dagon/DueTimer.cpp

319 lines
7.1 KiB
C++

/*
DueTimer.cpp - Implementation of Timers defined on DueTimer.h
For instructions, go to https://github.com/ivanseidel/DueTimer
Created by Ivan Seidel Gomes, March, 2013.
Modified by Philipp Klaus, June 2013.
Thanks to stimmer (from Arduino forum), for coding the "timer soul" (Register stuff)
Released into the public domain.
*/
#include "DueTimer.h"
const DueTimer::Timer DueTimer::Timers[NUM_TIMERS] = {
{TC0,0,TC0_IRQn},
{TC0,1,TC1_IRQn},
{TC0,2,TC2_IRQn},
{TC1,0,TC3_IRQn},
{TC1,1,TC4_IRQn},
{TC1,2,TC5_IRQn},
#if NUM_TIMERS > 6
{TC2,0,TC6_IRQn},
{TC2,1,TC7_IRQn},
{TC2,2,TC8_IRQn},
#endif
};
// Fix for compatibility with Servo library
#ifdef USING_SERVO_LIB
// Set callbacks as used, allowing DueTimer::getAvailable() to work
void (*DueTimer::callbacks[NUM_TIMERS])() = {
(void (*)()) 1, // Timer 0 - Occupied
(void (*)()) 0, // Timer 1
(void (*)()) 1, // Timer 2 - Occupied
(void (*)()) 1, // Timer 3 - Occupied
(void (*)()) 1, // Timer 4 - Occupied
(void (*)()) 1, // Timer 5 - Occupied
#if NUM_TIMERS > 6
(void (*)()) 0, // Timer 6
(void (*)()) 0, // Timer 7
(void (*)()) 0 // Timer 8
#endif
};
#else
void (*DueTimer::callbacks[NUM_TIMERS])() = {};
#endif
#if NUM_TIMERS > 6
double DueTimer::_frequency[NUM_TIMERS] = {-1,-1,-1,-1,-1,-1,-1,-1,-1};
#else
double DueTimer::_frequency[NUM_TIMERS] = {-1,-1,-1,-1,-1,-1};
#endif
/*
Initializing all timers, so you can use them like this: Timer0.start();
*/
DueTimer Timer(0);
DueTimer Timer1(1);
// Fix for compatibility with Servo library
#ifndef USING_SERVO_LIB
DueTimer Timer0(0);
DueTimer Timer2(2);
DueTimer Timer3(3);
DueTimer Timer4(4);
DueTimer Timer5(5);
#endif
#if NUM_TIMERS > 6
DueTimer Timer6(6);
DueTimer Timer7(7);
DueTimer Timer8(8);
#endif
DueTimer::DueTimer(unsigned short _timer) : timer(_timer){
/*
The constructor of the class DueTimer
*/
}
DueTimer DueTimer::getAvailable(void){
/*
Return the first timer with no callback set
*/
for(int i = 0; i < NUM_TIMERS; i++){
if(!callbacks[i])
return DueTimer(i);
}
// Default, return Timer0;
return DueTimer(0);
}
DueTimer& DueTimer::attachInterrupt(void (*isr)()){
/*
Links the function passed as argument to the timer of the object
*/
callbacks[timer] = isr;
return *this;
}
DueTimer& DueTimer::detachInterrupt(void){
/*
Links the function passed as argument to the timer of the object
*/
stop(); // Stop the currently running timer
callbacks[timer] = NULL;
return *this;
}
DueTimer& DueTimer::start(double microseconds){
/*
Start the timer
If a period is set, then sets the period and start the timer
*/
if(microseconds > 0)
setPeriod(microseconds);
if(_frequency[timer] <= 0)
setFrequency(1);
NVIC_ClearPendingIRQ(Timers[timer].irq);
NVIC_EnableIRQ(Timers[timer].irq);
TC_Start(Timers[timer].tc, Timers[timer].channel);
return *this;
}
DueTimer& DueTimer::stop(void){
/*
Stop the timer
*/
NVIC_DisableIRQ(Timers[timer].irq);
TC_Stop(Timers[timer].tc, Timers[timer].channel);
return *this;
}
uint8_t DueTimer::bestClock(double frequency, uint32_t& retRC){
/*
Pick the best Clock, thanks to Ogle Basil Hall!
