341 lines
9.4 KiB
Verilog
341 lines
9.4 KiB
Verilog
/* Raster scanner. This module sweeps two DACs (the X and Y piezos)
|
|
* across a box, where the X and Y axes may be at an angle. After
|
|
* a single step, the ADCs connected to the raster scanner are
|
|
* activated, with each value read into system memory (see ram_shim).
|
|
* The kernel then reads these values and sends them to the controller
|
|
* over ethernet.
|
|
*/
|
|
`include "raster_cmds.vh"
|
|
`timescale 10ns/10ns
|
|
module raster #(
|
|
parameter DAC_WAIT_BETWEEN_CMD = 10
|
|
) (
|
|
input clk,
|
|
`ifdef VERILATOR
|
|
output is_running,
|
|
`endif
|
|
|
|
/* Kernel interface. */
|
|
input [`RASTER_CMD_WID-1:0] kernel_cmd,
|
|
/* verilator lint_off UNUSEDSIGNAL */
|
|
input [`RASTER_DATA_WID-1:0] kernel_data_in,
|
|
/* verilator lint_on UNUSEDSIGNAL */
|
|
output reg [`RASTER_DATA_WID-1:0] kernel_data_out,
|
|
input kernel_ready,
|
|
output reg kernel_finished,
|
|
|
|
/* X and Y DAC piezos */
|
|
output x_arm,
|
|
output [`DAC_WID-1:0] x_to_dac,
|
|
/* verilator lint_off UNUSED */
|
|
input [`DAC_WID-1:0] x_from_dac,
|
|
/* verilator lint_on UNUSED */
|
|
input x_finished,
|
|
|
|
output y_arm,
|
|
output [`DAC_WID-1:0] y_to_dac,
|
|
/* verilator lint_off UNUSED */
|
|
input [`DAC_WID-1:0] y_from_dac,
|
|
/* verilator lint_on UNUSED */
|
|
input y_finished,
|
|
|
|
/* Connections to all possible ADCs. These are connected to SPI masters
|
|
* and they will automatically extend ADC value lengths to their highest
|
|
* values. */
|
|
output reg [`ADCNUM-1:0] adc_arm,
|
|
|
|
/* Yosys does not support input arrays. */
|
|
input [`ADCNUM*`MAX_ADC_DATA_WID-1:0] adc_data,
|
|
input [`ADCNUM-1:0] adc_finished,
|
|
|
|
/* RAM DMA. This is generally not directly connected to the
|
|
* DMA IP. A shim is used in order to write multiple words
|
|
* to memory. */
|
|
output reg [`MAX_ADC_DATA_WID-1:0] data,
|
|
output reg mem_commit,
|
|
input mem_finished
|
|
);
|
|
|
|
/* During a scan, some of the ADCs will be scanned, but some will not.
|
|
* The data are packed in such a way so that the most significant
|
|
* word will contain the highest enabled ADC number, and the least
|
|
* significant word will contain the lowest enabled ADC number (and so
|
|
* on in between).
|
|
*
|
|
* There's not a good way to precalculate this so instead the check
|
|
* is done at each "send" stage.
