autoapproach: add bram and test

This commit is contained in:
Peter McGoron 2023-01-23 04:43:51 +00:00
parent 7ceaa730d9
commit 034f76da41
5 changed files with 334 additions and 13 deletions

View File

@ -0,0 +1,19 @@
# Makefile for tests and hardware verification.
.PHONY: test clean
test: obj_dir/Vbram_interface
bram_SRC= bram_interface.v bram_interface_sim.cpp
obj_dir/Vbram_interface.mk: $(bram_SRC)
verilator --cc --exe -Wall --trace --trace-fst \
-CFLAGS -DWORD_AMNT=2048 \
-CFLAGS -DRAM_WID=32 \
$(bram_SRC)
obj_dir/Vbram_interface: obj_dir/Vbram_interface.mk
cd obj_dir && make -f Vbram_interface.mk
./obj_dir/Vbram_interface
clean:
rm -rf obj_dir/

View File

@ -1,9 +1,12 @@
/* Autoapproach module. This module applies a waveform located in memory
* (and copied into Block RAM). This waveform is arbitrary but of fixed
* length.
* time in between sent sample, total period 10-50ms
*/
module autoapproach #(
parameter DAC_WID = 24
parameter DAC_WID = 24,
parameter DAC_DATA_WID = 20,
parameter ADC_WID = 24
) (
input clk,
input arm,
@ -11,13 +14,13 @@ module autoapproach #(
output detected,
input polarity,
input [`ADC_WID-1:0] setpoint,
input [ADC_WID-1:0] setpoint,
/* BRAM memory interface. Each pulse returns the next value in
* the sequence, and also informs the module if the sequence
* is completed. The kernel interacts primarily with this interface.
*/
input [`DAC_DATA_WID-1:0] word,
input [DAC_DATA_WID-1:0] word,
output word_next,
input word_last,
input word_ok,
@ -26,12 +29,12 @@ module autoapproach #(
/* DAC wires. */
input dac_finished,
output dac_arm,
input [`DAC_WID-1:0] dac_in,
output [`DAC_WID-1:0] dac_out,
input [DAC_WID-1:0] dac_in,
output [DAC_WID-1:0] dac_out,
input adc_finished,
output adc_arm,
input [`ADC_WID-1:0] measurement
input [ADC_WID-1:0] measurement
);
@ -41,7 +44,6 @@ localparam WAIT_ON_DAC = 2;
localparam WAIT_ON_DETECTION = 3;
localparam DETECTED = 4;
reg [2:0] state = WAIT_ON_ARM;
reg save_word_last = 0;
always @ (posedge clk) case (state)
WAIT_ON_ARM: if (arm) begin
@ -55,25 +57,25 @@ end
RECV_WORD: if (word_ok) begin
dac_out <= {4'b0001, word};
dac_arm <= 1;
save_word_last <= word_last;
word_next <= 0;
state <= WAIT_ON_DAC;
end
WAIT_ON_DAC: if (dac_finished) begin
dac_arm <= 0;
if (save_word_last) begin
/* Was the last word read *the* last word? */
if (word_last) begin
state <= WAIT_ON_DETECTION;
adc_arm <= 0;
adc_arm <= 1;
end else begin
state <= WAIT_ON_ARM;
end
endcase
WAIT_ON_DETECTION: if (adc_finished) begin
if (polarity && measurement >= setpt) begin
if ((polarity && measurement >= setpt) ||
(!polarity && measurement <= setpt)) begin
state <= DETECTED;
detected <= 1;
end else if (measurement <= setpt) begin
state <= WAIT_ON_ARM;
end
end
DETECTED: if (!arm) begin

