creole/asm/creole.py

265 lines
7.2 KiB
Python

#!/usr/bin/python3
from enum import Enum
class MalformedArgument(Exception):
pass
def word_2c(w):
""" Negate a non-negative integer using two's compliment. """
return (~w + 1) & 0xFFFFFFFF
def ti(w):
""" Explicitly transform integer into two's compliment representation. """
return w if w >= 0 else word_wc(-w)
def from_2c(w):
""" Turn two's compliment word into Python integer. """
if (w >> 31) & 1 == 0:
return w
return -word_2c(w)
class Argument:
def __init__(self, argtype, val, sign=False):
self.at = argtype
self.sign = sign
self.val = val
def __str__(self):
return f'({self.at}, {self.sign}, {self.val})'
def high_bits(self):
return int(self.sign) << 1 | (self.at == ArgType.REG)
class ArgType(Enum):
""" Class denoting the type of an argument to an instruction. """
IMM = 1
""" Immediate values are ones that must be numbers (positive or negative). """
REG = 2
""" Type of registers. """
VAL = 3
""" Type that denotes either immediate values or registers. """
LAB = 4
""" Type of labels. """
def gettype(s):
""" Parses the type of the argument represented as a string
and returns a tuple with the first the first element being
the type and the second element being the integer value of
the argument.
"""
if s.isnumeric():
return Argument(ArgType.IMM, int(s))
elif s[0] == "-" and s[1:].isnumeric():
return Argument(ArgType.IMM, word_2c(int(s[1:])))
elif s[0] == 'r' and s[1:].isnumeric():
return Argument(ArgType.REG, int(s[1:]))
elif s[0] == 'l' and s[1:].isnumeric():
return Argument(ArgType.LAB, int(s[1:]))
else:
raise MalformedArgument(s)
def typecheck(self, s):
""" Parses the type of the string and returns it if it fits
the type of the enum value. """
t = ArgType.gettype(s)
if self == ArgType.VAL:
if t.at == ArgType.REG or t.at == ArgType.IMM:
return t
else:
return None
elif t.at == self:
return t
else:
return None
class OpcodeException(Exception):
pass
class TypecheckLenException(Exception):
def __init__(self, opcode, insargs, argtypelen):
self.opcode = opcode
self.insargs = insargs
self.argtypelen = argtypelen
def __str__(self):
return f'arguments {insargs} to opcode {self.opcode} not length {self.argtypelen}'
class TypecheckException(Exception):
def __init__(self, argtype, sarg, i, opcode):
self.argtype = argtype
self.sarg = sarg
self.i = i
self.opcode = opcode
def __str__(self):
return f'opcode {self.opcode} has invalid value {self.sarg} (expected {self.argtype} in position {self.i}'
class Instruction(Enum):
""" Class of microcode instructions. The first number is the opcode
and the suceeding values are the types of each of the
arguments. The first argument is the opcode and the second
argument is if the argument is a signed variant of another
opcode. """
NOP = 0, False
PUSH = 1, False, ArgType.VAL
POP = 2, False, ArgType.REG
ADD = 3, False, ArgType.REG, ArgType.VAL, ArgType.VAL
MUL = 4, False, ArgType.REG, ArgType.VAL, ArgType.VAL
DIV = 5, False, ArgType.REG, ArgType.VAL, ArgType.VAL
SDIV = "DIV", True, ArgType.REG, ArgType.VAL, ArgType.VAL
SYS = 6, False, ArgType.VAL
CLB = 7, False, ArgType.LAB
JL = 8, False, ArgType.LAB, ArgType.VAL, ArgType.VAL
JLS = "JL", True, ArgType.LAB, ArgType.VAL, ArgType.VAL
JLE = 9, False, ArgType.LAB, ArgType.VAL, ArgType.VAL
JLES = "JLE", True, ArgType.LAB, ArgType.VAL, ArgType.VAL
JE = 10, False, ArgType.LAB, ArgType.VAL, ArgType.VAL
JNE = 11, False, ArgType.LAB, ArgType.VAL, ArgType.VAL
def __int__(self):
return self.opcode
def __init__(self, opcode, signed_instruction, *args):
if type(opcode) is int and (opcode > 0x7F or opcode < 0):
raise OpcodeException(opcode)
self.opcode = opcode
self.argtypes = args
if signed_instruction:
self.render = self._render_change_args
else:
self.render = self._default_render
def typecheck(self, sargs):
""" Pass arguments to the instruction and check if the
arguments are correct. """
rargs = []
if len(sargs) != len(self.argtypes):
raise TypecheckLenException(self.opcode, sargs,
len(self.argtypes))
for i in range(0, len(sargs)):
t = self.argtypes[i].typecheck(sargs[i])
if t is None:
raise TypecheckException(self.argtypes[i],
sargs[i],
i, self.opcode)
rargs.append(t)