Timer Definition
TIMER_CLOCK1 MCK / 2
TIMER_CLOCK2 MCK / 8
TIMER_CLOCK3 MCK / 32
TIMER_CLOCK4 MCK /128
*/
const struct {
uint8_t flag;
uint8_t divisor;
} clockConfig[] = {
{ TC_CMR_TCCLKS_TIMER_CLOCK1, 2 },
{ TC_CMR_TCCLKS_TIMER_CLOCK2, 8 },
{ TC_CMR_TCCLKS_TIMER_CLOCK3, 32 },
{ TC_CMR_TCCLKS_TIMER_CLOCK4, 128 }
};
float ticks;
float error;
int clkId = 3;
int bestClock = 3;
float bestError = 9.999e99;
do
{
ticks = (float) SystemCoreClock / frequency / (float) clockConfig[clkId].divisor;
// error = abs(ticks - round(ticks));
error = clockConfig[clkId].divisor * abs(ticks - round(ticks)); // Error comparison needs scaling
if (error < bestError)
{
bestClock = clkId;
bestError = error;
}
} while (clkId-- > 0);
ticks = (float) SystemCoreClock / frequency / (float) clockConfig[bestClock].divisor;
retRC = (uint32_t) round(ticks);
return clockConfig[bestClock].flag;
}
DueTimer& DueTimer::setFrequency(double frequency){
/*
Set the timer frequency (in Hz)
*/
// Prevent negative frequencies
if(frequency <= 0) { frequency = 1; }
// Remember the frequency — see below how the exact frequency is reported instead
//_frequency[timer] = frequency;
// Get current timer configuration
Timer t = Timers[timer];
uint32_t rc = 0;
uint8_t clock;
// Tell the Power Management Controller to disable
// the write protection of the (Timer/Counter) registers:
pmc_set_writeprotect(false);
// Enable clock for the timer
pmc_enable_periph_clk((uint32_t)t.irq);
// Find the best clock for the wanted frequency
clock = bestClock(frequency, rc);
switch (clock) {
case TC_CMR_TCCLKS_TIMER_CLOCK1:
_frequency[timer] = (double)SystemCoreClock / 2.0 / (double)rc;
break;
case TC_CMR_TCCLKS_TIMER_CLOCK2:
_frequency[timer] = (double)SystemCoreClock / 8.0 / (double)rc;
break;
case TC_CMR_TCCLKS_TIMER_CLOCK3:
_frequency[timer] = (double)SystemCoreClock / 32.0 / (double)rc;
break;
default: // TC_CMR_TCCLKS_TIMER_CLOCK4
_frequency[timer] = (double)SystemCoreClock / 128.0 / (double)rc;
break;
}
// Set up the Timer in waveform mode which creates a PWM
// in UP mode with automatic trigger on RC Compare
// and sets it up with the determined internal clock as clock input.
TC_Configure(t.tc, t.channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | clock);
// Reset counter and fire interrupt when RC value is matched:
TC_SetRC(t.tc, t.channel, rc);
// Enable the RC Compare Interrupt...
t.tc->TC_CHANNEL[t.channel].TC_IER=TC_IER_CPCS;
// ... and disable all others.
t.tc->TC_CHANNEL[t.channel].TC_IDR=~TC_IER_CPCS;
return *this;
}
DueTimer& DueTimer::setPeriod(double microseconds){
/*
Set the period of the timer (in microseconds)
*/
// Convert period in microseconds to frequency in Hz
double frequency = 1000000.0 / microseconds;
setFrequency(frequency);
return *this;
}
double DueTimer::getFrequency(void) const {
/*
Get current time frequency
*/
return _frequency[timer];
}
double DueTimer::getPeriod(void) const {
/*
Get current time period
*/
return 1.0/getFrequency()*1000000;
}
/*
Implementation of the timer callbacks defined in
arduino-1.5.2/hardware/arduino/sam/system/CMSIS/Device/ATMEL/sam3xa/include/sam3x8e.h
*/
// Fix for compatibility with Servo library
#ifndef USING_SERVO_LIB
void TC0_Handler(void){
TC_GetStatus(TC0, 0);
DueTimer::callbacks[0]();
}
#endif
void TC1_Handler(void){
TC_GetStatus(TC0, 1);
DueTimer::callbacks[1]();
}
// Fix for compatibility with Servo library
#ifndef USING_SERVO_LIB
void TC2_Handler(void){
TC_GetStatus(TC0, 2);
DueTimer::callbacks[2]();
}
void TC3_Handler(void){
TC_GetStatus(TC1, 0);
DueTimer::callbacks[3]();
}
void TC4_Handler(void){
TC_GetStatus(TC1, 1);
DueTimer::callbacks[4]();
}
void TC5_Handler(void){
TC_GetStatus(TC1, 2);
DueTimer::callbacks[5]();
}
#endif
#if NUM_TIMERS > 6
void TC6_Handler(void){
TC_GetStatus(TC2, 0);
DueTimer::callbacks[6]();
}
void TC7_Handler(void){
TC_GetStatus(TC2, 1);
DueTimer::callbacks[7]();
}
void TC8_Handler(void){
TC_GetStatus(TC2, 2);
DueTimer::callbacks[8]();
}
#endif