;;; Copyright (C) Peter McGoron 2024 ;;; This program is free software: you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation, version 3 of the License. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program. If not, see . ;;; Persistent AVL sets and maps using JOIN. ;;; ;;;;;;;;;;;;;;;; ;;; Nodes, direction ;;; ;;;;;;;;;;;;;;;; ;;; Returns the slot number for ;;; =: The node data ;;; h: the height ;;; <: the left child ;;; >: the right child (define %set:accessor (lambda (sym) (cond ((eq? sym '=) 0) ((eq? sym 'h) 1) ((eq? sym '<) 2) ((eq? sym '>) 3) (else (error "invalid direction"))))) ;;; Gets data from node value given accessor symbol. (define set:get (lambda (t sym) (let ((acc (%set:accessor sym))) (if (null? t) (cond ((eq? sym 'h) 0) (else '())) (vector-ref t (%set:accessor sym)))))) (define %set->sexpr (lambda (node) (if (null? node) '() (list (list 'data (set:get node '=)) (list '< (%set->sexpr (set:get node '<))) (list '> (%set->sexpr (set:get node '>))))))) (cond-expand (chicken (import (chicken process)) (define (set:display set) (call-with-output-pipe "dot -T png > /tmp/dot.png" (lambda (out) (letrec ((D (lambda (o) (display o out) (display o))) (dump-data (lambda (tree) (D "\"") (D (set:get tree '=)) (D "\""))) (connect (lambda (parent child) (if (null? child) '() (begin (dump-data parent) (D " -> ") (dump-data child) (D " ;\n") (loop child))))) (loop (lambda (parent) (if (null? parent) '() (begin (connect parent (set:get parent '<)) (connect parent (set:get parent '>))))))) (D "digraph t {\n") (loop set) (D "}\n")))) (system "imv-wayland /tmp/dot.png"))) (else (define set:display (lambda (set) (display (%set->sexpr set)) (newline))))) ;;; Get the height of a node, handling the empty node. (define %set:height (lambda (node) (if (null? node) 0 (set:get node 'h)))) ;;; Get the difference between the heights of two trees. (define %set:height-diff (lambda (t1 t2) (- (%set:height t1) (%set:height t2)))) ;;; Get the balance factor of a tree. (define %set:bal (lambda (t) (%set:height-diff (set:get t '<) (set:get t '>)))) ;;; Set data in node given accessor symbol. (define %set:set! (lambda (node dir x) (vector-set! node (%set:accessor dir) x))) ;;; Construct a new tree with data VAL. (define %set:node (lambda (val dir1 node1 dir2 node2) (let ((node (vector val (+ 1 (max (%set:height node1) (%set:height node2))) '() '()))) (%set:set! node dir1 node1) (%set:set! node dir2 node2) node))) (define set:node-new-val (lambda (node newval) (%set:node newval '< (set:get node '<) '> (set:get node '>)))) (define %set:invdir (lambda (dir) (cond ((eq? dir '<) '>) ((eq? dir '>) '<) (else (error "invalid direction"))))) ;;; ;;;;;;;;;;;;;; ;;; Tree rotations ;;; ;;;;;;;;;;;;;; ;;; Rotate NODE to the left (dir = '>) or right (dir = '<). (define %set:rotate (lambda (node dir) (if (null? node) #f (let ((invdir (%set:invdir dir))) (let ((child (set:get node invdir))) (let ((to-swap (set:get child dir))) (%set:node (set:get child '=) dir (%set:node (set:get node '=) dir (set:get node dir) invdir to-swap) invdir (set:get child invdir)))))))) ;;; ;;;;;;;;;;;;;;;;;;; ;;; JOIN function for AVL trees. ;;; ;;;;;;;;;;;;;;;;;;; ;;; Handles rebalancing of the tree. (define %set:join (lambda (heavier val lighter heavier-dir) (let ((heavy-val (set:get heavier '=)) (lighter-dir (%set:invdir heavier-dir))) (let ((heavy-heavy (set:get heavier heavier-dir)) (heavy-light (set:get heavier lighter-dir))) (if (<= (abs (%set:height-diff heavy-light lighter)) 1) (let ((node (%set:node val heavier-dir heavy-light lighter-dir lighter))) (if (<= (%set:height-diff node heavy-heavy) 1) (%set:node heavy-val heavier-dir heavy-heavy lighter-dir node) (%set:rotate (%set:node heavy-val heavier-dir heavy-heavy