2023-06-27 17:50:55 -04:00
|
|
|
"""
|
|
|
|
Copyright 2023 (C) Peter McGoron
|
|
|
|
|
|
|
|
This file is a part of Upsilon, a free and open source software project.
|
|
|
|
For license terms, refer to the files in `doc/copying` in the Upsilon
|
|
|
|
source distribution.
|
|
|
|
"""
|
|
|
|
from math import log10, floor
|
|
|
|
from decimal import *
|
|
|
|
|
|
|
|
def sign_extend(value, bits):
|
|
|
|
"""
|
|
|
|
Interpret ``value`` as a twos-complement integer of ``bits`` length.
|
|
|
|
|
|
|
|
:param value: Twos-complement integer with finite bit width.
|
|
|
|
:param bits: Bit length of ``value``.
|
|
|
|
:return: ``value`` converted to a Python integer.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Check the sign bit of the integer.
|
|
|
|
is_signed = (value >> (bits - 1)) & 1 == 1
|
|
|
|
# If not signed, just return the integer.
|
|
|
|
if not is_signed:
|
|
|
|
return value
|
|
|
|
# Otherwise,
|
|
|
|
# 1. Do an explicit twos-complement negation
|
|
|
|
# 2. Mask all the non-sign bits
|
|
|
|
# This returns the positive value as a standard Python integer.
|
|
|
|
# Then the function negates the positive integer to get the negative
|
|
|
|
# one back.
|
|
|
|
return -((~value + 1) & ((1 << (bits - 1)) - 1))
|
|
|
|
|
|
|
|
def connect_execute(f, *arg):
|
|
|
|
from pssh.clients import SSHClient # require parallel-ssh
|
|
|
|
|
|
|
|
print('connecting')
|
2023-08-08 23:59:34 -04:00
|
|
|
client = SSHClient('192.168.2.50', user='root', pkey='~/.ssh/upsilon_key')
|
2023-06-27 17:50:55 -04:00
|
|
|
# Upload the script.
|
|
|
|
print('connected')
|
|
|
|
client.scp_send(f'../linux/{f}', '/root/')
|
|
|
|
# Run the script.
|
|
|
|
args = f'micropython {f} {" ".join([str(s) for s in arg])}'
|
|
|
|
print(f"running {args}")
|
|
|
|
return client.run_command(args)
|
|
|
|
|
|
|
|
# Functions for converting to and from fixed point in Python.
|
|
|
|
|
|
|
|
def string_to_fixed_point(s, fracnum):
|
|
|
|
l = s.split('.')
|
|
|
|
if len(l) == 1:
|
|
|
|
return int(s) << fracnum
|
|
|
|
elif len(l) != 2:
|
|
|
|
return None
|
|
|
|
|
|
|
|
dec = 10
|
|
|
|
frac = 0
|
|
|
|
|
|
|
|
frac_decimal = Decimal(f'0.{l[1]}')
|
|
|
|
# get the smallest power of ten higher then frac_decimal
|
|
|
|
frac = 0
|
|
|
|
|
|
|
|
# Example:
|
|
|
|
# 0.4567 = 0.abcdefgh...
|
|
|
|
# where abcdefgh are binary digits.
|
|
|
|
# multiply both sides by two:
|
|
|
|
# 0.9134 = a.bcdefgh ...
|
|
|
|
# therefore a = 0. Then remove the most significant digit.
|
|
|
|
# Then multiply by 2 again. Then
|
|
|
|
# 1.8268 = b.cdefgh ...
|
|
|
|
# therefore b = 1. Then take 8268, and so on.
|
|
|
|
for i in range(0,fracnum):
|
|
|
|
frac_decimal = frac_decimal * 2
|
|
|
|
div = floor(frac_decimal)
|
|
|
|
|
|
|
|
frac = div | (frac << 1)
|
|
|
|
frac_decimal = frac_decimal - div
|
|
|
|
|
|
|
|
whole = int(l[0])
|
|
|
|
if whole < 0:
|
|
|
|
return -((-whole) << fracnum | frac)
|
|
|
|
else:
|
|
|
|
return whole << fracnum | frac
|
|
|
|
|
|
|
|
def fixed_point_to_string(fxp, fracnum):
|
|
|
|
whole = str(fxp >> fracnum)
|
|
|
|
mask = (1 << fracnum) - 1
|
|
|
|
fracbit = fxp & mask
|
|
|
|
n = 1
|
|
|
|
frac = ""
|
|
|
|
|
|
|
|
if fracbit == 0:
|
|
|
|
return whole
|
|
|
|
|
|
|
|
# The same method can be applied backwards.
|
|
|
|
# 0.1110101 = 0.abcdefgh ...
|
|
|
|
# where abcdefgh... are decimal digits. Then multiply by 10 to
|
|
|
|
# get
|
|
|
|
# 1001.0010010 = a.bcdefgh ...
|
|
|
|
# therefore a = 0b1001 = 9. Then use a bitmask to get
|
|
|
|
# 0.0010010 = 0.bcdefgh ...
|
|
|
|
# etc.
|
|
|
|
|
|
|
|
for i in range(0, fracnum):
|
|
|
|
fracbit = fracbit * 10
|
|
|
|
frac = frac + str(fracbit >> fracnum)
|
|
|
|
fracbit = fracbit & mask
|
|
|
|
return whole + "." + frac
|