2253 lines
49 KiB
C++
2253 lines
49 KiB
C++
|
// gb.hpp - v0.01 - public domain C++11 helper library - no warranty implied; use at your own risk
|
||
|
// (Experimental) A C++11 helper library without STL geared towards game development
|
||
|
//
|
||
|
// Version History:
|
||
|
// 0.01 - Initial Version
|
||
|
//
|
||
|
// LICENSE
|
||
|
//
|
||
|
// This software is in the public domain. Where that dedication is not
|
||
|
// recognized, you are granted a perpetual, irrevocable license to copy,
|
||
|
// distribute, and modify this file as you see fit.
|
||
|
//
|
||
|
// WARNING
|
||
|
//
|
||
|
// This library is highly experimental and features may not work as expected.
|
||
|
// This also means that many functions are not documented.
|
||
|
//
|
||
|
#ifndef GB_INCLUDE_GB_HPP
|
||
|
#define GB_INCLUDE_GB_HPP
|
||
|
|
||
|
#if !defined(__cplusplus) && __cplusplus >= 201103L
|
||
|
#error This library is only for C++11 and above
|
||
|
#endif
|
||
|
|
||
|
// NOTE(bill): Because static means three different things in C/C++
|
||
|
// Great Design(!)
|
||
|
#define global static
|
||
|
#define internal static
|
||
|
#define local_persist static
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
#define _ALLOW_KEYWORD_MACROS
|
||
|
|
||
|
#if !defined(alignof) // Needed for MSVC 2013
|
||
|
#define alignof(x) __alignof(x)
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// System OS ///
|
||
|
////////////////////////////////
|
||
|
#define WIN32_LEAN_AND_MEAN 1
|
||
|
|
||
|
#if defined(_WIN32) || defined(_WIN64)
|
||
|
#define GB_SYSTEM_WINDOWS
|
||
|
#define NOMINMAX
|
||
|
|
||
|
#elif defined(__APPLE__) && defined(__MACH__)
|
||
|
#define GB_SYSTEM_OSX
|
||
|
|
||
|
#elif defined(__unix__)
|
||
|
#define GB_SYSTEM_UNIX
|
||
|
|
||
|
#if defined(__linux__)
|
||
|
#define GB_SYSTEM_LINUX
|
||
|
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
|
||
|
#define GB_SYSTEM_FREEBSD
|
||
|
#else
|
||
|
#error This UNIX operating system is not supported by gb.hpp
|
||
|
#endif
|
||
|
#else
|
||
|
#error This operating system is not supported by gb.hpp
|
||
|
#endif
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Environment Bit Size ///
|
||
|
////////////////////////////////
|
||
|
#if defined(_WIN32) || defined(_WIN64)
|
||
|
#if defined(_WIN64)
|
||
|
#define GB_ARCH_64_BIT
|
||
|
#else
|
||
|
#define GB_ARCH_32_BIT
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
// TODO(bill): Check if this KEPLER_ENVIRONMENT works on clang
|
||
|
#if defined(__GNUC__)
|
||
|
#if defined(__x86_64__) || defined(__ppc64__)
|
||
|
#define GB_ARCH_64_BIT
|
||
|
#else
|
||
|
#define GB_ARCH_32_BIT
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#define GB_IS_POWER_OF_TWO(x) ((x) != 0) && !((x) & ((x) - 1))
|
||
|
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
#define GB_ASSERT(x, ...) ((void)(gb__assert_handler((x), #x, __FILE__, __LINE__, ##__VA_ARGS__)))
|
||
|
#else
|
||
|
#define GB_ASSERT(x, ...) ((void)sizeof(x))
|
||
|
#endif
|
||
|
|
||
|
extern "C" void
|
||
|
gb__assert_handler(bool condition, const char* condition_str,
|
||
|
const char* filename, size_t line,
|
||
|
const char* error_text = nullptr, ...);
|
||
|
|
||
|
#include <stdint.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
#include <windows.h>
|
||
|
#else
|
||
|
#include <pthread.h>
|
||
|
#endif
|
||
|
|
||
|
namespace gb
|
||
|
{
|
||
|
////////////////////////////////
|
||
|
/// Types ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
using u8 = uint8_t;
|
||
|
using s8 = int8_t;
|
||
|
using u16 = uint16_t;
|
||
|
using s16 = int16_t;
|
||
|
using u32 = uint32_t;
|
||
|
using s32 = int32_t;
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
using s64 = signed __int64;
|
||
|
using u64 = unsigned __int64;
|
||
|
#else
|
||
|
using s64 = int64_t;
|
||
|
using u64 = uint64_t;
|
||
|
#endif
|
||
|
|
||
|
using f32 = float;
|
||
|
using f64 = double;
|
||
|
|
||
|
#ifdef GB_B8_AS_BOOL
|
||
|
using b8 = bool;
|
||
|
#else
|
||
|
using b8 = s8;
|
||
|
#endif
|
||
|
using b32 = s32;
|
||
|
|
||
|
// NOTE(bill): (std::)size_t is not used not because it's a bad concept but on
|
||
|
// the platforms that I will be using:
|
||
|
// sizeof(size_t) == sizeof(usize) == sizeof(ssize)
|
||
|
// NOTE(bill): This also allows for a signed version of size_t which is similar
|
||
|
// to ptrdiff_t
|
||
|
// NOTE(bill): If (u)intptr is a better fit, please use that.
