661 lines
24 KiB
Scheme
661 lines
24 KiB
Scheme
;;; Copyright (C) Peter McGoron 2024
|
|
;;; This program is free software: you can redistribute it and/or modify
|
|
;;; it under the terms of the GNU General Public License as published by
|
|
;;; the Free Software Foundation, version 3 of the License.
|
|
;;;
|
|
;;; This program is distributed in the hope that it will be useful,
|
|
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
;;; GNU General Public License for more details.
|
|
;;;
|
|
;;; You should have received a copy of the GNU General Public License
|
|
;;; along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
;;; Persistent AVL sets and maps using JOIN.
|
|
|
|
;;; ;;;;;;;;;;;;;;;;
|
|
;;; Nodes, direction
|
|
;;; ;;;;;;;;;;;;;;;;
|
|
|
|
;;; Returns the slot number for
|
|
;;; =: The node data
|
|
;;; h: the height
|
|
;;; <: the left child
|
|
;;; >: the right child
|
|
(define %set:accessor
|
|
(lambda (sym)
|
|
(cond
|
|
((eq? sym '=) 0)
|
|
((eq? sym 'h) 1)
|
|
((eq? sym '<) 2)
|
|
((eq? sym '>) 3)
|
|
(else (error "invalid direction")))))
|
|
|
|
;;; Gets data from node value given accessor symbol.
|
|
(define set:get
|
|
(lambda (t sym)
|
|
(let ((acc (%set:accessor sym)))
|
|
(if (null? t)
|
|
(cond
|
|
((eq? sym 'h) 0)
|
|
(else '()))
|
|
(vector-ref t (%set:accessor sym))))))
|
|
|
|
(define %set->sexpr
|
|
(lambda (node)
|
|
(if (null? node)
|
|
'()
|
|
(list (list 'data (set:get node '=))
|
|
(list '< (%set->sexpr (set:get node '<)))
|
|
(list '> (%set->sexpr (set:get node '>)))))))
|
|
|
|
(cond-expand
|
|
(chicken
|
|
(import (chicken process))
|
|
(define (set:display set)
|
|
(call-with-output-pipe
|
|
"dot -T png > /tmp/dot.png"
|
|
(lambda (out)
|
|
(letrec
|
|
((D
|
|
(lambda (o)
|
|
(display o out)
|
|
(display o)))
|
|
(dump-data
|
|
(lambda (tree)
|
|
(D "\"")
|
|
(D (set:get tree '=))
|
|
(D "\"")))
|
|
(connect
|
|
(lambda (parent child)
|
|
(if (null? child)
|
|
'()
|
|
(begin
|
|
(dump-data parent)
|
|
(D " -> ")
|
|
(dump-data child)
|
|
(D " ;\n")
|
|
(loop child)))))
|
|
(loop
|
|
(lambda (parent)
|
|
(if (null? parent)
|
|
'()
|
|
(begin
|
|
(connect parent (set:get parent '<))
|
|
(connect parent (set:get parent '>)))))))
|
|
(D "digraph t {\n")
|
|
(loop set)
|
|
(D "}\n"))))
|
|
(system "imv-wayland /tmp/dot.png")))
|
|
(else
|
|
(define set:display
|
|
(lambda (set)
|
|
(display (%set->sexpr set))
|
|
(newline)))))
|
|
|
|
;;; Get the height of a node, handling the empty node.
|
|
(define %set:height
|
|
(lambda (node)
|
|
(if (null? node)
|
|
0
|
|
(set:get node 'h))))
|
|
|
|
;;; Get the difference between the heights of two trees.
|
|
(define %set:height-diff
|
|
(lambda (t1 t2)
|
|
(- (%set:height t1) (%set:height t2))))
|
|
|
|
;;; Get the balance factor of a tree.
|
|
(define %set:bal
|
|
(lambda (t) (%set:height-diff (set:get t '<)
|
|
(set:get t '>))))
|
|
|
|
;;; Set data in node given accessor symbol.
|
|
(define %set:set!
|
|
(lambda (node dir x)
|
|
(vector-set! node (%set:accessor dir) x)))
|
|
|
|
;;; Construct a new tree with data VAL.