View File

@ -0,0 +1,112 @@
module bram_interface #(
parameter WORD_WID = 24,
parameter WORD_AMNT_WID = 11,
/* This is the last INDEX, not the LENGTH of the word array. */
parameter [WORD_AMNT_WID-1:0] WORD_AMNT = 2047,
parameter RAM_WID = 32,
parameter RAM_WORD_WID = 16,
parameter RAM_WORD_INCR = 2
) (
input clk,
/* autoapproach interface */
output reg [WORD_WID-1:0] word,
input word_next,
output reg word_last,
output reg word_ok,
input word_rst,
/* User interface */
input refresh_start,
input [RAM_WID-1:0] start_addr,
output reg refresh_finished,
/* RAM interface */
output reg [RAM_WID-1:0] ram_dma_addr,
input [RAM_WORD_WID-1:0] ram_word,
output reg ram_read,
input ram_valid
);
initial word = 0;
initial word_last = 0;
initial word_ok = 0;
initial refresh_finished = 0;
initial ram_dma_addr = 0;
initial ram_read = 0;
reg [WORD_WID-1:0] backing_buffer [WORD_AMNT:0];
localparam WAIT_ON_REFRESH = 0;
localparam READ_LOW_WORD = 1;
localparam READ_HIGH_WORD = 2;
localparam WAIT_ON_REFRESH_DEASSERT = 3;
reg [1:0] refresh_state = 0;
reg [WORD_AMNT_WID-1:0] word_cntr_refresh = 0;
always @ (posedge clk) case (refresh_state)
WAIT_ON_REFRESH: if (refresh_start) begin
ram_dma_addr <= start_addr;
refresh_state <= READ_LOW_WORD;
word_cntr_refresh <= 0;
end
READ_LOW_WORD: if (!ram_read) begin
ram_read <= 1;
end else if (ram_valid) begin
refresh_state <= READ_HIGH_WORD;
ram_dma_addr <= ram_dma_addr + RAM_WORD_INCR;
ram_read <= 0;
backing_buffer[word_cntr_refresh][RAM_WORD_WID-1:0] <= ram_word;
end
READ_HIGH_WORD: if (!ram_read) begin
ram_read <= 1;
end else if (ram_valid) begin
ram_dma_addr <= ram_dma_addr + RAM_WORD_INCR;
ram_read <= 0;
word_cntr_refresh <= word_cntr_refresh + 1;
backing_buffer[word_cntr_refresh][WORD_WID-1:RAM_WORD_WID] <= ram_word[WORD_WID-RAM_WORD_WID-1:0];
if (word_cntr_refresh == WORD_AMNT)
refresh_state <= WAIT_ON_REFRESH_DEASSERT;
else
refresh_state <= READ_LOW_WORD;
end
WAIT_ON_REFRESH_DEASSERT: begin
if (!refresh_start) begin
refresh_finished <= 0;
refresh_state <= WAIT_ON_REFRESH;
end else begin
refresh_finished <= 1;
end
end
endcase
reg [WORD_AMNT_WID-1:0] auto_cntr = 0;
always @ (posedge clk) if (word_rst) begin
auto_cntr <= 0;
end else if (word_next && !word_ok) begin
if (refresh_state == WAIT_ON_REFRESH) begin
word <= backing_buffer[auto_cntr];
word_ok <= 1;
if (auto_cntr == WORD_AMNT) begin
auto_cntr <= 0;
word_last <= 1;
end else begin
auto_cntr <= auto_cntr + 1;
word_last <= 0;
end
end
end else if (!word_next && word_ok) begin
word_ok <= 0;
end
`ifdef VERILATOR
initial begin
$dumpfile("bram.fst");
$dumpvars;
end
`endif
endmodule

