#!/usr/bin/python3 from enum import Enum class MalformedArgument(Exception): pass def word_2c(w): """ Negate a non-negative integer using 32 bit two's compliment. :param w: An integer in two's compliment. A non-negative Python integer will work. :return: The negation of the integer stored as a two's compliment integer. """ return (~w + 1) & 0xFFFFFFFF def ti(w): """ Explicitly transform integer into two's compliment representation. :param w: A python integer. :return: The integer in two's compliment. """ return w if w >= 0 else word_wc(-w) def from_2c(w): """ Turn two's compliment word into Python integer. :param w: An integer in 32 bit twos compliment. :return: The integer as a proper Python string. """ if (w >> 31) & 1 == 0: return w return -word_2c(w) class Argument: """ Class of arguments. Not used directly: It is used to store intermediate information during the assembly process. """ def __init__(self, argtype, val, sign=False): """ Initialize an argument. :param argtype: Type of the argument (instance of ArgType). :param val: Python integer value of the argument. :param sign: If the argument should be treated as signed. Otherwise, the integer will be interpreted in execution as an unsigned integer. """ self.at = argtype self.sign = sign self.val = val def __str__(self): return f'({self.at}, {self.sign}, {self.val})' def high_bits(self): """ Returns the high bits that the argument would have in the opcode. """ return int(self.sign) << 1 | (self.at == ArgType.REG) class ArgType(Enum): """ Class denoting the type of an argument to an instruction. """ IMM = 1 """ Immediate values are ones that must be numbers (positive or negative). """ REG = 2 """ Type of registers. """ VAL = 3 """ Type that denotes either immediate values or registers. """ LAB = 4 """ Type of labels. """ def gettype(s): """ Parses the type of the argument represented as a string and returns a tuple with the first the first element being the type and the second element being the integer value of the argument. Valid parameters are: * `r` followed by a nonnegative integer (register) * `l` followed by a nonnegative integer (label) * any integer (immediate value) :param s: String representing the argument. :return: The Argument object representing the argument. :raises MalformedArgument: """ if s.isnumeric(): return Argument(ArgType.IMM, int(s)) elif s[0] == "-" and s[1:].isnumeric(): return Argument(ArgType.IMM, word_2c(int(s[1:])), True) elif s[0] == 'r' and s[1:].isnumeric(): return Argument(ArgType.REG, int(s[1:])) elif s[0] == 'l' and s[1:].isnumeric(): return Argument(ArgType.LAB, int(s[1:])) else: raise MalformedArgument(s) def typecheck(self, s): """ Parses the type of the string and returns it if it fits the type of the enum value. :param s: String argument representing an argument. :return: The Argument class containing the object, or None if the string does not fit the type of self. """ t = ArgType.gettype(s) if self == ArgType.VAL: if t.at == ArgType.REG or t.at == ArgType.IMM: return t else: return None elif t.at == self: return t else: return None class OpcodeException(Exception): pass class TypecheckLenException(Exception): """ Exception thrown when arguments to an instruction are of the incorrect length. """ def __init__(self, opcode, insargs, argtypelen): self.opcode = opcode self.insargs = insargs self.argtypelen = argtypelen def __str__(self): return f'''\ arguments {self.insargs} to opcode {self.opcode} not of length {self.argtypelen}\ ''' class TypecheckException(Exception): """ Exception thrown when an argument to an instruction are of the incorrect type. """ def __init__(self, argtype, sarg, i, opcode): self.argtype = argtype self.sarg = sarg self.i = i self.opcode = opcode def __str__(self): return f'''\ opcode {self.opcode} has invalid value {self.sarg} (expected {self.argtype} in position {self.i})\ ''' class Instruction(Enum): """ Class of microcode instructions. The first number is the opcode and the suceeding values are the types of each of the arguments. The first argument is the opcode and the second argument is what function is used to compile the instruction (some instructions are actually versions of other instructions). """ NOP = 0, "_render_default" PUSH = 1, "_render_default", ArgType.VAL POP = 2, "_render_default", ArgType.REG ADD = 3, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL MOV = "ADD", "_render_mov", ArgType.REG, ArgType.VAL MUL = 4, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL DIV = 5, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL SDIV = "DIV", "_render_change_args", ArgType.REG, ArgType.VAL, ArgType.VAL SYS = 6, "_render_default", ArgType.VAL CLB = 7, "_render_default", ArgType.LAB JL = 8, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL JLS = "JL", "_render_change_args", ArgType.LAB, ArgType.VAL, ArgType.VAL