|
|
(define %set:node
|
|
(lambda (val dir1 node1 dir2 node2)
|
|
(let ((node (vector val (+ 1
|
|
(max (%set:height node1)
|
|
(%set:height node2)))
|
|
'() '())))
|
|
(%set:set! node dir1 node1)
|
|
(%set:set! node dir2 node2)
|
|
node)))
|
|
|
|
(define set:node-new-val
|
|
(lambda (node newval)
|
|
(%set:node newval
|
|
'< (set:get node '<)
|
|
'> (set:get node '>))))
|
|
|
|
(define %set:invdir
|
|
(lambda (dir)
|
|
(cond
|
|
((eq? dir '<) '>)
|
|
((eq? dir '>) '<)
|
|
(else (error "invalid direction")))))
|
|
|
|
;;; ;;;;;;;;;;;;;;
|
|
;;; Tree rotations
|
|
;;; ;;;;;;;;;;;;;;
|
|
|
|
;;; Rotate NODE to the left (dir = '>) or right (dir = '<).
|
|
(define %set:rotate
|
|
(lambda (node dir)
|
|
(if (null? node)
|
|
#f
|
|
(let ((invdir (%set:invdir dir)))
|
|
(let ((child (set:get node invdir)))
|
|
(let ((to-swap (set:get child dir)))
|
|
(%set:node (set:get child '=)
|
|
dir (%set:node (set:get node '=)
|
|
dir (set:get node dir)
|
|
invdir to-swap)
|
|
invdir (set:get child invdir))))))))
|
|
|
|
;;; ;;;;;;;;;;;;;;;;;;;
|
|
;;; JOIN function for AVL trees.
|
|
;;; ;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;; Handles rebalancing of the tree.
|
|
(define %set:join
|
|
(lambda (heavier val lighter heavier-dir)
|
|
(let ((heavy-val (set:get heavier '=))
|
|
(lighter-dir (%set:invdir heavier-dir)))
|
|
(let ((heavy-heavy (set:get heavier heavier-dir))
|
|
(heavy-light (set:get heavier lighter-dir)))
|
|
(if (<= (abs (%set:height-diff heavy-light lighter)) 1)
|
|
(let ((node (%set:node val
|
|
heavier-dir heavy-light
|
|
lighter-dir lighter)))
|
|
(if (<= (%set:height-diff node heavy-heavy) 1)
|
|
(%set:node heavy-val
|
|
heavier-dir heavy-heavy
|
|
lighter-dir node)
|
|
(%set:rotate (%set:node heavy-val
|
|
heavier-dir heavy-heavy
|
|
lighter-dir
|
|
(%set:rotate node lighter-dir))
|
|
heavier-dir)))
|
|
(let ((new-light (%set:join heavy-light val lighter heavier-dir)))
|
|
(let ((node (%set:node heavy-val
|
|
heavier-dir heavy-heavy
|
|
lighter-dir new-light)))
|
|
(if (<= (abs (%set:bal node)) 1)
|
|
node
|
|
(%set:rotate node heavier-dir)))))))))
|
|
|
|
(define set:join
|
|
(lambda (val dir1 node1 dir2 node2)
|
|
(let ((diff (%set:height-diff node1 node2)))
|
|
(cond
|
|
((> diff 1) (%set:join node1 val node2 dir1))
|
|
((< diff -1) (%set:join node2 val node1 dir2))
|
|
(else (%set:node val dir1 node1 dir2 node2))))))
|
|
|
|
(define set:join2
|
|
(letrec
|
|
((join2
|
|
(lambda (left right)
|
|
(if (null? left)
|
|
right
|
|
(let ((split-last-tree (split-last left)))
|
|
(set:join (set:get split-last-tree '=)
|
|
'< (set:get split-last-tree '<)
|
|
'> right)))))
|
|
(split-last
|
|
(lambda (tree)
|
|
(let ((right (set:get tree '>)))
|
|
(if (null? right)
|
|
tree
|
|
(let ((last (split-last right)))
|
|
(%set:node (set:get last '=)
|
|
'< (set:join (set:get tree '=)
|
|
'< (set:get tree '<)
|
|
'> (set:get last '>))
|
|
'> '())))))))
|
|
join2))
|
|
|
|
(define set:split
|
|
(lambda (<=>)
|
|
(letrec
|
|
((split
|
|
(lambda (set data)
|
|
(if (null? set)
|
|
(%set:node #f '< '() '> '())
|
|
(let ((set-data (set:get set '=)))
|
|
(let ((dir (<=> data set-data)))
|
|
(if (eq? dir '=)
|
|
(set:node-new-val set #t)
|
|
(let ((new-tree (split (set:get set dir) data))
|
|
(invdir (%set:invdir dir)))
|
|
(%set:node (set:get new-tree '=)
|
|
dir (set:get new-tree dir)
|
|
invdir (set:join set-data
|
|
dir (set:get new-tree invdir)
|
|
invdir (set:get set invdir)))))))))))
|
|
split)))
|
|
|
|
;;; ;;;;;;;;;;;;;
|
|
;;; Set functions
|
|
;;; ;;;;;;;;;;;;;
|
|
|
|
;;; Generate union operation from split operation.