lighter-dir (%set:rotate node lighter-dir)) heavier-dir))) (let ((new-light (%set:join heavy-light val lighter heavier-dir))) (let ((node (%set:node heavy-val heavier-dir heavy-heavy lighter-dir new-light))) (if (<= (abs (%set:bal node)) 1) node (%set:rotate node heavier-dir))))))))) (define set:join (lambda (val dir1 node1 dir2 node2) (let ((diff (%set:height-diff node1 node2))) (cond ((> diff 1) (%set:join node1 val node2 dir1)) ((< diff -1) (%set:join node2 val node1 dir2)) (else (%set:node val dir1 node1 dir2 node2)))))) (define set:join2 (letrec ((join2 (lambda (left right) (if (null? left) right (let ((split-last-tree (split-last left))) (set:join (set:get split-last-tree '=) '< (set:get split-last-tree '<) '> right))))) (split-last (lambda (tree) (let ((right (set:get tree '>))) (if (null? right) tree (let ((last (split-last right))) (%set:node (set:get last '=) '< (set:join (set:get tree '=) '< (set:get tree '<) '> (set:get last '>)) '> '()))))))) join2)) (define set:split (lambda (<=>) (letrec ((split (lambda (set data) (if (null? set) (%set:node #f '< '() '> '()) (let ((set-data (set:get set '=))) (let ((dir (<=> data set-data))) (if (eq? dir '=) (set:node-new-val set #t) (let ((new-tree (split (set:get set dir) data)) (invdir (%set:invdir dir))) (%set:node (set:get new-tree '=) dir (set:get new-tree dir) invdir (set:join set-data dir (set:get new-tree invdir) invdir (set:get set invdir))))))))))) split))) ;;; ;;;;;;;;;;;;; ;;; Set functions ;;; ;;;;;;;;;;;;; ;;; Generate union operation from split operation. ;;; Union prioritizes data in PRIORITY over keys in SECONDARY. (define set:union (lambda (split) (letrec ((union (lambda (priority secondary) (cond ((null? priority) secondary) ((null? secondary) priority) (else (let ((key (set:get priority '=))) (let ((split-tree (split secondary key))) (set:join key '< (union (set:get priority '<) (set:get split-tree '<)) '> (union (set:get priority '>) (set:get split-tree '>)))))))))) union))) ;;; ;;;;;;;;;;;;;;;;; ;;; Element functions ;;; ;;;;;;;;;;;;;;;;; ;;; (SET:IN <=>) generates a search function for comparison function <=>. ;;; (SEARCH TREE DATA) searches TREE for a node that matches DATA. ;;; It will return the node that contains the matched DATA, or '(). (define set:in (lambda (<=>) (lambda (tree data) (letrec ((loop (lambda (tree) (if (null? tree) '() (let ((dir (<=> data (set:get tree '=)))) (if (eq? dir '=) tree (loop (set:get tree dir)))))))) (loop tree))))) ;;; (SET:UPDATE <=>) generates an update function for <=>. ;;; (UPDATE TREE NODE UPDATE) inserts (UPDATE NODE #F) into the tree if ;;; no node comparing equal to NODE is found, and (UPDATE NODE OLD) if ;;; OLD compares equal to NODE. (define set:update (lambda (<=>) (lambda (tree node update) (letrec ((loop (lambda (tree) (if (null? tree) (update node #f) (let ((dir (<=> (set:get node '=) (set:get tree '=)))) (if (eq? dir '=) (update node tree) (let ((invdir (%set:invdir dir))) (set:join (set:get tree '=) dir (loop (set:get tree dir)) invdir (set:get tree invdir))))))))) (loop tree))))) ;;; (SET:INSERT <=>) generates an insert function for comparison function ;;; <=>. ;;; (INSERT TREE NODE) inserts NODE into TREE. It returns ;;; (CONS NEWTREE FOUND), where FOUND is the node that was replaced by ;;; NODE, and #F otherwise, and NEWTREE is the new root of the tree. (define set:insert (lambda (update) (lambda (tree node) (let ((found #f)) (let ((newroot (update tree node (lambda (node oldnode) (if (not oldnode) node (begin (set! found oldnode) (set:node-new-val oldnode (set:get node '=)))))))) (cons newroot found)))))) ;;; (SET:DELETE <=>) generates a delete function for comparison function ;;; <=>. ;;; (DELETE TREE DATA) deletes a node from TREE that compares