View File

@ -0,0 +1,112 @@
#include <memory>
#include <cassert>
#include <limits>
#include <cstdint>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <random>
#include <unistd.h>
#include <verilated.h>
#include "Vbram_interface.h"
using ModType = Vbram_interface;
using V = uint32_t;
ModType *mod;
constexpr uint32_t start_addr = 0x12340;
// #define BAILOUT_NUMBER 100000
#include "../boilerplate.cpp"
std::array<uint32_t, WORD_AMNT> ram_refresh_data;
static void handle_ram() {
static int timer = 0;
constexpr auto TIMER_MAX = 10;
bool flip_flop = false;
if (mod->ram_read) {
timer++;
if (timer == TIMER_MAX) {
mod->ram_valid = 1;
if (mod->ram_dma_addr < start_addr ||
mod->ram_dma_addr >= start_addr + WORD_AMNT*4) {
printf("bad address %x\n", mod->ram_dma_addr);
exit(1);
}
my_assert(mod->ram_dma_addr >= start_addr, "left oob access %x", mod->ram_dma_addr);
my_assert(mod->ram_dma_addr < start_addr + WORD_AMNT*4, "right oob access %x", mod->ram_dma_addr);
my_assert(mod->ram_dma_addr % 2 == 0, "unaligned access %x", mod->ram_dma_addr);
if (mod->ram_dma_addr % 4 == 0) {
mod->ram_word = ram_refresh_data[(mod->ram_dma_addr - start_addr)/4]& 0xFFFF;
} else {
mod->ram_word = ram_refresh_data[(mod->ram_dma_addr - start_addr)/4] >> 16;
}
}
} else {
mod->ram_valid = 0;
timer = 0;
}
}
static void handle_read_aa(size_t &i) {
if (mod->word_ok) {
uint32_t val = sign_extend(mod->word, 20);
mod->word_next = 0;
my_assert(val == ram_refresh_data[i], "received value %x (%zu) != %x", i, val, ram_refresh_data[i]);
i++;
} else if (!mod->word_next) {
mod->word_next = 1;
}
}
/* Test reading the entire array twice. */
static void test_aa_read_1() {
size_t ind = 0;
mod->word_next = 1;
run_clock();
while (!mod->word_last || (mod->word_last && mod->word_next)) {
handle_read_aa(ind);
run_clock();
}
my_assert(ind == WORD_AMNT, "read value %zu != %d\n", ind, WORD_AMNT);
mod->word_next = 1;
run_clock();
ind = 0;
while (!mod->word_last || (mod->word_last && mod->word_next)) {
handle_read_aa(ind);
run_clock();
}
my_assert(ind == WORD_AMNT, "second read value %zu != %d\n", ind, WORD_AMNT);
}
int main(int argc, char **argv) {
init(argc, argv);
for (size_t i = 0; i < RAM_WID; i++) {
ram_refresh_data[i] = mask_extend(rand(), 20);
}
mod->refresh_start = 1;
mod->start_addr = start_addr;
run_clock();
while (!mod->refresh_finished) {
handle_ram();
run_clock();
}
mod->refresh_start = 0;
run_clock();
test_aa_read_1();
printf("ok\n");
return 0;
}

View File

@ -0,0 +1,76 @@
#include <cstdio>
uint32_t main_time = 0;
double sc_time_stamp() {
return main_time;
}
static void _assert(const char *file, int line, const char *exp, bool ev, const char *fmt, ...) {
if (!ev) {
va_list va;
va_start(va, fmt);
fprintf(stderr, "%s:%d: assertion failed: %s\n", file, line, exp);
vfprintf(stderr, fmt, va);
fprintf(stderr, "\n");
va_end(va);
exit(1);
}
}
#define STRINGIFY(s) #s
/* ,##__VA_ARGS__ is a GNU C extension */
#define my_assert(e, fmt, ...) _assert(__FILE__, __LINE__, STRINGIFY(e), (e), fmt ,##__VA_ARGS__)
#ifdef BAILOUT_NUMBER
# define BAILOUT(...) __VA_ARGS__
#else
# define BAILOUT(...)
#endif
static void run_clock() {
BAILOUT(static int bailout;)
for (int i = 0; i < 2; i++) {
mod->clk = !mod->clk;
mod->eval();
main_time++;
BAILOUT(bailout++;)
}
BAILOUT(if (bailout >= BAILOUT_NUMBER) exit(1);)
}
#undef BAILOUT
static void cleanup_exit() {
mod->final();
delete mod;
}
static void init(int argc, char **argv) {
Verilated::commandArgs(argc, argv);
Verilated::traceEverOn(true);
mod = new ModType;
mod->clk = 0;
atexit(cleanup_exit);
char *seed = getenv("RANDOM_SEED");
if (seed) {
unsigned long i = strtoul(seed, NULL, 10);
srand((unsigned int)i);
}
}
static V sign_extend(V x, unsigned len) {
/* if high bit is 1 */
if (x >> (len - 1) & 1) {
V mask = (1 << len) - 1;
return ~mask | x;
} else {
return x;
}
}
#define MASK(x,v) ((x) & ((1 << (v)) - 1))
static V mask_extend(V x, unsigned len) {
return sign_extend(MASK(x,len), len);
}