|
|
;;; Union prioritizes data in PRIORITY over keys in SECONDARY.
|
|
(define set:union
|
|
(lambda (split)
|
|
(letrec
|
|
((union
|
|
(lambda (priority secondary)
|
|
(cond
|
|
((null? priority) secondary)
|
|
((null? secondary) priority)
|
|
(else
|
|
(let ((key (set:get priority '=)))
|
|
(let ((split-tree (split secondary key)))
|
|
(set:join key
|
|
'< (union (set:get priority '<)
|
|
(set:get split-tree '<))
|
|
'> (union (set:get priority '>)
|
|
(set:get split-tree '>))))))))))
|
|
union)))
|
|
|
|
;;; ;;;;;;;;;;;;;;;;;
|
|
;;; Element functions
|
|
;;; ;;;;;;;;;;;;;;;;;
|
|
|
|
;;; (SET:IN <=>) generates a search function for comparison function <=>.
|
|
;;; (SEARCH TREE DATA) searches TREE for a node that matches DATA.
|
|
;;; It will return the node that contains the matched DATA, or '().
|
|
(define set:in
|
|
(lambda (<=>)
|
|
(lambda (tree data)
|
|
(letrec
|
|
((loop
|
|
(lambda (tree)
|
|
(if (null? tree)
|
|
'()
|
|
(let ((dir (<=> data (set:get tree '=))))
|
|
(if (eq? dir '=)
|
|
tree
|
|
(loop (set:get tree dir))))))))
|
|
(loop tree)))))
|
|
|
|
;;; (SET:UPDATE <=>) generates an update function for <=>.
|
|
;;; (UPDATE TREE DATA UPDATE) inserts a node with data (UPDATE DATA #F)
|
|
;;; into the tree if no node comparing equal to DATA is found, and a node
|
|
;;; with data (UPDATE DATA OLD) if OLD compares equal to NODE.
|
|
(define set:update
|
|
(lambda (<=>)
|
|
(lambda (tree data update)
|
|
(letrec
|
|
((loop
|
|
(lambda (tree)
|
|
(if (null? tree)
|
|
(%set:node (update data '()) '< '() '> '())
|
|
(let ((dir (<=> data (set:get tree '=))))
|
|
(if (eq? dir '=)
|
|
(%set:node (update data tree)
|
|
'< (set:get tree '<)
|
|
'> (set:get tree '>))
|
|
(let ((invdir (%set:invdir dir)))
|
|
(set:join (set:get tree '=)
|
|
dir (loop (set:get tree dir))
|
|
invdir (set:get tree invdir)))))))))
|
|
(loop tree)))))
|
|
|
|
;;; (SET:INSERT <=>) generates an insert function for comparison function
|
|
;;; <=>.
|
|
;;; (INSERT TREE DATA) inserts a node with DATA into TREE. It returns
|
|
;;; (CONS NEWTREE FOUND), where FOUND is the node that was replaced by
|
|
;;; the node, and '() otherwise, and NEWTREE is the new root of the tree.
|
|
(define set:insert
|
|
(lambda (update)
|
|
(lambda (tree node)
|
|
(let ((found '()))
|
|
(let ((newroot (update tree node
|
|
(lambda (data oldnode)
|
|
(set! found oldnode)
|
|
data))))
|
|
(cons newroot found))))))
|
|
|
|
;;; (SET:DELETE <=>) generates a delete function for comparison function
|
|
;;; <=>.