|
|
*/
|
|
|
|
/* State machine:
|
|
┏━━━━ WAIT ON ARM
|
|
↑ ↓ (arm -> 1)
|
|
┃ REQUEST DAC VALUES
|
|
┃ ↓ (when x and y values are requested)
|
|
┃ OBTAIN DAC VALUES
|
|
┃ ↓ (when x and y values are measured)
|
|
┃ ┏━LOOP FORWARD WITHOUT MEASUREMENT
|
|
┃ ↑ ↓ (when enough steps are taken)
|
|
┃ ┃ GET ADC VALUES
|
|
┃ ┃ ↓ (when all ADC values are obtained)
|
|
┃ ┃ SEND THROUGH FIFO
|
|
┃ ┃ ↓ (when finished)
|
|
┃ ┏━┫ ┃
|
|
┃ ↑ ┗━━━←━┫
|
|
┃ ┃ ┃ (when at the end of a line)
|
|
┃ ┃ ┃
|
|
┃ ┃ ┏━LOOP BACKWARD WITHOUT MEASUREMENT
|
|
┃ ┃ ↑ ↓ (when enough steps are taken)
|
|
┃ ┃ ┃ GET ADC VALUES, BACKWARDS MEASUREMENT
|
|
┃ ┃ ┃ ↓ (when all ADC values are obtained)
|
|
┃ ┃ ┃ SEND THROUGH FIFO, BACKWARDS MEASUREMENT
|
|
┃ ┃ ┃ ↓ (when finished)
|
|
┃ ┃ ┃ ┃
|
|
┃ ┃ ┗━━━←━┫
|
|
┃ ┃ ↓
|
|
┃ ┗━━━━━━━┫
|
|
┃ ↓ (when the image is finished)
|
|
┃ ┃
|
|
┃ WAIT FOR ARM DEASSERT
|
|
┃ ↓ (when arm = 0)
|
|
┗━━━━━━━━━┛
|
|
*/
|
|
|
|
localparam WAIT_ON_ARM = 0;
|
|
localparam REQUEST_DAC_VALUES = 1;
|
|
localparam GET_DAC_VALUES = 2;
|
|
localparam WAIT_ADVANCE = 3;
|
|
localparam MEASURE = 4;
|
|
localparam SCAN_ADC_VALUES = 5;
|
|
localparam ADVANCE_DAC_WRITE = 6;
|
|
localparam NEXT_LINE = 7;
|
|
localparam WAIT_ON_ARM_DEASSERT = 8;
|
|
localparam STATE_WID = 4;
|
|
|
|
/********** Loop State ***********/
|
|
reg [STATE_WID-1:0] state = WAIT_ON_ARM;
|
|
reg [`SAMPLEWID-1:0] sample = 0;
|
|
reg [`SAMPLEWID-1:0] line = 0;
|
|
reg [`TIMERWID-1:0] counter = 0;
|
|
reg signed [`DAC_DATA_WID-1:0] x_val = 0;
|
|
reg signed [`DAC_DATA_WID-1:0] y_val = 0;
|
|
|
|
/* Buffer to store all measured ADC values. This
|
|
* is shifted until it is all zeros to determine
|
|
* which ADC values should be read off.
|
|
*/
|
|
reg [`ADCNUM-1:0] adc_used_tmp = 0;
|
|
reg [`ADCNUM*`MAX_ADC_DATA_WID-1:0] adc_data_tmp = 0;
|
|
|
|
/********** Loop Parameters *************/
|
|
reg [`ADCNUM-1:0] adc_used = 0;
|
|
reg is_reverse = 0;
|
|
reg arm = 0;
|
|
reg running = 0;
|
|
`ifdef VERILATOR
|
|
assign is_running = running;
|
|
`endif
|
|
reg signed [`DAC_DATA_WID-1:0] dx = 0;
|
|
reg signed [`DAC_DATA_WID-1:0] dy = 0;
|
|
reg [`TIMERWID-1:0] settle_time = 0;
|
|
|
|
reg [`SAMPLEWID-1:0] max_samples = 0;
|
|
reg [`SAMPLEWID-1:0] max_lines = 0;
|
|
|
|
/********** Control Interface ************
|
|
* This code assumes that RASTER_DATA_WID is greater than all registers.
|
|
* If a register is equal to the length, omit zero extension.
|
|
*
|
|
* This uses a macro since each register is exactly the same code, just
|
|
* with different length. The arm register is special: it can be adjusted
|
|
* while the loop is running (in order to terminate the scan), but
|
|
* otherwise each register can only be modified when the loop is not
|
|
* running.
|
|
*/
|
|
|
|
// Generates code to handle read requests from the kernel.