|
||
|
// NOTE(bill): Also, I hate the `_t` suffix
|
||
|
#if defined(GB_ARCH_64_BIT)
|
||
|
using ssize = s64;
|
||
|
using usize = u64;
|
||
|
#elif defined(GB_ARCH_32_BIT)
|
||
|
using ssize = s32;
|
||
|
using usize = u32;
|
||
|
#else
|
||
|
#error Unknown architecture bit size
|
||
|
#endif
|
||
|
|
||
|
static_assert(sizeof(usize) == sizeof(size_t),
|
||
|
"`usize` is not the same size as `size_t`");
|
||
|
static_assert(sizeof(ssize) == sizeof(usize),
|
||
|
"`ssize` is not the same size as `usize`");
|
||
|
|
||
|
using intptr = intptr_t;
|
||
|
using uintptr = uintptr_t;
|
||
|
|
||
|
using ptrdiff = ptrdiff_t;
|
||
|
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// C++11 Move Semantics ///
|
||
|
////////////////////////////////
|
||
|
template <typename T> struct Remove_Reference { using Type = T; };
|
||
|
template <typename T> struct Remove_Reference<T&> { using Type = T; };
|
||
|
template <typename T> struct Remove_Reference<T&&> { using Type = T; };
|
||
|
|
||
|
template <typename T>
|
||
|
inline T&&
|
||
|
forward(typename Remove_Reference<T>::Type& t)
|
||
|
{
|
||
|
return static_cast<T &&>(t);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T&&
|
||
|
forward(typename Remove_Reference<T>::Type&& t)
|
||
|
{
|
||
|
return static_cast<T &&>(t);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline typename Remove_Reference<T>::Type&&
|
||
|
move(T&& t)
|
||
|
{
|
||
|
return static_cast<typename Remove_Reference<T>::Type&&>(t);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Defer ///
|
||
|
////////////////////////////////
|
||
|
namespace impl
|
||
|
{
|
||
|
template <typename Fn>
|
||
|
struct Defer
|
||
|
{
|
||
|
Fn fn;
|
||
|
|
||
|
Defer(Fn&& fn) : fn{forward<Fn>(fn)} {}
|
||
|
~Defer() { fn(); };
|
||
|
};
|
||
|
|
||
|
template <typename Fn>
|
||
|
Defer<Fn>
|
||
|
defer_fn(Fn&& fn) { return Defer<Fn>(forward<Fn>(fn)); }
|
||
|
} // namespace impl
|
||
|
} // namespace gb
|
||
|
|
||
|
#define GB_DEFER_1(x, y) x##y
|
||
|
#define GB_DEFER_2(x, y) GB_DEFER_1(x, y)
|
||
|
#define GB_DEFER_3(x) GB_DEFER_2(GB_DEFER_2(x, __COUNTER__), __LINE__)
|
||
|
#define defer(code) auto GB_DEFER_3(_defer_) = gb::impl::defer_fn([&](){code;})
|
||
|
|
||
|
namespace gb
|
||
|
{
|
||
|
////////////////////////////////
|
||
|
/// Memory ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
struct Mutex
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
HANDLE win32_mutex;
|
||
|
#else
|
||
|
pthread_mutex_t posix_mutex;
|
||
|
#endif
|
||
|
|
||
|
Mutex();
|
||
|
~Mutex();
|
||
|
};
|
||
|
|
||
|
void lock_mutex(Mutex& mutex);
|
||
|
bool try_lock_mutex(Mutex& mutex);
|
||
|
void unlock_mutex(Mutex& mutex);
|
||
|
|
||
|
#define GB_DEFAULT_ALIGNMENT 4
|
||
|
|
||
|
inline void*
|
||
|
align_forward(void* ptr, usize align)
|
||
|
{
|
||
|
GB_ASSERT(GB_IS_POWER_OF_TWO(align));
|
||
|
|
||
|
uintptr p = (uintptr)ptr;
|
||
|
|
||
|
const usize modulo = p % align;
|
||
|
if (modulo)
|
||
|
p += (uintptr)(align - modulo);
|
||
|
|
||
|
return (void*)p;
|
||
|
}
|
||
|
|
||
|
struct Allocator
|
||
|
{
|
||
|
Allocator() {}
|
||
|
virtual ~Allocator() {}
|
||
|
|
||
|
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT) = 0;
|
||
|
virtual void dealloc(void* ptr) = 0;
|
||
|
virtual ssize allocated_size(const void* ptr) = 0;
|
||
|
virtual ssize total_allocated() = 0;
|
||
|
|
||
|
private:
|
||
|
// Delete copying
|
||
|
Allocator(const Allocator&) = delete;
|
||
|
Allocator& operator=(const Allocator&) = delete;
|
||
|
};
|
||
|
|
||
|
inline void*
|
||
|
alloc(Allocator& a, usize size, usize align = GB_DEFAULT_ALIGNMENT)
|
||
|
{
|
||
|
return a.alloc(size, align);
|
||
|
}
|
||
|
|
||
|
inline void
|
||
|
dealloc(Allocator& a, void* ptr)
|
||
|
{
|
||
|
return a.dealloc(ptr);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T*
|
||
|
alloc_struct(Allocator& a)
|
||
|
{
|
||
|
return static_cast<T*>a.alloc(sizeof(T), alignof(T));
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename T>
|
||
|
inline T*
|
||
|
alloc_array(Allocator& a, usize count)
|
||
|
{
|
||
|
return static_cast<T*>(alloc(a, count * sizeof(T), alignof(T)));
|
||
|
}
|
||
|
|
||
|
#define GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE (usize)(-1)
|
||
|
|
||
|
struct Heap_Allocator : Allocator
|
||
|
{
|
||
|
struct Header
|
||
|
{
|
||
|
ssize size;
|
||
|
};
|