JLE = 9, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL JLES = "JLE", "_render_change_args", ArgType.LAB, ArgType.VAL, ArgType.VAL JE = 10, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL J = "JE", "_render_j", ArgType.LAB JNE = 11, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL def __int__(self): """ Returns the opcode associated with the Instruction. If it is a virtual instruction, it will resolve the string name of the opcode and return its opcode. """ if type(self.opcode) is int: return self.opcode return int(Instruction[self.opcode]) def __init__(self, opcode, renderfun, *args): """ Initialize an Instruction. Do not call this function: it is used to make enum values. To add a new instruction, modify the Instruction enum. This function sometimes takes string arguments because certain values may not be loaded until later. :param opcode: Opcode of the instruction, or a string containing the case-sensitive name of the instruction from which this instruction derives from. :param renderfun: a string with the name of a function in the class that returns the instruction opcode. :param *args: Type of each argument to the instruction. The amount of arguments denotes the amount of instructions. """ if type(opcode) is int and (opcode > 0x7F or opcode < 0): raise OpcodeException(opcode) self.opcode = opcode self.argtypes = args self.render = getattr(self, renderfun) def typecheck(self, sargs): """ Pass arguments to the instruction and check if the arguments are correct. :param sargs: List of arguments to the instruction as strings. :return: List of arguments (as Argument objects). :raises TypeCheckException: :raises TypecheckLenException: """ rargs = [] if len(sargs) != len(self.argtypes): raise TypecheckLenException(self.opcode, sargs, len(self.argtypes)) for i in range(0, len(sargs)): t = self.argtypes[i].typecheck(sargs[i]) if t is None: raise TypecheckException(self.argtypes[i], sargs[i], i, self.opcode) rargs.append(t) return rargs def _render_mov(self, args): args = [args[0], args[1], Argument(ArgType.IMM, 0)] return Instruction[self.opcode].render(args) def _render_j(self, args): args = [args[0], Argument(ArgType.IMM, 0), Argument(ArgType.IMM, 0)] return Instruction[self.opcode].render(args) def _render_change_args(self, args): for i in range(0,len(args)): if args[i].at != ArgType.LAB: args[i].sign = True return Instruction[self.opcode].render(args) def _render_default(self, args): b = bytes([self.opcode]) for a in args: l = 2 if a.val < 0x80 else None bex = encode_pseudo_utf8(a.val, a.high_bits(), l) b = b + bex return b + bytes([0]) encoding_types = { # start mask B 2: (0x7F, 0xC0, 7), 3: (0xFFF, 0xE0, 12), 4: (0x1FFFF, 0xF0, 17), 5: (0x3FFFFF, 0xF8, 22), 6: (0x7FFFFFF, 0xFC, 27), 7: (0xFFFFFFFF, 0xFE, 32), # B : Total number of bits excluding high bits } class InvalidNumberException(Exception): pass class InvalidLengthException(Exception): pass def encode_pseudo_utf8(n, high_bits, to): if n < 0: raise InvalidNumberException(n) if to is None or to < 0: for k in sorted(encoding_types): if n <= encoding_types[k][0]: to = k break if to is None: raise InvalidNumberException(n) if to > 8 or to < 0: raise InvalidLengthException(to) elif to == 1: if n < 0x80: return bytes([n]) else: raise InvalidNumberException(n,to) (maxval, start_byte, n_tot) = encoding_types[to] if n > maxval or high_bits > 15: raise InvalidNumberException(n, high_bits) n = n | (high_bits << n_tot) all_bytes = [] for i in range(0, to - 1): all_bytes.append(0x80 | (n & 0x3F)) n >>= 6 all_bytes.append(start_byte | n) return bytes(reversed(all_bytes)) class RangeCheckException(Exception): pass class Line: def __init__(self, ins, args): self.ins = ins self.args = args def check_line(self, lablen, reglen): for a in self.args: if a.at == ArgType.REG: if a.val < 0 or a.val >= reglen: raise RangeCheckException(a.at, a.val, reglen) elif a.at == ArgType.LAB: if a.val < 0 or a.val >= lablen: raise RangeCheckException(a.at, a.val, reglen) def __call__(self): return self.ins.render(self.args) class InstructionNotFoundException(Exception): pass class Program: def asm_push_line(self, ins, args): l = Line(ins, args) l.check_line(self.lablen, self.reglen) self.asm.append(l) def parse_asm_line(self, line): line = line.split() line[0] = line[0].casefold() try: # TODO: is there no better way to do this in Python? ins = Instruction[line[0].upper()] except Exception as e: raise InstructionNotFoundException(line[0]) args_w_type = ins.typecheck(line[1:]) self.asm_push_line(ins, args_w_type) def parse_lines(self, lines): for l in lines: self.parse_asm_line(l) def __call__(self): b = bytes() for line in self.asm: b = b + line() return b def __init__(self, lablen=16, reglen=16): self.asm = [] self.lablen = lablen self.reglen = reglen