|
|
;;; (DELETE TREE DATA) deletes a node from TREE that compares equal to
|
|
;;; DATA. The function returns (CONS NEWTREE FOUND), where FOUND is the
|
|
;;; deleted node, or '() if not found, and NEWTREE is the root of the new
|
|
;;; tree.
|
|
(define set:delete
|
|
(lambda (<=>)
|
|
(lambda (tree data)
|
|
(let ((found '()))
|
|
(letrec
|
|
((loop
|
|
(lambda (tree)
|
|
(if (null? tree)
|
|
'()
|
|
(let ((dir (<=> data (set:get tree '=))))
|
|
(if (eq? dir '=)
|
|
(begin
|
|
(set! found tree)
|
|
(set:join2 (set:get tree '<)
|
|
(set:get tree '>)))
|
|
(let ((invdir (%set:invdir dir)))
|
|
(set:join (set:get tree '=)
|
|
dir (loop (set:get tree dir))
|
|
invdir (set:get tree invdir)))))))))
|
|
(let ((newtree (loop tree)))
|
|
(cons newtree found)))))))
|
|
|
|
;;; ;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;; Converting sets to maps
|
|
;;;
|
|
;;; The conversion stores (CONS KEY VAL) into each pair.
|
|
;;; ;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;; Convert a <=> for sets to one for maps.
|
|
(define set:<=>-to-map
|
|
(lambda (<=>)
|
|
(lambda (x y)
|
|
(<=> (car x) (car y)))))
|
|
|
|
(define map:key
|
|
(lambda (node)
|
|
(car (set:get node '=))))
|
|
|
|
(define map:val
|
|
(lambda (node)
|
|
(cdr (set:get node '=))))
|
|
|
|
;;; (UPDATE TREE KEY UPDATE*) runs inserts a node with value
|
|
;;; (UPDATE KEY '()) if no node is found comparing equal to KEY, and
|
|
;;; (UPDATE KEY NODE) if NODE compared equal to KEY.
|
|
(define map:update
|
|
(lambda (%update-recursive)
|
|
(lambda (tree key update)
|
|
(%update-recursive tree (cons key '())
|
|
(lambda (_ oldnode)
|
|
(cons key
|
|
(update key oldnode)))))))
|
|
|
|
(define map:insert
|
|
(lambda (%update-recursive)
|
|
(let ((insert (set:insert %update-recursive)))
|
|
(lambda (tree key val)
|
|
(insert tree (cons key val))))))
|
|
|
|
(define map:search
|
|
(lambda (<=>)
|
|
(let ((search (set:in <=>)))
|
|
(lambda (tree key)
|
|
(search tree (cons key '()))))))
|
|
|
|
(define map:delete
|
|
(lambda (<=>)
|
|
(let ((delete (set:delete <=>)))
|
|
(lambda (tree key)
|
|
(delete tree (cons key '()))))))
|
|
|
|
(define map:split
|
|
(lambda (<=>) (set:split <=>)))
|
|
|
|
(define map:union
|
|
(lambda (split) (set:union split)))
|
|
|
|
;;; ;;;;;;;;;;;
|
|
;;; For strings
|
|
;;; ;;;;;;;;;;;
|
|
|
|
(define integer<=>
|
|
(lambda (x y)
|
|
(cond
|
|
((< x y) '<)
|
|
((= x y) '=)
|
|
(else '>))))
|
|
|
|
(define char<=>
|
|
(lambda (x y)
|
|
(integer<=> (char->integer x)
|
|
(char->integer y))))
|
|
|
|
(define string<=>
|
|
(lambda (x y)
|
|
(let ((x-len (string-length x))
|
|
(y-len (string-length y)))
|
|
(letrec ((loop
|
|
(lambda (i)
|
|
(cond
|
|
((and (= i x-len) (= i y-len)) '=)
|
|
((= i x-len) '<)
|
|
((= i y-len) '>)
|
|
(else
|
|
(let ((dir (char<=>
|
|
(string-ref x i)
|
|
(string-ref y i))))
|
|
(if (eq? dir '=)
|
|
(loop (+ i 1))
|
|
dir)))))))
|
|
(loop 0)))))
|
|
|
|
(cond-expand
|
|
((and (not miniscm-unslisp) (not r7rs))
|
|
(define (list-set! lst n val)
|
|
(if (= n 0)
|
|
(set-car! lst val)
|
|
(list-set! (cdr lst) (- n 1) val))))
|
|
(else #f))
|
|
|
|
(define map:string<=> (set:<=>-to-map string<=>))
|
|
(define %smap:update (set:update map:string<=>))
|
|
|
|
(define smap:update (map:update %smap:update))
|
|
(define smap:insert (map:insert %smap:update))
|
|
(define smap:search (map:search map:string<=>))
|
|
(define smap:delete (map:delete map:string<=>))
|
|
|
|
(define %smap:split (map:split map:string<=>))
|
|
(define smap:union (map:union %smap:split))
|
|
|
|
(define smap:insert-many
|
|
(lambda (smap . pairs)
|
|
(fold (lambda (pair smap)
|
|
(car (smap:insert smap (car pair) (cdr pair))))
|
|
smap
|
|
pairs)))
|
|
|
|
;;; ;;;;;
|
|
;;; Tests
|
|
;;; ;;;;;
|
|
|
|
;;; LST is a list of elements of the form
|
|
;;; (KEY VAL ALREADY-IN)
|
|
;;; where ALREADY-IN is #F for an element not in the set, or the value
|
|
;;; that should be in the set.