|
|
`define generate_register_read(code, width, register) \
|
|
code: begin \
|
|
kernel_data_out[(width)-1:0] <= register; \
|
|
kernel_data_out[`RASTER_DATA_WID-1:(width)] <= 0; \
|
|
kernel_finished <= 1; \
|
|
end
|
|
|
|
// Generates code to handle write requests from the kernel.
|
|
`define generate_register(code, width, register) \
|
|
`generate_register_read(code, width, register) \
|
|
code | `RASTER_WRITE_BIT: \
|
|
if (!running || (code) == `RASTER_ARM) begin \
|
|
register <= kernel_data_in[(width)-1:0]; \
|
|
kernel_finished <= 1; \
|
|
end
|
|
|
|
always @ (posedge clk) begin
|
|
if (!kernel_ready) kernel_finished <= 0;
|
|
else if (kernel_ready) begin case (kernel_cmd)
|
|
`generate_register(`RASTER_MAX_SAMPLES, `SAMPLEWID, max_samples)
|
|
`generate_register(`RASTER_MAX_LINES, `SAMPLEWID, max_lines)
|
|
`generate_register(`RASTER_SETTLE_TIME, `TIMERWID, settle_time)
|
|
`generate_register(`RASTER_DX, `DAC_DATA_WID, dx)
|
|
`generate_register(`RASTER_DY, `DAC_DATA_WID, dy)
|
|
`generate_register(`RASTER_USED_ADCS, `ADCNUM, adc_used)
|
|
`generate_register(`RASTER_ARM, 1, arm)
|
|
`generate_register_read(`RASTER_RUNNING, 1, running)
|
|
`ifdef VERILATOR
|
|
default: $error("unknown kernel message");
|
|
`endif
|
|
endcase end
|
|
end
|
|
`undef generate_register_read
|
|
`undef generate_register
|
|
|
|
task check_arm();
|
|
if (!arm) begin
|
|
state <= WAIT_ON_ARM;
|
|
running <= 0;
|
|
end
|
|
endtask
|
|
|
|
`ifdef VERILATOR
|
|
task check_deassert_dac_arm();
|
|
if (x_arm) $error("x_arm asserted");
|
|
if (y_arm) $error("y_arm asserted");
|
|
endtask
|
|
`define CHECK_DAC_ARM check_deassert_dac_arm();
|
|
`else
|
|
`define CHECK_DAC_ARM
|
|
`endif
|
|
|
|
always @ (posedge clk) begin
|
|
case (state)
|
|
WAIT_ON_ARM: if (arm) begin
|
|
running <= 1;
|
|
is_reverse <= 0;
|
|
sample <= 0;
|
|
line <= 0;
|
|
|
|
x_to_dac <= {4'b1001, 20'b0};
|
|
y_to_dac <= {4'b1001, 20'b0};
|
|
x_arm <= 1;
|
|
y_arm <= 1;
|
|
|
|
adc_arm <= 0;
|
|
state <= REQUEST_DAC_VALUES;
|
|
end
|
|
REQUEST_DAC_VALUES: if (x_finished && y_finished) begin
|
|
x_to_dac <= 0;
|
|
y_to_dac <= 0;
|
|
x_arm <= 0;
|
|
y_arm <= 0;
|
|
state <= GET_DAC_VALUES;
|
|
counter <= 0;
|
|
end
|
|
GET_DAC_VALUES: if (counter < DAC_WAIT_BETWEEN_CMD) begin
|
|
`CHECK_DAC_ARM
|
|
counter <= counter + 1;
|
|
check_arm();
|
|
end else if (!x_arm || !y_arm) begin
|
|
x_arm <= 1;
|
|
y_arm <= 1;
|
|
end else if (x_finished && y_finished) begin