||
|
|
||
|
Mutex mutex = Mutex{};
|
||
|
ssize total_allocated_count = 0;
|
||
|
ssize allocation_count = 0;
|
||
|
|
||
|
Heap_Allocator() = default;
|
||
|
|
||
|
virtual ~Heap_Allocator();
|
||
|
|
||
|
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
|
||
|
virtual void dealloc(void* ptr);
|
||
|
virtual ssize allocated_size(const void* ptr);
|
||
|
virtual ssize total_allocated();
|
||
|
};
|
||
|
|
||
|
|
||
|
struct Arena_Allocator : Allocator
|
||
|
{
|
||
|
ssize base_size;
|
||
|
u8* base;
|
||
|
ssize total_allocated_count;
|
||
|
ssize temp_count;
|
||
|
|
||
|
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
|
||
|
virtual void dealloc(void* ptr);
|
||
|
virtual ssize allocated_size(const void* ptr);
|
||
|
virtual ssize total_allocated();
|
||
|
|
||
|
virtual usize get_alignment_offset(usize align = GB_DEFAULT_ALIGNMENT);
|
||
|
virtual usize get_remaining_space(usize align = GB_DEFAULT_ALIGNMENT);
|
||
|
void check();
|
||
|
};
|
||
|
|
||
|
inline void
|
||
|
init_arena_allocator(Arena_Allocator& arena, void* base, usize base_size)
|
||
|
{
|
||
|
arena.base_size = base_size;
|
||
|
arena.base = (u8*)base;
|
||
|
arena.temp_count = 0;
|
||
|
arena.total_allocated_count = 0;
|
||
|
}
|
||
|
|
||
|
struct Temporary_Arena_Memory
|
||
|
{
|
||
|
Arena_Allocator* arena;
|
||
|
ssize original_count;
|
||
|
|
||
|
explicit Temporary_Arena_Memory(Arena_Allocator& arena_)
|
||
|
: arena(&arena_)
|
||
|
, original_count(arena_.total_allocated_count)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
~Temporary_Arena_Memory()
|
||
|
{
|
||
|
GB_ASSERT(arena->total_allocated() >= original_count);
|
||
|
arena->total_allocated_count = original_count;
|
||
|
GB_ASSERT(arena->temp_count > 0);
|
||
|
arena->temp_count--;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
inline Temporary_Arena_Memory
|
||
|
make_temporary_arena_memory(Arena_Allocator& arena)
|
||
|
{
|
||
|
return Temporary_Arena_Memory{arena};
|
||
|
}
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Array ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
template <typename T>
|
||
|
struct Array
|
||
|
{
|
||
|
Allocator* allocator;
|
||
|
ssize count;
|
||
|
ssize allocation;
|
||
|
T* data;
|
||
|
|
||
|
virtual ~Array() { if (allocator) dealloc(*allocator, data); }
|
||
|
|
||
|
const T& operator[](usize index) const { return data[index]; }
|
||
|
T& operator[](usize index) { return data[index]; }
|
||
|
};
|
||
|
|
||
|
template <typename T> Array<T> make_array(Allocator& allocator, usize count = 0);
|
||
|
template <typename T> void free_array(Array<T>& array);
|
||
|
|
||
|
template <typename T> void append_array(Array<T>& a, const T& item);
|
||
|
template <typename T> void append_array(Array<T>& a, const T* items, usize count);
|
||
|
|
||
|
template <typename T> void pop_back_array(Array<T>& a);
|
||
|
|
||
|
template <typename T> inline T* begin(Array<T>& a) { return a.data; }
|
||
|
template <typename T> inline const T* begin(const Array<T>& a) { return a.data; }
|
||
|
|
||
|
template <typename T> inline T* end(Array<T>& a) { return a.data + a.count; }
|
||
|
template <typename T> inline const T* end(const Array<T>& a) { return a.data + a.count; }
|
||
|
|
||
|
template <typename T> void clear_array(Array<T>& a);
|
||
|
template <typename T> void resize_array(Array<T>& a, usize count);
|
||
|
template <typename T> void reserve_array(Array<T>& a, usize allocation);
|
||
|
template <typename T> void set_array_allocation(Array<T>& a, usize allocation);
|
||
|
template <typename T> void grow_array(Array<T>& a, usize min_allocation = 0);
|
||
|
|
||
|
|
||
|
template <typename T>
|
||
|
inline Array<T>
|
||
|
make_array(Allocator& allocator, usize count)
|
||
|
{
|
||
|
Array<T> array = {};
|
||
|
array.allocator = &allocator;
|
||
|
if (count > 0)
|
||
|
{
|
||
|
array.data = alloc_array<T>(allocator, count);
|
||
|
if (array.data)
|
||
|
{
|
||
|
array.count = array.allocation = count;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return array;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
dealloc_array(Array<T>& array)
|
||
|
{
|
||
|
if (array.allocator)
|
||
|
dealloc(*array.allocator, array.data);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
append_array(Array<T>& a, const T& item)
|
||
|
{
|
||
|
if (a.allocation < a.count + 1)
|
||
|
grow_array(a);
