE_REGS_DUALPORT(0), `endif `ifdef COMPRESSED_ISA .COMPRESSED_ISA(1), `endif .ENABLE_MUL(1), .ENABLE_DIV(1), .ENABLE_IRQ(1), .ENABLE_TRACE(1) `endif ) uut ( .clk (clk ), .resetn (resetn ), .trap (trap ), .mem_axi_awvalid(mem_axi_awvalid), .mem_axi_awready(mem_axi_awready), .mem_axi_awaddr (mem_axi_awaddr ), .mem_axi_awprot (mem_axi_awprot ), .mem_axi_wvalid (mem_axi_wvalid ), .mem_axi_wready (mem_axi_wready ), .mem_axi_wdata (mem_axi_wdata ), .mem_axi_wstrb (mem_axi_wstrb ), .mem_axi_bvalid (mem_axi_bvalid ), .mem_axi_bready (mem_axi_bready ), .mem_axi_arvalid(mem_axi_arvalid), .mem_axi_arready(mem_axi_arready), .mem_axi_araddr (mem_axi_araddr ), .mem_axi_arprot (mem_axi_arprot ), .mem_axi_rvalid (mem_axi_rvalid ), .mem_axi_rready (mem_axi_rready ), .mem_axi_rdata (mem_axi_rdata ), .irq (irq ), .trace_valid (trace_valid ), .trace_data (trace_data ) ); reg [1023:0] firmware_file; initial begin if(!$value$plusargs("firmware=%s", firmware_file)) firmware_file = "firmware/firmware.hex"; $readmemh(firmware_file, mem.memory); end integer cycle_counter; always @(posedge clk) begin cycle_counter <= resetn ? cycle_counter + 1 : 0; if (resetn && trap) begin `ifndef VERILATOR repeat (10) @(posedge clk); `endif $display("TRAP after %1d clock cycles", cycle_counter); if (tests_passed) begin $display("ALL TESTS PASSED."); $finish; end else begin $display("ERROR!"); if ($test$plusargs("noerror")) $finish; $stop; end end end endmodule module axi4_memory #( parameter AXI_TEST = 0, parameter VERBOSE = 0 ) ( input clk, input mem_axi_awvalid, output reg mem_axi_awready = 0, input [31:0] mem_axi_awaddr, input [ 2:0] mem_axi_awprot, input mem_axi_wvalid, output reg mem_axi_wready = 0, input [31:0] mem_axi_wdata, input [ 3:0] mem_axi_wstrb, output reg mem_axi_bvalid = 0, input mem_axi_bready, input mem_axi_arvalid, output reg mem_axi_arready = 0, input [31:0] mem_axi_araddr, input [ 2:0] mem_axi_arprot, output reg mem_axi_rvalid = 0, input mem_axi_rready, output reg [31:0] mem_axi_rdata, output reg tests_passed ); reg [31:0] memory [0:64*1024/4-1] /* verilator public */; reg verbose; initial verbose = $test$plusargs("verbose") || VERBOSE; reg axi_test; initial axi_test = $test$plusargs("axi_test") || AXI_TEST; initial tests_passed = 0; reg [63:0] xorshift64_state = 64'd88172645463325252; task xorshift64_next; begin // see page 4 of Marsaglia, George (July 2003). "Xorshift RNGs". Journal of Statistical Software 8 (14). xorshift64_state = xorshift64_state ^ (xorshift64_state << 13); xorshift64_state = xorshift64_state ^ (xorshift64_state >> 7); xorshift64_state = xorshift64_state ^ (xorshift64_state << 17); end endtask reg [2:0] fast_axi_transaction = ~0; reg [4:0] async_axi_transaction = ~0; reg [4:0] delay_axi_transaction = 0; always @(posedge clk) begin if (axi_test) begin xorshift64_next; {fast_axi_transaction, async_axi_transaction, delay_axi_transaction} <= xorshift64_state; end end reg latched_raddr_en = 0; reg latched_waddr_en = 0; reg latched_wdata_en = 0; reg fast_raddr = 0; reg fast_waddr = 0; reg fast_wdata = 0; reg [31:0] latched_raddr; reg [31:0] latched_waddr; reg [31:0] latched_wdata; reg [ 3:0] latched_wstrb; reg latched_rinsn; task handle_axi_arvalid; begin mem_axi_arready <= 1; latched_raddr = mem_axi_araddr; latched_rinsn = mem_axi_arprot[2]; latched_raddr_en = 1; fast_raddr <= 1; end endtask task handle_axi_awvalid; begin mem_axi_awready <= 1; latched_waddr = mem_axi_awaddr; latched_waddr_en = 1; fast_waddr <= 1; end endtask task handle_axi_wvalid; begin mem_axi_wready <= 1; latched_wdata = mem_axi_wdata; latched_wstrb = mem_axi_wstrb; latched_wdata_en = 1; fast_wdata <= 1; end endtask task handle_axi_rvalid; begin if(verbose) $display("RD: ADDR=%08x DATA=%08x%s", latched_raddr, memory[latched_raddr >> 2], latched_rinsn ? " INSN" : ""); if (latched_raddr < 64*1024) begin mem_axi_rdata <= memory[latched_raddr >> 2]; mem_axi_rvalid <= 1; latched_raddr_en = 0; end else begin $display("OUT-OF-BOUNDS MEMORY READ FROM %08x", latched_raddr); $finish; end end endtask task handle_axi_bvalid; begin if (verbose) $display("WR: ADDR=%08x DATA=%08x STRB=%04b", latched_waddr, latched_wdata, latched_wstrb); if (latched_waddr < 64*1024) begin if (latched_wstrb[0]) memory[latched_waddr >> 2][ 7: 0] <= latched_wdata[ 7: 0]; if (latched_wstrb[1]) memory[latched_waddr >> 2][15: 8] <= latched_wdata[15: 8]; if (latched_wstrb[2]) memory[latched_waddr >> 2][23:16] <= latched_wdata[23:16]; if (latched_wstrb[3]) memory[latched_waddr >> 2][31:24] <= latched_wdata[31:24]; end else if (latched_waddr == 32'h1000_0000) begin if (verbose) begin if (32 <= latched_wdata && latched_wdata < 128) $display("OUT: '%c'", latched_wdata[7:0]); else $display("OUT: %3d", latched_wdata); end else begin $write("%c", latched_wdata[7:0]); `ifndef VERILATOR $fflush(); `endif end end else if (latched_waddr == 32'h2000_0000) begin if (latched_wdata == 123456789) tests_passed = 1; end else begin $display("OUT-OF-BOUNDS MEMORY WRITE TO %08x", latched_waddr); $finish; end mem_axi_bvalid <= 1; latched_waddr_en = 0; latched_wdata_en = 0; end endtask always @(negedge clk) begin if (mem_axi_arvalid && !(latched_raddr_en || fast_raddr) && async_axi_transaction[0]) handle_axi_arvalid; if (mem_axi_awvalid && !(latched_waddr_en || fast_waddr) && async_axi_transaction[1]) handle_axi_awvalid; if (mem_axi_wvalid && !(latched_wdata_en || fast_wdata) && async_axi_transaction[2]) handle_axi_wvalid; if (!mem_axi_rvalid && latched_raddr_en && async_axi_transaction[3]) handle_axi_rvalid; if (!mem_axi_bvalid && latched_waddr_en && latched_wdata_en && async_axi_transaction[4]) handle_axi_bvalid; end always @(posedge clk) begin mem_axi_arready <= 0; mem_axi_awready <= 0; mem_axi_wready <= 0; fast_raddr <= 0; fast_waddr <= 0; fast_wdata <= 0; if (mem_axi_rvalid && mem_axi_rready) begin mem_axi_rvalid <= 0; end if (mem_axi_bvalid && mem_axi_bready) begin mem_axi_bvalid <= 0; end if (mem_axi_arvalid && mem_axi_arready && !fast_raddr) begin latched_raddr = mem_axi_araddr; latched_rinsn = mem_axi_arprot[2]; latched_raddr_en = 1; end if (mem_axi_awvalid && mem_axi_awready && !fast_waddr) begin latched_waddr = mem_axi_awaddr; latched_waddr_en = 1; end if (mem_axi_wvalid && mem_axi_wready && !fast_wdata) begin latched_wdata = mem_axi_wdata; latched_wstrb = mem_axi_wstrb; latched_wdata_en = 1; end if (mem_axi_arvalid && !(latched_raddr_en || fast_raddr) && !delay_axi_transaction[0]) handle_axi_arvalid; if (mem_axi_awvalid && !(latched_waddr_en || fast_waddr) && !delay_axi_transaction[1]) handle_axi_awvalid; if (mem_axi_wvalid && !(latched_wdata_en || fast_wdata) && !delay_axi_transaction[2]) handle_axi_wvalid; if (!mem_axi_rvalid && latched_raddr_en && !delay_axi_transaction[3]) handle_axi_rvalid; if (!mem_axi_bvalid && latched_waddr_en && latched_wdata_en && !delay_axi_transaction[4]) handle_axi_bvalid; end endmodule