return rargs
# The following will be called using OPCODE.render() instead of being
# called directly.
def _render_change_args(self, args):
for i in range(0,len(args)):
if args[i].at != ArgType.LAB:
args[i].sign = True
return Instruction[self.opcode].render(args)
def _default_render(self, args):
b = bytes([self.opcode])
for a in args:
l = 2 if a.val < 0x80 else None
bex = encode_pseudo_utf8(a.val, a.high_bits(), l)
b = b + bex
return b + bytes([0])
encoding_types = {
# start mask B
2: (0x7F, 0xC0, 7),
3: (0xFFF, 0xE0, 12),
4: (0x1FFFF, 0xF0, 17),
5: (0x3FFFFF, 0xF8, 22),
6: (0x7FFFFFF, 0xFC, 27),
7: (0xFFFFFFFF, 0xFE, 32),
# B : Total number of bits excluding high bits
}
class InvalidNumberException(Exception):
pass
class InvalidLengthException(Exception):
pass
def encode_pseudo_utf8(n, high_bits, to):
if n < 0:
raise InvalidNumberException(n)
if to is None or to < 0:
for k in sorted(encoding_types):
if n <= encoding_types[k][0]:
to = k
break
if to is None:
raise InvalidNumberException(n)
if to > 8 or to < 0:
raise InvalidLengthException(to)
elif to == 1:
if n < 0x80:
return bytes([n])
else:
raise InvalidNumberException(n,to)
(maxval, start_byte, n_tot) = encoding_types[to]
if n > maxval or high_bits > 15:
raise InvalidNumberException(n, high_bits)
n = n | (high_bits << n_tot)
all_bytes = []
for i in range(0, to - 1):
all_bytes.append(0x80 | (n & 0x3F))
n >>= 6
all_bytes.append(start_byte | n)
return bytes(reversed(all_bytes))
class RangeCheckException(Exception):
pass
class Line:
def __init__(self, ins, args):
self.ins = ins
self.args = args
def check_line(self, lablen, reglen):
for a in self.args:
if a.at == ArgType.REG:
if a.val < 0 or a.val >= reglen:
raise RangeCheckException(a.at,
a.val,
reglen)
elif a.at == ArgType.LAB:
if a.val < 0 or a.val >= lablen:
raise RangeCheckException(a.at,
a.val,
reglen)
def __call__(self):
return self.ins.render(self.args)
class InstructionNotFoundException(Exception):
pass
class Program:
def asm_push_line(self, ins, args):
l = Line(ins, args)
l.check_line(self.lablen, self.reglen)
self.asm.append(l)
def parse_asm_line(self, line):
line = line.split()
line[0] = line[0].casefold()
try:
# TODO: is there no better way to do this in Python?
ins = Instruction[line[0].upper()]
except Exception as e:
raise InstructionNotFoundException(line[0])
args_w_type = ins.typecheck(line[1:])
self.asm_push_line(ins, args_w_type)
def parse_lines(self, lines):
for l in lines:
self.parse_asm_line(l)
def __call__(self):
b = bytes()
for line in self.asm:
b = b + line()
return b
def __init__(self, lablen=16, reglen=16):
self.asm = []
self.lablen = lablen
self.reglen = reglen