|
||
|
a.data[a.count++] = item;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
append_array(Array<T>& a, const T* items, usize count)
|
||
|
{
|
||
|
if (a.allocation <= a.count + count)
|
||
|
grow_array(a, a.count + count);
|
||
|
|
||
|
memcpy(&a.data[a.count], items, count * sizeof(T));
|
||
|
a.count += count;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
pop_back_array(Array<T>& a)
|
||
|
{
|
||
|
GB_ASSERT(a.count > 0);
|
||
|
|
||
|
a.count--;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
clear_array(Array<T>& a)
|
||
|
{
|
||
|
resize_array(a, 0);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
resize_array(Array<T>& a, usize count)
|
||
|
{
|
||
|
if (a.allocation < (ssize)count)
|
||
|
grow_array(a, count);
|
||
|
a.count = count;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
reserve_array(Array<T>& a, usize allocation)
|
||
|
{
|
||
|
if (a.allocation < (ssize)allocation)
|
||
|
set_array_allocation(a, allocation);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
set_array_allocation(Array<T>& a, usize allocation)
|
||
|
{
|
||
|
if ((ssize)allocation == a.allocation)
|
||
|
return;
|
||
|
|
||
|
if ((ssize)allocation < a.count)
|
||
|
resize_array(a, allocation);
|
||
|
|
||
|
T* data = nullptr;
|
||
|
if (allocation > 0)
|
||
|
{
|
||
|
data = alloc_array<T>(*a.allocator, allocation);
|
||
|
memcpy(data, a.data, a.count * sizeof(T));
|
||
|
}
|
||
|
dealloc(*a.allocator, a.data);
|
||
|
a.data = data;
|
||
|
a.allocation = allocation;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void
|
||
|
grow_array(Array<T>& a, usize min_allocation)
|
||
|
{
|
||
|
usize allocation = 2 * a.allocation + 2;
|
||
|
if (allocation < min_allocation)
|
||
|
allocation = min_allocation;
|
||
|
set_array_allocation(a, allocation);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Math Types ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
struct Vector2
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
struct { f32 x, y; };
|
||
|
f32 data[2];
|
||
|
};
|
||
|
|
||
|
inline const f32& operator[](usize index) const { return data[index]; }
|
||
|
inline f32& operator[](usize index) { return data[index]; }
|
||
|
};
|
||
|
|
||
|
struct Vector3
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
struct { f32 x, y, z; };
|
||
|
Vector2 xy;
|
||
|
f32 data[3];
|
||
|
};
|
||
|
|
||
|
inline const f32& operator[](usize index) const { return data[index]; }
|
||
|
inline f32& operator[](usize index) { return data[index]; }
|
||
|
};
|
||
|
|
||
|
struct Vector4
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
struct { f32 x, y, z, w; };
|
||
|
struct { Vector2 xy, zw; };
|
||
|
Vector3 xyz;
|
||
|
f32 data[4];
|
||
|
};
|
||
|
|
||
|
inline const f32& operator[](usize index) const { return data[index]; }
|
||
|
inline f32& operator[](usize index) { return data[index]; }
|
||
|
};
|
||
|
|
||
|
struct Quaternion
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
struct { f32 x, y, z, w; };
|
||
|
Vector3 xyz;
|
||
|
f32 data[4];
|
||
|
};
|
||
|
};
|
||
|
|
||
|
|
||
|
struct Matrix4
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
struct { Vector4 x, y, z, w; };
|
||
|
Vector4 column[4];
|
||
|
f32 data[16];
|
||
|
};
|
||
|
|
||
|
inline const Vector4& operator[](usize index) const { return column[index]; }
|
||
|
inline Vector4& operator[](usize index) { return column[index]; }
|
||
|
};
|
||
|
|
||
|
|
||
|
struct Euler_Angles
|
||
|
{
|
||
|
// NOTE(bill): All angles in radians
|
||
|
f32 pitch;
|
||
|
f32 yaw;
|
||
|
f32 roll;
|
||
|
};
|
||
|
|
||
|
extern const Vector2 VECTOR2_ZERO;
|
||
|
extern const Vector3 VECTOR3_ZERO;
|
||
|
extern const Vector4 VECTOR4_ZERO;
|
||
|
extern const Quaternion QUATERNION_IDENTITY;
|
||
|
extern const Matrix4 MATRIX4_IDENTITY;
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Math Type Op Overloads ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
// Vector2 Operators
|
||
|
bool operator==(const Vector2& a, const Vector2& b);
|
||
|
bool operator!=(const Vector2& a, const Vector2& b);
|
||
|
|
||
|
Vector2 operator-(const Vector2& a);
|
||
|
|
||
|
Vector2 operator+(const Vector2& a, const Vector2& b);
|
||
|
Vector2 operator-(const Vector2& a, const Vector2& b);
|
||
|
|
||
|
Vector2 operator*(const Vector2& a, f32 scalar);
|
||
|
Vector2 operator*(f32 scalar, const Vector2& a);