equal to ;;; DATA. The function returns (CONS NEWTREE FOUND), where FOUND is the ;;; deleted node, or NULL if not found, and NEWTREE is the root of the new ;;; tree. (define set:delete (lambda (<=>) (lambda (tree node) (let ((found '())) (letrec ((loop (lambda (tree) (if (null? tree) node (let ((dir (<=> (set:get node '=) (set:get tree '=)))) (if (eq? dir '=) (begin (set! found tree) (set:join2 (set:get tree '<) (set:get tree '>))) (let ((invdir (%set:invdir dir))) (set:join (set:get tree '=) dir (loop (set:get tree dir)) invdir (set:get tree invdir))))))))) (let ((newtree (loop tree))) (cons newtree found))))))) ;;; ;;;;;;;;;;;;;;;;;;;;;;; ;;; Converting sets to maps ;;; ;;;;;;;;;;;;;;;;;;;;;;; ;;; Convert a <=> for sets to one for maps. (define set:<=>-to-map (lambda (<=>) (lambda (x y) (<=> (car x) (car y))))) (define map:node-new-val (lambda (node newkey newval) (set:node-new-val node (cons newkey newval)))) (define map:empty-node (lambda (key val) (%set:node (cons key val) '< '() '> '()))) (define map:key (lambda (node) (car (set:get node '=)))) (define map:val (lambda (node) (cdr (set:get node '=)))) (define map:update (lambda (%update-recursive) (lambda (tree key update) (%update-recursive tree (map:empty-node key '()) update)))) (define map:insert (lambda (%update-recursive) (let ((insert (set:insert %update-recursive))) (lambda (tree key val) (insert tree (map:empty-node key val)))))) (define map:search (lambda (<=>) (let ((search (set:in <=>))) (lambda (tree key) (search tree (cons key '())))))) (define map:delete (lambda (<=>) (let ((delete (set:delete <=>))) (lambda (tree key) (delete tree (map:empty-node key '())))))) (define map:split (lambda (<=>) (set:split <=>))) (define map:union (lambda (split) (set:union split))) ;;; ;;;;;;;;;;; ;;; For strings ;;; ;;;;;;;;;;; (cond-expand ((not miniscm-unslisp) (define (string<=> x y) (cond ((string? x y) '>) (else '=)))) (else #f)) (cond-expand ((and (not miniscm-unslisp) (not r7rs)) (define (list-set! lst n val) (if (= n 0) (set-car! lst val) (list-set! (cdr lst) (- n 1) val)))) (else #f)) (define map:string<=> (set:<=>-to-map string<=>)) (define %smap:update (set:update map:string<=>)) (define smap:update (map:update %smap:update)) (define smap:insert (map:insert %smap:update)) (define smap:search (map:search map:string<=>)) (define smap:delete (map:delete map:string<=>)) (define %smap:split (map:split map:string<=>)) (define smap:union (map:union %smap:split)) ;;; ;;;;; ;;; Tests ;;; ;;;;; ;;; LST is a list of elements of the form ;;; (KEY VAL ALREADY-IN) ;;; where ALREADY-IN is #F for an element not in the set, or the value ;;; that should be in the set. (define %set:operate-all (lambda (f tree lst) (if (null? lst) tree (let ((key (list-ref (car lst) 0)) (val (list-ref (car lst) 1)) (already-in (list-ref (car lst) 2))) (let ((insert-return (f tree key val))) (cond ((and already-in (null? (cdr insert-return))) "should have been found") ((and already-in (not (equal? already-in (map:val (cdr insert-return))))) "found is not correct") (else (%set:operate-all f (car insert-return) (cdr lst))))))))) (define %set:insert-all (lambda (tree lst) (%set:operate-all smap:insert tree lst))) (define %set:search-all (lambda (tree lst) (%set:operate-all (lambda (tree key _) (let ((search-res (smap:search tree key))) (cons tree search-res))) tree lst))) (define %set:delete-all (lambda (tree lst) (%set:operate-all (lambda (tree key _) (smap:delete tree key)) tree lst))) (define %set:tests (list (cons "rotate right" (lambda () (let ((right (%set:rotate (%set:node 1 '< (%set:node 2 '< (%set:node 3 '< '() '> '()) '> (%set:node 4 '< '() '> '())) '> (%set:node 5 '< '() '> '())) '>))) (cond ((not (eqv? (set:get right '=) 2)) "bad parent") ((not (eqv? (set:get (set:get right '>) '=) 1)) "bad right child") ((not (eqv? (set:get (set:get right '<) '=) 3)) "bad left child") ((not (eqv? (set:get (set:get (set:get right '>) '>) '=) 5)) "bad right child of right child") ((not (eqv? (set:get (set:get (set:get right '>) '<) '=) 4)) "bad left child of right child") (else #t))))) (cons "rotate left" (lambda () (let ((right (%set:rotate (%set:node 1 '> (%set:node 2 '< (%set:node 3 '< '() '> '()) '> (%set:node 4 '< '() '> '())) '< (%set:node 5 '< '() '> '())) '<))) (cond ((not (eqv? (set:get right '=) 2)) "bad parent") ((not (eqv? (set:get (set:get right '>) '=) 4)) "bad right child") ((not (eqv? (set:get (set:get right '<) '=) 1)) "bad left child") ((not (eqv? (set:get (set:get (set:get right '<) '>) '=) 3)) "bad right child of left child") ((not (eqv? (set:get (set:get (set:get right '<) '<) '=) 5)) "bad left child of left child") (else #t))))) (cons "insert then delete" (lambda () (let ((insert-return (smap:insert '() (string #\a) 5))) (cond ((not (pair? insert-return)) "invalid insert return") ((cdr insert-return) "string found in empty tree") (else (let ((tree (car insert-return))) (let ((found (smap:search tree (string #\a)))) (cond ((null? found) "string not in tree") ((not (equal? (map:key tree) (string #\a))) "returned key not equal to a") ((not (equal? (map:val tree) 5)) "returned value not equal to 5") (else (let ((delete-return (smap:delete tree (string #\a)))) (cond ((not (pair? delete-return)) "invalid delete return") ((not (cdr delete-return)) "string not found") ((not (eqv? (car delete-return) '())) "returned tree not null") (else #t)))))))))))) (cons "insert a few unique then delete" (lambda () (let ((to-insert (list (list (string #\a #\b #\c) 1 #f) (list (string #\a #\b #\d) 2 #f) (list (string #\d #\e #\f) 3 #f) (list (string #\1 #\2 #\3 #\a #\C) 4 #f) (list (string #\q #\w #\e) 5 #f) (list (string #\1 #\2 #\3) 5 #f) (list (string #\l #\i #\s #\p) 6 #f) (list (string #\c) 7 #f) (list (string #\s #\c #\m) 8 #f) (list (string #\a #\l #\g #\o #\l) 9 #f) (list (string #\a #\s #\m) 10 #f) (list (string #\4) 11 #f) (list (string #\a #\s #\m #\e) 12 #f)))) (display "insert all") (newline) (let ((tree (%set:insert-all '() to-insert))) (if (string? tree) tree (begin (for-each (lambda (x) (list-set! x 2 (list-ref x 1))) to-insert) (display "search all") (newline) (let ((res (%set:search-all tree to-insert))) (if (string? res) res (begin (display "delete all") (newline) (let ((tree (%set:delete-all tree to-insert))) (cond ((string? tree) tree) ((not (null? tree)) "did not delete everything") (else #t)))))))))))) (cons "insert a few, update" (lambda () (let ((tree (%set:insert-all '() (list (list (string #\a #\b #\c #\d) 1 #f) (list (string #\e #\f #\g #\h) 2 #f) (list (string #\1 #\4 #\2 #\9 #\3) 3 #f) (list (string #\a #\b #\c #\d #\e) 4 #f))))) (if (string? tree) tree (let ((tree (smap:update tree (string #\a #\b #\c #\d #\e) (lambda (node oldnode) (map:node-new-val oldnode (string #\a #\b #\c #\d #\e) 10))))) (let ((res (%set:search-all tree (list (list (string #\a #\b #\c #\d) 1 1) (list (string #\e #\f #\g #\h) 2 2) (list (string #\1 #\4 #\2 #\9 #\3) 3 3) (list (string #\a #\b #\c #\d #\e) 10 10))))) (if (string? res) res #t))))))) (cons "union a few" (lambda () (let ((tree1 (%set:insert-all '() (list (list (string #\a) 1 #f) (list (string #\b) 2 #f) (list (string #\c) 3 #f)))) (tree2 (%set:insert-all '() (list (list (string #\c) 4 #f) (list (string #\d) 5 #f) (list (string #\e) 6 #f))))) (let ((tree (smap:union tree1 tree2)) (to-search (list (list (string #\a) 1 1) (list (string #\b) 2 2) (list (string #\c) 3 3) (list (string #\d) 5 5) (list (string #\e) 6 6)))) (not (string? (%set:search-all tree to-search)))))))))