`include control_loop_cmds.vh `define ERR_WID (ADC_WID + 1) module control_loop #( parameter ADC_WID = 18, /* Code assumes DAC_WID > ADC_WID. If/when this is not the * case, truncation code must be changed. */ parameter DAC_WID = 24, /* Analog Devices DACs have a register code in the upper 4 bits. * The data follows it. There may be some padding, but the length * of a message is always 24 bits. */ parameter DAC_DATA_WID = 20, parameter CONSTS_WHOLE = 21, parameter CONSTS_FRAC = 43, `define CONSTS_WID (CONSTS_WHOLE + CONSTS_FRAC) parameter DELAY_WID = 16, /* [ERR_WID_SIZ-1:0] must be able to store * ERR_WID (= ADC_WID + 1). */ parameter ERR_WID_SIZ = 6, `define DATA_WID `CONSTS_WID `define E_WID (ADC_WID + 1) parameter READ_DAC_DELAY = 5, parameter CYCLE_COUNT_WID = 18 ) ( input clk, input signed [ADC_WID-1:0] measured_value, output adc_conv, output adc_arm, input adc_finished, output reg signed [DAC_WID-1:0] to_dac, input signed [DAC_WID-1:0] from_dac, output dac_ss, output dac_arm, input dac_finished, /* Hacky ad-hoc read-write interface. */ input reg [CONTROL_LOOP_CMD_WIDTH-1:0] cmd, input reg [DATA_WIDTH-1:0] word_in, output reg [DATA_WIDTH-1:0] word_out, input start_cmd, output reg finish_cmd ); /* The loop variables can be modified on the fly. Each * modification takes effect on the next loop cycle. * When a caller modifies a variable, the modified * variable is saved in [name]_buffer and loaded at CYCLE_START. */ reg signed [ADC_WID-1:0] setpt = 0; reg signed [ADC_WID-1:0] setpt_buffer = 0; reg signed [`CONSTS_WID-1:0] cl_I_reg = 0; reg signed [`CONSTS_WID-1:0] cl_I_reg_buffer = 0; reg signed [`CONSTS_WID-1:0] cl_p_reg = 0; reg signed [`CONSTS_WID-1:0] cl_p_reg_buffer = 0; reg [DELAY_WID-1:0] dely = 0; reg [DELAY_WID-1:0] dely_buffer = 0; reg running = 0; reg signed [DAC_DATA_WID-1:0] stored_dac_val = 0; reg [CYCLE_COUNT_WID-1:0] last_timer = 0; reg [CYCLE_COUNT_WID-1:0] debug_timer = 0; reg [`CONSTS_WID-1:0] adjval_prev = 0; /* Misc. registers for PI calculations */ reg signed [`E_WID-1:0] err_prev = 0; reg signed [`E_WID-1:0] e_cur = 0; reg signed [`CONSTS_WID-1:0] adj_val = 0; reg arm_math = 0; reg math_finished = 0; control_loop_math #( .CONSTS_WHOLE(CONSTS_WHOLE), .CONSTS_FRAC(CONSTS_FRAC), .CONSTS_SIZ(CONSTS_SIZ), .ADC_WID(ADC_WID), .CYCLE_COUNT_WID(CYCLE_COUNT_WID) ) math ( .clk(clk), .arm(arm_math), .finished(math_finished), .setpt(setpt), .measured(measured_value), .cl_P(cl_p_reg), .cl_I(cl_I_reg), .cycles(last_timer), .e_prev(err_prev), .adjval_prev(adjval_prev), .e_cur(e_cur), .adj_val(adj_val) ); /****** State machine * ┏━━━━━━━┓ * ┃ ↓ * ┗←━INITIATE_READ_FROM_DAC━━←━━━━┓ * ↓ ┃ * WAIT_FOR_DAC_READ ┃ * ↓ ┃ * WAIT_FOR_DAC_RESPONSE ┃ (on reset) * ↓ (when value is read) ┃ * ┏━━CYCLE_START━━→━━━━━━━━━━━━━━━┛ * ↑ ↓ (wait time delay) * ┃ WAIT_ON_ADC * ┃ ↓ * ┃ WAIT_ON_MUL * ┃ ↓ * ┃ WAIT_ON_DAC * ┃ ↓ * ┗━━━━━━━┛ ****** Outline * There are two systems: the read-write interface and the loop. * The read-write interface allows another module (i.e. the CPU) * to access and change constants. When a constant is changed the * loop must reset the values that are preserved between loops * (previous adjustment and previous delay). * * When the loop starts it must find the current value from the * DAC and write to it. The value from the DAC is then adjusted * with the output of the control loop. Afterwards it does not * need to query the DAC for the updated value since it was the one * that updated the value in the first place. */ localparam CYCLE_START = 0; localparam WAIT_ON_ADC = 1; localparam WAIT_ON_MATH = 2; localparam INIT_READ_FROM_DAC = 3; localparam WAIT_FOR_DAC_READ = 4; localparam WAIT_FOR_DAC_RESPONSE = 5; localparam STATESIZ = 3; reg [STATESIZ-1:0] state = CYCLE_START; reg [DELAY_WID-1:0] timer = 0; /**** Timing. ****/ always @ (posedge clk) begin if (state == CYCLE_START) begin counting_timer <= 1; last_timer <= counting_timer; end else begin counting_timer <= counting_timer + 1; end end /**** Read-Write control interface. * Make less expensive comparison by adding dirty register. Dirty register * is written to for writes that change the control loop, but writes will * not be processed when the loop is checking the dirty bit, avoiding * race condition. */ always @ (posedge clk) begin if (start_cmd && !finish_cmd) begin case (cmd) CONTROL_LOOP_NOOP: CONTROL_LOOP_NOOP | CONTROL_LOOP_WRITE_BIT: finish_cmd <= 1; CONTROL_LOOP_STATUS: begin word_out[DATA_WID-1:1] <= 0; word_out[0] <= running; finish_cmd <= 1; end CONTROL_LOOP_STATUS | CONTROL_LOOP_WRITE_BIT: running <= word_in[0]; finish_cmd <= 1; CONTROL_LOOP_SETPT: begin word_out[DATA_WID-1:ADC_WID] <= 0; word_out[ADC_WID-1:0] <= setpt; finish_cmd <= 1; end CONTROL_LOOP_SETPT | CONTROL_LOOP_WRITE_BIT: setpt_buffer <= word_in[ADC_WID-1:0]; finish_cmd <= 1; CONTROL_LOOP_P: begin word_out <= cl_p_reg; finish_cmd <= 1; end CONTROL_LOOP_P | CONTROL_LOOP_WRITE_BIT: begin cl_p_reg_buffer <= word_in; finish_cmd <= 1; end CONTROL_LOOP_ALPHA: begin word_out <= cl_alpha_reg; finish_cmd <= 1; end CONTROL_LOOP_ALPHA | CONTROL_LOOP_WRITE_BIT: begin cl_alpha_reg_buffer <= word_in; finish_cmd <= 1; end CONTROL_LOOP_DELAY: begin word_out[DATA_WID-1:DELAY_WID] <= 0; word_out[DELAY_WID-1:0] <= dely; finish_cmd <= 1; end CONTROL_LOOP_DELAY | CONTROL_LOOP_WRITE_BIT: begin dely_buffer <= word_in[DELAY_WID-1:0]; finish_cmd <= 1; end CONTROL_LOOP_ERR: begin word_out[DATA_WID-1:ERR_WID] <= 0; word_out[ERR_WID-1:0] <= err_prev; finish_cmd <= 1; end CONTROL_LOOP_Z: begin word_out[DATA_WID-1:DAC_DATA_WID] <= 0; word_out[DAC_DATA_WID-1:0] <= stored_dac_val; finish_cmd <= 1; end CONTROL_LOOP_CYCLES: begin word_out[DATA_WID-1:CYCLE_COUNT_WID] <= 0; word_out[CYCLE_COUNT_WID-1:0] <= last_timer; finish_cmd <= 0; end end else if (!start_cmd) begin finish_cmd <= 0; end end /* This is not a race condition as long as two variables are * not being assigned at the same time. Instead, the lower * assign block will use the older values (i.e. the upper assign * block only takes effect next clock cycle). */ always @ (posedge clk) begin case (state) INIT_READ_FROM_DAC: begin if (running) begin /* 1001[0....] is read from dac register */ to_dac <= b'1001 << DAC_DATA_WID; dac_ss <= 1; dac_arm <= 1; state <= WAIT_FOR_DAC_READ; end end WAIT_FOR_DAC_READ: begin if (dac_finished) begin state <= WAIT_FOR_DAC_RESPONSE; dac_ss <= 0; dac_arm <= 0; timer <= 1; end end WAIT_FOR_DAC_RESPONSE: begin if (timer < READ_DAC_DELAY && timer != 0) begin timer <= timer + 1; end else if (timer == READ_DAC_DELAY) begin dac_ss <= 1; dac_arm <= 1; to_dac <= 0; timer <= 0; end else if (dac_finished) begin state <= CYCLE_START; dac_ss <= 0; dac_arm <= 0; stored_dac_val <= from_dac; end end CYCLE_START: begin if (!running) begin state <= INIT_READ_FROM_DAC; end else if (timer < dely) begin timer <= timer + 1; end else begin /* On change of constants, previous values are invalidated. */ if (setpt != setpt_buffer || cl_alpha_reg != cl_alpha_reg_buffer || cl_p_reg != cl_p_reg_buffer) begin setpt <= setpt_buffer; dely <= dely_buf; cl_alpha_reg <= cl_alpha_reg_buffer; cl_p_reg <= cl_p_reg_buffer; adj_prev <= 0; err_prev <= 0; end state <= WAIT_ON_ADC; timer <= 0; adc_arm <= 1; adc_conv <= 1; end end WAIT_ON_ADC: if (adc_finished) begin adc_arm <= 0; adc_conv <= 0; arm_math <= 1; state <= WAIT_ON_MATH; end WAIT_ON_MATH: if (math_finished) begin arm_math <= 0; dac_arm <= 1; dac_ss <= 1; stored_dac_val <= (stored_dac_val + dac_adj_val); to_dac <= b'0001 << DAC_DATA_WID | (dac_adj_val + stored_dac_val); state <= WAIT_ON_DAC; end WAIT_ON_DAC: if (dac_finished) begin state <= CYCLE_START; dac_ss <= 0; dac_arm <= 0; err_prev <= err_cur; adj_old <= newadj; end end end endmodule