|
||
|
|
||
|
Vector2 operator/(const Vector2& a, f32 scalar);
|
||
|
|
||
|
Vector2 operator*(const Vector2& a, const Vector2& b); // Hadamard Product
|
||
|
Vector2 operator/(const Vector2& a, const Vector2& b); // Hadamard Product
|
||
|
|
||
|
Vector2& operator+=(Vector2& a, const Vector2& b);
|
||
|
Vector2& operator-=(Vector2& a, const Vector2& b);
|
||
|
Vector2& operator*=(Vector2& a, f32 scalar);
|
||
|
Vector2& operator/=(Vector2& a, f32 scalar);
|
||
|
|
||
|
// Vector3 Operators
|
||
|
bool operator==(const Vector3& a, const Vector3& b);
|
||
|
bool operator!=(const Vector3& a, const Vector3& b);
|
||
|
|
||
|
Vector3 operator-(const Vector3& a);
|
||
|
|
||
|
Vector3 operator+(const Vector3& a, const Vector3& b);
|
||
|
Vector3 operator-(const Vector3& a, const Vector3& b);
|
||
|
|
||
|
Vector3 operator*(const Vector3& a, f32 scalar);
|
||
|
Vector3 operator*(f32 scalar, const Vector3& a);
|
||
|
|
||
|
Vector3 operator/(const Vector3& a, f32 scalar);
|
||
|
|
||
|
Vector3 operator*(const Vector3& a, const Vector3& b); // Hadamard Product
|
||
|
Vector3 operator/(const Vector3& a, const Vector3& b); // Hadamard Product
|
||
|
|
||
|
Vector3& operator+=(Vector3& a, const Vector3& b);
|
||
|
Vector3& operator-=(Vector3& a, const Vector3& b);
|
||
|
Vector3& operator*=(Vector3& a, f32 scalar);
|
||
|
Vector3& operator/=(Vector3& a, f32 scalar);
|
||
|
|
||
|
// Vector4 Operators
|
||
|
bool operator==(const Vector4& a, const Vector4& b);
|
||
|
bool operator!=(const Vector4& a, const Vector4& b);
|
||
|
|
||
|
Vector4 operator-(const Vector4& a);
|
||
|
|
||
|
Vector4 operator+(const Vector4& a, const Vector4& b);
|
||
|
Vector4 operator-(const Vector4& a, const Vector4& b);
|
||
|
|
||
|
Vector4 operator*(const Vector4& a, f32 scalar);
|
||
|
Vector4 operator*(f32 scalar, const Vector4& a);
|
||
|
|
||
|
Vector4 operator/(const Vector4& a, f32 scalar);
|
||
|
|
||
|
Vector4 operator*(const Vector4& a, const Vector4& b); // Hadamard Product
|
||
|
Vector4 operator/(const Vector4& a, const Vector4& b); // Hadamard Product
|
||
|
|
||
|
Vector4& operator+=(Vector4& a, const Vector4& b);
|
||
|
Vector4& operator-=(Vector4& a, const Vector4& b);
|
||
|
Vector4& operator*=(Vector4& a, f32 scalar);
|
||
|
Vector4& operator/=(Vector4& a, f32 scalar);
|
||
|
|
||
|
// Quaternion Operators
|
||
|
bool operator==(const Quaternion& a, const Quaternion& b);
|
||
|
bool operator!=(const Quaternion& a, const Quaternion& b);
|
||
|
|
||
|
Quaternion operator-(const Quaternion& a);
|
||
|
|
||
|
Quaternion operator+(const Quaternion& a, const Quaternion& b);
|
||
|
Quaternion operator-(const Quaternion& a, const Quaternion& b);
|
||
|
|
||
|
Quaternion operator*(const Quaternion& a, const Quaternion& b);
|
||
|
Quaternion operator*(const Quaternion& a, f32 s);
|
||
|
Quaternion operator*(f32 s, const Quaternion& a);
|
||
|
|
||
|
Quaternion operator/(const Quaternion& a, f32 s);
|
||
|
|
||
|
// Matrix4 Operators
|
||
|
bool operator==(const Matrix4& a, const Matrix4& b);
|
||
|
bool operator!=(const Matrix4& a, const Matrix4& b);
|
||
|
|
||
|
Matrix4 operator+(const Matrix4& a, const Matrix4& b);
|
||
|
Matrix4 operator-(const Matrix4& a, const Matrix4& b);
|
||
|
|
||
|
Matrix4 operator*(const Matrix4& a, const Matrix4& b);
|
||
|
Vector4 operator*(const Matrix4& a, const Vector4& v);
|
||
|
Matrix4 operator*(const Matrix4& a, f32 scalar);
|
||
|
Matrix4 operator*(f32 scalar, const Matrix4& a);
|
||
|
|
||
|
Matrix4 operator/(const Matrix4& a, f32 scalar);
|
||
|
|
||
|
Matrix4& operator+=(Matrix4& a, const Matrix4& b);
|
||
|
Matrix4& operator-=(Matrix4& a, const Matrix4& b);
|
||
|
Matrix4& operator*=(Matrix4& a, const Matrix4& b);
|
||
|
|
||
|
//////////////////////////////////
|
||
|
/// Math Functions & Constants ///
|
||
|
//////////////////////////////////
|
||
|
|
||
|
namespace math
|
||
|
{
|
||
|
extern const f32 EPSILON;
|
||
|
extern const f32 ZERO;
|
||
|
extern const f32 ONE;
|
||
|
extern const f32 THIRD;
|
||
|
extern const f32 TWO_THIRDS;
|
||
|
extern const f32 E;
|
||
|
extern const f32 PI;
|
||
|
extern const f32 TAU;
|
||
|
extern const f32 SQRT_2;
|
||
|
extern const f32 SQRT_3;
|
||
|
|
||
|
|
||
|
// Power
|
||
|
f32 sqrt(f32 x);
|
||
|
f32 pow(f32 x, f32 y);
|
||
|
f32 cbrt(f32 x);
|
||
|
f32 fast_inv_sqrt(f32 x);
|
||
|
|
||
|
// Trigonometric
|
