m4_changequote(`⟨', `⟩') m4_changecom(⟨/*⟩, ⟨*/⟩) m4_define(generate_macro, ⟨m4_define(M4_$1, $2)⟩) /* Copyright 2023 (C) Peter McGoron * This file is a part of Upsilon, a free and open source software project. * For license terms, refer to the files in `doc/copying` in the Upsilon * source distribution. */ module control_loop #( parameter ADC_WID = 18, parameter ADC_WID_SIZ = 5, parameter ADC_CYCLE_HALF_WAIT = 5, parameter ADC_CYCLE_HALF_WAIT_SIZ = 3, parameter ADC_POLARITY = 1, parameter ADC_PHASE = 0, /* The ADC takes maximum 527 ns to capture a value. * The clock ticks at 10 ns. Change for different clocks! */ parameter ADC_CONV_WAIT = 53, parameter ADC_CONV_WAIT_SIZ = 6, parameter CONSTS_WHOLE = 21, parameter CONSTS_FRAC = 43, parameter CONSTS_SIZ = 7, m4_define(M4_CONSTS_WID, (CONSTS_WHOLE + CONSTS_FRAC)) parameter DELAY_WID = 16, parameter READ_DAC_DELAY = 5, parameter CYCLE_COUNT_WID = 18, parameter DAC_WID = 24, /* Analog Devices DACs have a register code in the upper 4 bits. * The data follows it. There may be some padding, but the length * of a message is always 24 bits. */ parameter DAC_WID_SIZ = 5, parameter DAC_DATA_WID = 20, m4_define(M4_E_WID, (DAC_DATA_WID + 1)) parameter DAC_POLARITY = 0, parameter DAC_PHASE = 1, parameter DAC_CYCLE_HALF_WAIT = 10, parameter DAC_CYCLE_HALF_WAIT_SIZ = 4, parameter DAC_SS_WAIT = 5, parameter DAC_SS_WAIT_SIZ = 3 ) ( input clk, input rst_L, output dac_mosi, input dac_miso, output dac_ss_L, output dac_sck, input adc_miso, output adc_conv_L, output adc_sck, output in_loop, input assert_change, output reg change_made, input run_loop_in, input [ADC_WID-1:0] setpt_in, input [M4_CONSTS_WID-1:0] P_in, input [M4_CONSTS_WID-1:0] I_in, input [DELAY_WID-1:0] delay_in, output [CYCLE_COUNT_WID-1:0] cycle_count, output [DAC_DATA_WID-1:0] z_pos, output [ADC_WID-1:0] z_measured ); /************ ADC and DAC modules ***************/ reg dac_arm; reg dac_finished; wire dac_ready_to_arm_unused; reg [DAC_WID-1:0] to_dac; /* verilator lint_off UNUSED */ wire [DAC_WID-1:0] from_dac; /* verilator lint_on UNUSED */ spi_master_ss #( .WID(DAC_WID), .WID_LEN(DAC_WID_SIZ), .CYCLE_HALF_WAIT(DAC_CYCLE_HALF_WAIT), .TIMER_LEN(DAC_CYCLE_HALF_WAIT_SIZ), .POLARITY(DAC_POLARITY), .PHASE(DAC_PHASE), .SS_WAIT(DAC_SS_WAIT), .SS_WAIT_TIMER_LEN(DAC_SS_WAIT_SIZ) ) dac_master ( .clk(clk), .rst_L(rst_L), .ready_to_arm(dac_ready_to_arm_unused), .mosi(dac_mosi), .miso(dac_miso), .sck_wire(dac_sck), .ss_L(dac_ss_L), .finished(dac_finished), .arm(dac_arm), .from_slave(from_dac), .to_slave(to_dac) ); reg adc_arm; reg adc_finished; wire [ADC_WID-1:0] measured_value; assign z_measured = measured_value; wire adc_ready_to_arm_unused; localparam [3-1:0] DAC_REGISTER = 3'b001; spi_master_ss_no_write #( .WID(ADC_WID), .WID_LEN(ADC_WID_SIZ), .CYCLE_HALF_WAIT(ADC_CYCLE_HALF_WAIT), .TIMER_LEN(ADC_CYCLE_HALF_WAIT_SIZ), .POLARITY(ADC_POLARITY), .PHASE(ADC_PHASE), .SS_WAIT(ADC_CONV_WAIT), .SS_WAIT_TIMER_LEN(ADC_CONV_WAIT_SIZ) ) adc_master ( .clk(clk), .ready_to_arm(adc_ready_to_arm_unused), .rst_L(rst_L), .arm(adc_arm), .from_slave(measured_value), .miso(adc_miso), .sck_wire(adc_sck), .ss_L(adc_conv_L), .finished(adc_finished) ); /***************** PI Parameters ***************** * Parameters can be adjusted on the fly by the user. The modifications * cannot happen during a calculation, but calculations occur in a matter * of milliseconds. Instead, modifications are checked and applied at the * start of each iteration (CYCLE_START). */ /* Setpoint: what should the ADC read */ reg signed [ADC_WID-1:0] setpt = 0; /* Integral parameter */ reg signed [M4_CONSTS_WID-1:0] cl_I_reg = 0; /* Proportional parameter */ reg signed [M4_CONSTS_WID-1:0] cl_p_reg = 0; /* Delay parameter (to make the loop run slower) */ reg [DELAY_WID-1:0] dely = 0; /************ Loop Control and Internal Parameters *************/ reg running = 0; reg signed [DAC_DATA_WID-1:0] stored_dac_val = 0; assign z_pos = stored_dac_val; reg [CYCLE_COUNT_WID-1:0] last_timer = 0; assign cycle_count = last_timer; reg [CYCLE_COUNT_WID-1:0] counting_timer = 0; reg [M4_CONSTS_WID-1:0] adjval_prev = 0; reg signed [M4_E_WID-1:0] err_prev = 0; wire signed [M4_E_WID-1:0] e_cur; wire signed [M4_CONSTS_WID-1:0] adj_val; wire signed [DAC_DATA_WID-1:0] new_dac_val; reg arm_math = 0; wire math_finished; control_loop_math #( .CONSTS_WHOLE(CONSTS_WHOLE), .CONSTS_FRAC(CONSTS_FRAC), .CONSTS_SIZ(CONSTS_SIZ), .ADC_WID(ADC_WID), .DAC_WID(DAC_DATA_WID), .CYCLE_COUNT_WID(CYCLE_COUNT_WID) ) math ( .clk(clk), .rst_L(rst_L), .arm(arm_math), .finished(math_finished), .setpt(setpt), .measured(measured_value), .cl_P(cl_p_reg), .cl_I(cl_I_reg), .cycles(last_timer), .e_prev(err_prev), .adjval_prev(adjval_prev), .stored_dac_val(stored_dac_val), .new_dac_val(new_dac_val), .e_cur(e_cur), .adj_val(adj_val) ); /****** State machine * ┏━━━━━━━┓ * ┃ ↓ * ┗←━INITIATE_READ_FROM_DAC━━←━━━━┓ * ↓ ┃ * WAIT_FOR_DAC_READ ┃ * ↓ ┃ * WAIT_FOR_DAC_RESPONSE ┃ (on reset) * ↓ (when value is read) ┃ * ┏━━CYCLE_START━━→━━━━━━━━━━━━━━━┛ * ↑ ↓ (wait time delay) * ┃ WAIT_ON_ADC * ┃ ↓ * ┃ WAIT_ON_MUL * ┃ ↓ * ┃ WAIT_ON_DAC * ┃ ↓ * ┗━━━━━━━┛ ****** Outline * When the loop starts it must find the current value from the * DAC and write to it. The value from the DAC is then adjusted * with the output of the control loop. Afterwards it does not * need to query the DAC for the updated value since it was the one * that updated the value in the first place. */ localparam CYCLE_START = 0; localparam WAIT_ON_ADC = 1; localparam WAIT_ON_MATH = 2; localparam WAIT_ON_DAC = 6; localparam INIT_READ_FROM_DAC = 3; localparam WAIT_FOR_DAC_READ = 4; localparam WAIT_FOR_DAC_RESPONSE = 5; localparam STATESIZ = 3; reg [STATESIZ-1:0] state = INIT_READ_FROM_DAC; reg [DELAY_WID-1:0] timer = 0; /**** Timing. ****/ always @ (posedge clk) begin if (!rst_L) begin counting_timer <= 0; last_timer <= 0; end else if (state == CYCLE_START && timer == 0) begin counting_timer <= 1; last_timer <= counting_timer; end else if (running) begin counting_timer <= counting_timer + 1; end end assign in_loop = state != INIT_READ_FROM_DAC || running; /* Reset the change acknowledge interface after the master * stops its transfer. * * The module only writes to change_made in the main always block * when state == CYCLE_START, so make sure that this does not * compete with CYCLE_START. */ always @ (posedge clk) begin if (state != CYCLE_START && !assert_change && change_made) change_made <= 0; end task reset_loop(); to_dac <= 0; dac_arm <= 0; state <= INIT_READ_FROM_DAC; timer <= 0; stored_dac_val <= 0; setpt <= 0; dely <= 0; cl_I_reg <= 0; adjval_prev <= 0; err_prev <= 0; adc_arm <= 0; arm_math <= 0; endtask always @ (posedge clk) begin if (!rst_L) begin reset_loop(); end else case (state) INIT_READ_FROM_DAC: begin if (run_loop_in) begin running <= 1; to_dac <= {1'b1, DAC_REGISTER, 20'b0}; dac_arm <= 1; state <= WAIT_FOR_DAC_READ; end else begin reset_loop(); end end WAIT_FOR_DAC_READ: begin if (dac_finished) begin state <= WAIT_FOR_DAC_RESPONSE; dac_arm <= 0; timer <= 1; end end WAIT_FOR_DAC_RESPONSE: begin if (timer < READ_DAC_DELAY && timer != 0) begin timer <= timer + 1; end else if (timer == READ_DAC_DELAY) begin dac_arm <= 1; to_dac <= 24'b0; timer <= 0; end else if (dac_finished) begin state <= CYCLE_START; dac_arm <= 0; timer <= 0; stored_dac_val <= from_dac[DAC_DATA_WID-1:0]; end end CYCLE_START: begin if (!run_loop_in) begin reset_loop(); end else if (timer < dely) begin timer <= timer + 1; end else begin /* On change of constants, previous values are invalidated. */ if (assert_change && !change_made) begin change_made <= 1; setpt <= setpt_in; dely <= delay_in; cl_I_reg <= I_in; cl_p_reg <= P_in; adjval_prev <= 0; err_prev <= 0; end state <= WAIT_ON_ADC; timer <= 0; adc_arm <= 1; end end WAIT_ON_ADC: if (adc_finished) begin adc_arm <= 0; arm_math <= 1; state <= WAIT_ON_MATH; end WAIT_ON_MATH: if (math_finished) begin arm_math <= 0; dac_arm <= 1; stored_dac_val <= new_dac_val; to_dac <= {1'b0, DAC_REGISTER, new_dac_val}; state <= WAIT_ON_DAC; end WAIT_ON_DAC: if (dac_finished) begin state <= CYCLE_START; dac_arm <= 0; err_prev <= e_cur; adjval_prev <= adj_val; end endcase end endmodule