|
|
|
|
(define %set:operate-all
|
|
(lambda (f tree lst)
|
|
(if (null? lst)
|
|
tree
|
|
(let ((key (list-ref (car lst) 0))
|
|
(val (list-ref (car lst) 1))
|
|
(already-in (list-ref (car lst) 2)))
|
|
(let ((insert-return (f tree key val)))
|
|
(cond
|
|
((and already-in (null? (cdr insert-return)))
|
|
"should have been found")
|
|
((and already-in (not (equal? already-in
|
|
(map:val (cdr insert-return)))))
|
|
(display (list already-in
|
|
insert-return
|
|
(map:val (cdr insert-return))))
|
|
(newline)
|
|
"found is not correct")
|
|
(else (%set:operate-all f (car insert-return) (cdr lst)))))))))
|
|
|
|
(define %set:insert-all
|
|
(lambda (tree lst)
|
|
(%set:operate-all smap:insert tree lst)))
|
|
|
|
(define %set:search-all
|
|
(lambda (tree lst)
|
|
(%set:operate-all (lambda (tree key _)
|
|
(let ((search-res (smap:search tree key)))
|
|
(cons tree search-res))) tree lst)))
|
|
|
|
(define %set:delete-all
|
|
(lambda (tree lst)
|
|
(%set:operate-all (lambda (tree key _)
|
|
(smap:delete tree key)) tree lst)))
|
|
|
|
(define %set:tests
|
|
(list
|
|
(cons "rotate right"
|
|
(lambda ()
|
|
(let ((right (%set:rotate (%set:node 1
|
|
'< (%set:node 2
|
|
'< (%set:node 3
|
|
'< '()
|
|
'> '())
|
|
'> (%set:node 4
|
|
'< '()
|
|
'> '()))
|
|
'> (%set:node 5 '< '() '> '()))
|
|
'>)))
|
|
(cond
|
|
((not (eqv? (set:get right '=) 2)) "bad parent")
|
|
((not (eqv? (set:get (set:get right '>) '=) 1)) "bad right child")
|
|
((not (eqv? (set:get (set:get right '<) '=) 3)) "bad left child")
|
|
((not (eqv? (set:get (set:get (set:get right '>) '>) '=) 5))
|
|
"bad right child of right child")
|
|
((not (eqv? (set:get (set:get (set:get right '>) '<) '=) 4))
|
|
"bad left child of right child")
|
|
(else #t)))))
|
|
(cons "rotate left"
|
|
(lambda ()
|
|
(let ((right (%set:rotate (%set:node 1
|
|
'> (%set:node 2
|
|
'< (%set:node 3
|
|
'< '()
|
|
'> '())
|
|
'> (%set:node 4
|
|
'< '()
|
|
'> '()))
|
|
'< (%set:node 5 '< '() '> '()))
|
|
'<)))
|
|
(cond
|
|
((not (eqv? (set:get right '=) 2)) "bad parent")
|
|
((not (eqv? (set:get (set:get right '>) '=) 4)) "bad right child")
|
|
((not (eqv? (set:get (set:get right '<) '=) 1)) "bad left child")
|
|
((not (eqv? (set:get (set:get (set:get right '<) '>) '=) 3))
|
|
"bad right child of left child")
|
|
((not (eqv? (set:get (set:get (set:get right '<) '<) '=) 5))
|
|
"bad left child of left child")
|
|
(else #t)))))
|
|
(cons "insert then delete"
|
|
(lambda ()
|
|
(let ((insert-return (smap:insert '() "a" 5)))
|
|
(cond
|
|
((not (pair? insert-return)) "invalid insert return")