||
|
f32 sin(f32 radians);
|
||
|
f32 cos(f32 radians);
|
||
|
f32 tan(f32 radians);
|
||
|
|
||
|
f32 asin(f32 x);
|
||
|
f32 acos(f32 x);
|
||
|
f32 atan(f32 x);
|
||
|
f32 atan2(f32 y, f32 x);
|
||
|
|
||
|
f32 radians(f32 degrees);
|
||
|
f32 degrees(f32 radians);
|
||
|
|
||
|
// Hyperbolic
|
||
|
f32 sinh(f32 x);
|
||
|
f32 cosh(f32 x);
|
||
|
f32 tanh(f32 x);
|
||
|
|
||
|
f32 asinh(f32 x);
|
||
|
f32 acosh(f32 x);
|
||
|
f32 atanh(f32 x);
|
||
|
|
||
|
// Rounding
|
||
|
f32 ceil(f32 x);
|
||
|
f32 floor(f32 x);
|
||
|
f32 mod(f32 x, f32 y);
|
||
|
f32 truncate(f32 x);
|
||
|
f32 round(f32 x);
|
||
|
|
||
|
s32 sign(s32 x);
|
||
|
s64 sign(s64 x);
|
||
|
f32 sign(f32 x);
|
||
|
|
||
|
// Other
|
||
|
f32 abs(f32 x);
|
||
|
s8 abs( s8 x);
|
||
|
s16 abs(s16 x);
|
||
|
s32 abs(s32 x);
|
||
|
s64 abs(s64 x);
|
||
|
|
||
|
|
||
|
// Vector2 functions
|
||
|
f32 dot(const Vector2& a, const Vector2& b);
|
||
|
f32 cross(const Vector2& a, const Vector2& b);
|
||
|
|
||
|
f32 magnitude(const Vector2& a);
|
||
|
Vector2 normalize(const Vector2& a);
|
||
|
|
||
|
Vector2 hadamard_product(const Vector2& a, const Vector2& b);
|
||
|
|
||
|
// Vector3 functions
|
||
|
f32 dot(const Vector3& a, const Vector3& b);
|
||
|
Vector3 cross(const Vector3& a, const Vector3& b);
|
||
|
|
||
|
f32 magnitude(const Vector3& a);
|
||
|
Vector3 normalize(const Vector3& a);
|
||
|
|
||
|
Vector3 hadamard_product(const Vector3& a, const Vector3& b);
|
||
|
|
||
|
// Vector4 functions
|
||
|
f32 dot(const Vector4& a, const Vector4& b);
|
||
|
|
||
|
f32 magnitude(const Vector4& a);
|
||
|
Vector4 normalize(const Vector4& a);
|
||
|
|
||
|
Vector4 hadamard_product(const Vector4& a, const Vector4& b);
|
||
|
|
||
|
// Quaternion functions
|
||
|
f32 dot(const Quaternion& a, const Quaternion& b);
|
||
|
Quaternion cross(const Quaternion& a, const Quaternion& b);
|
||
|
|
||
|
f32 magnitude(const Quaternion& a);
|
||
|
Quaternion normalize(const Quaternion& a);
|
||
|
|
||
|
Quaternion conjugate(const Quaternion& a);
|
||
|
Quaternion inverse(const Quaternion& a);
|
||
|
|
||
|
Vector3 operator*(const Quaternion& a, const Vector3& v); // Rotate v by a
|
||
|
|
||
|
f32 quaternion_angle(const Quaternion& a);
|
||
|
Vector3 quaternion_axis(const Quaternion& a);
|
||
|
Quaternion axis_angle(const Vector3& axis, f32 radians);
|
||
|
|
||
|
f32 quaternion_roll(const Quaternion& a);
|
||
|
f32 quaternion_pitch(const Quaternion& a);
|
||
|
f32 quaternion_yaw(const Quaternion& a);
|
||
|
|
||
|
Euler_Angles quaternion_to_euler_angles(const Quaternion& a);
|
||
|
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
|
||
|
const Vector3& x_axis = {1, 0, 0},
|
||
|
const Vector3& y_axis = {0, 1, 0},
|
||
|
const Vector3& z_axis = {0, 0, 1});
|
||
|
|
||
|
// Matrix4 functions
|
||
|
Matrix4 transpose(const Matrix4& m);
|
||
|
f32 determinant(const Matrix4& m);
|
||
|
|
||
|
Matrix4 inverse(const Matrix4& m);
|
||
|
|
||
|
Matrix4 hadamard_product(const Matrix4& a, const Matrix4&b);
|
||
|
|
||
|
Matrix4 quaternion_to_matrix4(const Quaternion& a);
|
||
|
Quaternion matrix4_to_quaternion(const Matrix4& m);
|
||
|
|
||
|
Matrix4 translate(const Vector3& v);
|
||
|
Matrix4 rotate(const Vector3& v, f32 radians);
|
||
|
Matrix4 scale(const Vector3& v);
|
||
|
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top);
|
||
|
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far);
|
||
|
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far);
|
||
|
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near);
|
||
|
|
||
|
Matrix4
|
||
|
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
|
||
|
|
||
|
Quaternion
|
||
|
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
|
||
|
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace gb
|
||
|
#endif // GB_INCLUDE_GB_HPP
|
||
|
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
/// It's a long way to Tipperary
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
///
|
||
|
////////////////////////////////
|
||
|
/// Implemenation ///
|
||
|
////////////////////////////////
|
||
|
#ifdef GB_IMPLEMENTATION
|
||
|
|
||
|
#include <float.h>
|
||
|
#include <math.h>
|
||
|
#include <stdarg.h>
|
||
|
|
||
|
inline void
|
||
|
gb__assert_handler(bool condition, const char* condition_str,
|
||
|
const char* filename, size_t line,
|
||
|
const char* error_text, ...)