|
|
x_val <= x_from_dac[`DAC_DATA_WID-1:0];
|
|
y_val <= y_from_dac[`DAC_DATA_WID-1:0];
|
|
|
|
x_arm <= 0;
|
|
y_arm <= 0;
|
|
counter <= 0;
|
|
state <= WAIT_ADVANCE;
|
|
end
|
|
|
|
WAIT_ADVANCE: if (counter < settle_time) begin
|
|
check_arm();
|
|
counter <= counter + 1;
|
|
`CHECK_DAC_ARM
|
|
end else begin
|
|
`CHECK_DAC_ARM
|
|
adc_arm <= adc_used;
|
|
adc_used_tmp <= adc_used;
|
|
state <= MEASURE;
|
|
end
|
|
MEASURE: if (adc_finished == adc_arm) begin
|
|
`CHECK_DAC_ARM
|
|
adc_arm <= 0;
|
|
adc_data_tmp <= adc_data;
|
|
state <= SCAN_ADC_VALUES;
|
|
counter <= 0;
|
|
end
|
|
SCAN_ADC_VALUES: if (adc_used_tmp == 0 && !mem_commit) begin
|
|
`CHECK_DAC_ARM
|
|
if (sample == max_samples-1) begin
|
|
dx <= ~dx + 1;
|
|
dy <= ~dy + 1;
|
|
|
|
if (is_reverse) begin
|
|
state <= NEXT_LINE;
|
|
end else begin
|
|
state <= ADVANCE_DAC_WRITE;
|
|
end
|
|
|
|
is_reverse <= !is_reverse;
|
|
sample <= 0;
|
|
end else begin
|
|
sample <= sample + 1;
|
|
state <= ADVANCE_DAC_WRITE;
|
|
end
|
|
end else if (mem_finished) begin
|
|
`CHECK_DAC_ARM
|
|
state <= SCAN_ADC_VALUES;
|
|
mem_commit <= 0;
|
|
end else begin
|
|
`CHECK_DAC_ARM
|
|
adc_used_tmp <= adc_used_tmp << 1;
|
|
adc_data_tmp <= adc_data_tmp << `MAX_ADC_DATA_WID;
|
|
if (adc_used_tmp[`ADCNUM-1]) begin
|
|
data <= adc_data_tmp[`ADCNUM*`MAX_ADC_DATA_WID-1:(`ADCNUM-1)*`MAX_ADC_DATA_WID];
|
|
mem_commit <= 1;
|
|
end
|
|
end
|
|
|
|
ADVANCE_DAC_WRITE: if (!x_arm || !y_arm) begin
|
|
x_val <= x_val + dx;
|
|
y_val <= y_val + dy;
|
|
x_to_dac <= {4'b0001, x_val + dx};
|
|
y_to_dac <= {4'b0001, y_val + dy};
|
|
x_arm <= 1;
|
|
y_arm <= 1;
|
|
end else if (x_finished && y_finished) begin
|
|
counter <= 0;
|
|
state <= WAIT_ADVANCE;
|
|
x_arm <= 0;
|
|
y_arm <= 0;
|
|
end
|
|
NEXT_LINE: if (!x_arm || !y_arm) begin
|
|
if (line == max_lines-1) begin
|
|
state <= WAIT_ON_ARM_DEASSERT;
|
|
end else begin
|
|
sample <= 0;
|
|
/* rotation of (dx,dy) by 90° -> (dy, -dx) */
|
|
x_val <= x_val + dy;
|
|
x_to_dac <= {4'b0001, x_val + dy};
|
|
x_arm <= 1;
|
|
y_val <= y_val - dx;
|
|
y_to_dac <= {4'b0001, y_val - dx};
|
|
y_arm <= 1;
|
|
line <= line + 1;
|
|
end
|
|
end else if (x_finished && y_finished) begin
|
|
counter <= 0;
|
|
state <= WAIT_ADVANCE;
|
|
x_arm <= 0;
|
|
y_arm <= 0;
|
|
end
|
|
WAIT_ON_ARM_DEASSERT: if (!arm) begin
|
|
state <= WAIT_ON_ARM;
|
|
end else begin
|
|
running <= 0;
|
|
end
|
|
endcase
|
|
end
|
|
|
|
endmodule
|
|
`undefineall
|