|
|
((not (null? (cdr insert-return))) "string found in empty tree")
|
|
(else
|
|
(let ((tree (car insert-return)))
|
|
(let ((found (smap:search tree "a")))
|
|
(cond
|
|
((null? found) "string not in tree")
|
|
((not (equal? (map:key tree) "a"))
|
|
"returned key not equal to a")
|
|
((not (equal? (map:val tree) 5))
|
|
"returned value not equal to 5")
|
|
(else
|
|
(let ((delete-return (smap:delete tree "a")))
|
|
(cond
|
|
((not (pair? delete-return))
|
|
"invalid delete return")
|
|
((not (cdr delete-return)) "string not found")
|
|
((not (eqv? (car delete-return) '()))
|
|
"returned tree not null")
|
|
(else #t))))))))))))
|
|
(cons "insert a few unique then delete"
|
|
(lambda ()
|
|
(let ((to-insert (list
|
|
(list "abc" 1 #f)
|
|
(list "abd" 2 #f)
|
|
(list "def" 3 #f)
|
|
(list "123aC" 4 #f)
|
|
(list "qwe" 5 #f)
|
|
(list "123" 5 #f)
|
|
(list "lisp" 6 #f)
|
|
(list "c" 7 #f)
|
|
(list "scm" 8 #f)
|
|
(list "algol" 9 #f)
|
|
(list "asm" 10 #f)
|
|
(list "4" 11 #f)
|
|
(list "asme" 12 #f))))
|
|
(display "insert all") (newline)
|
|
(let ((tree (%set:insert-all '() to-insert)))
|
|
(if (string? tree)
|
|
tree
|
|
(begin
|
|
(for-each (lambda (x)
|
|
(list-set! x 2 (list-ref x 1)))
|
|
to-insert)
|
|
(display "search all") (newline)
|
|
(let ((res (%set:search-all tree to-insert)))
|
|
(if (string? res)
|
|
res
|
|
(begin
|
|
(display "delete all") (newline)
|
|
(let ((tree (%set:delete-all tree to-insert)))
|
|
(cond
|
|
((string? tree) tree)
|
|
((not (null? tree)) "did not delete everything")
|
|
(else #t))))))))))))
|
|
(cons "insert a few, update"
|
|
(lambda ()
|
|
(let ((tree (%set:insert-all '()
|
|
(list
|
|
(list "abcd" 1 #f)
|
|
(list "efgh" 2 #f)
|
|
(list "14293" 3 #f)
|
|
(list "abcde" 4 #f)))))
|
|
(if (string? tree)
|
|
tree
|
|
(let ((tree (smap:update tree
|
|
"abcde"
|
|
(lambda (key oldnode)
|
|
10))))
|
|
(let ((res (%set:search-all tree
|
|
(list
|
|
(list "abcd" 1 1)
|
|
(list "efgh" 2 2)
|
|
(list "14293" 3 3)
|
|
(list "abcde" 10 10)))))
|
|
(if (string? res)
|
|
res
|
|
#t)))))))
|
|
(cons "union a few"
|
|
(lambda ()
|
|
(let ((tree1 (%set:insert-all '()
|
|
(list
|
|
(list "a" 1 #f)
|
|
(list "b" 2 #f)
|
|
(list "c" 3 #f))))
|
|
(tree2 (%set:insert-all '()
|
|
(list
|
|
(list "c" 4 #f)
|
|
(list "d" 5 #f)
|
|
(list "e" 6 #f)))))
|
|
(let ((tree (smap:union tree1 tree2))
|
|
(to-search (list
|
|
(list "a" 1 1)
|
|
(list "b" 2 2)
|
|
(list "c" 3 3)
|
|
(list "d" 5 5)
|
|
(list "e" 6 6))))
|
|
(not (string? (%set:search-all tree to-search)))))))))
|
|
|