|
||
|
{
|
||
|
if (condition)
|
||
|
return;
|
||
|
|
||
|
fprintf(stderr, "ASSERT! %s(%d): %s", filename, line, condition_str);
|
||
|
if (error_text)
|
||
|
{
|
||
|
fprintf(stderr, " - ");
|
||
|
|
||
|
va_list args;
|
||
|
va_start(args, error_text);
|
||
|
vfprintf(stderr, error_text, args);
|
||
|
va_end(args);
|
||
|
}
|
||
|
fprintf(stderr, "\n");
|
||
|
|
||
|
*(int*)0 = 0; // TODO(bill): Use a better way to assert
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
namespace gb
|
||
|
{
|
||
|
////////////////////////////////
|
||
|
/// Memory ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
Mutex::Mutex()
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
win32_mutex = CreateMutex(0, 0, 0);
|
||
|
#else
|
||
|
pthread_mutex_init(&posix_mutex, nullptr);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
Mutex::~Mutex()
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
CloseHandle(win32_mutex);
|
||
|
#else
|
||
|
pthread_mutex_destroy(&posix_mutex);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void lock_mutex(Mutex& mutex)
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
WaitForSingleObject(mutex.win32_mutex, INFINITE);
|
||
|
#else
|
||
|
pthread_mutex_lock(&mutex.posix_mutex);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool try_lock_mutex(Mutex& mutex)
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
return WaitForSingleObject(mutex.win32_mutex, 0) == WAIT_OBJECT_0;
|
||
|
#else
|
||
|
return pthread_mutex_trylock(&mutex.posix_mutex) == 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
void unlock_mutex(Mutex& mutex)
|
||
|
{
|
||
|
#ifdef GB_SYSTEM_WINDOWS
|
||
|
ReleaseMutex(mutex.win32_mutex);
|
||
|
#else
|
||
|
pthread_mutex_unlock(&mutex.posix_mutex);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
Heap_Allocator::~Heap_Allocator()
|
||
|
{
|
||
|
GB_ASSERT(allocation_count == 0 && total_allocated() == 0,
|
||
|
"Heap Allocator: allocation count = %lld; total allocated = %lld",
|
||
|
allocation_count, total_allocated());
|
||
|
}
|
||
|
|
||
|
void*
|
||
|
Heap_Allocator::alloc(usize size, usize align)
|
||
|
{
|
||
|
lock_mutex(mutex);
|
||
|
defer(unlock_mutex(mutex));
|
||
|
|
||
|
const usize total = size + align + sizeof(Header);
|
||
|
Header* h = (Header*)malloc(total);
|
||
|
h->size = total;
|
||
|
|
||
|
void* data = align_forward(h + 1, align);
|
||
|
{ // Pad header
|
||
|
usize* ptr = (usize*)(h+1);
|
||
|
|
||
|
while (ptr != data)
|
||
|
*ptr++ = GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE;
|
||
|
}
|
||
|
total_allocated_count += total;
|
||
|
allocation_count++;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
Heap_Allocator::dealloc(void* ptr)
|
||
|
{
|
||
|
if (!ptr)
|
||
|
return;
|
||
|
|
||
|
lock_mutex(mutex);
|
||
|
defer(unlock_mutex(mutex));
|
||
|
|
||
|
const usize* data = ((usize*)ptr) - 1;
|
||
|
|
||
|
while (*data == GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE)
|
||
|
data--;
|
||
|
|
||
|
Header* h = (Header*)data;
|
||
|
|
||
|
total_allocated_count -= h->size;
|
||
|
allocation_count--;
|
||
|
|
||
|
free(h);
|
||
|
}
|
||
|
|
||
|
ssize
|
||
|
Heap_Allocator::allocated_size(const void* ptr)
|
||
|
{
|
||
|
lock_mutex(mutex);
|
||
|
defer(unlock_mutex(mutex));
|
||
|
|
||
|
const usize* data = (usize*)ptr - 1;
|
||
|
|
||
|
while (*data == GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE)
|
||
|
data--;
|
||
|
|
||
|
return ((Header*)ptr)->size;
|
||
|
}
|
||
|
|
||
|
ssize
|
||
|
Heap_Allocator::total_allocated()
|
||
|
{
|
||
|
return total_allocated_count;
|
||
|
}
|
||
|
|
||
|
|
||
|
void* Arena_Allocator::alloc(usize size_init, usize align)
|
||
|
{
|
||
|
usize size = size_init;
|
||
|
|
||
|
usize alignment_offset = get_alignment_offset(align);
|
||
|
size += alignment_offset;
|
||
|
|
||
|
GB_ASSERT(size >= size_init);
|
||
|
GB_ASSERT(total_allocated_count + size <= (usize)base_size);
|
||
|
|
||
|
void* ptr = base + total_allocated_count + alignment_offset;
|
||
|
total_allocated_count += size;
|
||
|
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
ssize Arena_Allocator::allocated_size(const void* ptr)
|
||
|
{
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
ssize Arena_Allocator::total_allocated()
|
||
|
{
|
||
|
return total_allocated_count;
|
||
|
}
|
||
|
|
||
|
usize Arena_Allocator::get_alignment_offset(usize align)
|
||
|
{
|
||
|
usize offset = 0;
|
||
|
|
||
|
usize result_pointer = (usize)((uintptr)base + total_allocated_count);
|
||
|
usize alignment_mask = align - 1;
|
||
|
if (result_pointer & alignment_mask)
|
||
|
offset = align - (result_pointer & alignment_mask);
|
||
|
|
||
|
return offset;
|
||
|
}
|
||
|
|
||
|
usize Arena_Allocator::get_remaining_space(usize align)
|
||
|
{
|
||
|
return base_size - (total_allocated_count + get_alignment_offset(align));
|
||
|
}
|
||
|
|
||
|
void Arena_Allocator::check()
|
||
|
{
|
||
|
GB_ASSERT(temp_count == 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Math ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
|
||
|
const Vector2 VECTOR2_ZERO = {0, 0};
|
||
|
const Vector3 VECTOR3_ZERO = {0, 0, 0};
|
||
|
const Vector4 VECTOR4_ZERO = {0, 0, 0, 0};
|
||
|
const Quaternion QUATERNION_IDENTITY = {0, 0, 0, 1};
|
||
|
const Matrix4 MATRIX4_IDENTITY = {1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 1, 0,
|
||
|
0, 0, 0, 1};
|
||
|
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Math Type Op Overloads ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
// Vector2 Operators
|
||
|
bool operator==(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return (a.x == b.x) && (a.y == b.y);
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return !operator==(a, b);
|
||
|
}
|
||
|
|
||
|
Vector2 operator-(const Vector2& a)
|
||
|
{
|
||
|
return {-a.x, -a.y};
|
||
|
}
|
||
|
|
||
|
Vector2 operator+(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return {a.x + b.x, a.y + b.y};
|
||
|
}
|
||
|
|
||
|
Vector2 operator-(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return {a.x - b.x, a.y - b.y};
|
||
|
}
|
||
|
|
||
|
Vector2 operator*(const Vector2& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar};
|
||
|
}
|
||
|
|
||
|
Vector2 operator*(f32 scalar, const Vector2& a)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar};
|
||
|
}
|
||
|
|
||
|
Vector2 operator/(const Vector2& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x / scalar, a.y / scalar};
|
||
|
}
|
||
|
|
||
|
Vector2 operator*(const Vector2& a, const Vector2& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y};
|
||
|
}
|
||
|
|
||
|
Vector2 operator/(const Vector2& a, const Vector2& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x / b.x, a.y / b.y};
|
||
|
}
|
||
|
|
||
|
Vector2& operator+=(Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
a.x += b.x;
|
||
|
a.y += b.y;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector2& operator-=(Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
a.x -= b.x;
|
||
|
a.y -= b.y;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector2& operator*=(Vector2& a, f32 scalar)
|
||
|
{
|
||
|
a.x *= scalar;
|
||
|
a.y *= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector2& operator/=(Vector2& a, f32 scalar)
|
||
|
{
|
||
|
a.x /= scalar;
|
||
|
a.y /= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
// Vector3 Operators
|
||
|
bool operator==(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z);
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return !operator==(a, b);
|
||
|
}
|
||
|
|
||
|
Vector3 operator-(const Vector3& a)
|
||
|
{
|
||
|
return {-a.x, -a.y, -a.z};
|
||
|
}
|
||
|
|
||
|
Vector3 operator+(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return {a.x + b.x, a.y + b.y, a.z + b.z};
|
||
|
}
|
||
|
|
||
|
Vector3 operator-(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return {a.x - b.x, a.y - b.y, a.z - b.z};
|
||
|
}
|
||
|
|
||
|
Vector3 operator*(const Vector3& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar, a.z * scalar};
|
||
|
}
|
||
|
|
||
|
Vector3 operator*(f32 scalar, const Vector3& a)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar, a.z * scalar};
|
||
|
}
|
||
|
|
||
|
Vector3 operator/(const Vector3& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x / scalar, a.y / scalar, a.z / scalar};
|
||
|
}
|
||
|
|
||
|
Vector3 operator*(const Vector3& a, const Vector3& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y, a.z * b.z};
|
||
|
}
|
||
|
|
||
|
Vector3 operator/(const Vector3& a, const Vector3& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x / b.x, a.y / b.y, a.z / b.z};
|
||
|
}
|
||
|
|
||
|
Vector3& operator+=(Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
a.x += b.x;
|
||
|
a.y += b.y;
|
||
|
a.z += b.z;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector3& operator-=(Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
a.x -= b.x;
|
||
|
a.y -= b.y;
|
||
|
a.z -= b.z;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector3& operator*=(Vector3& a, f32 scalar)
|
||
|
{
|
||
|
a.x *= scalar;
|
||
|
a.y *= scalar;
|
||
|
a.z *= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector3& operator/=(Vector3& a, f32 scalar)
|
||
|
{
|
||
|
a.x /= scalar;
|
||
|
a.y /= scalar;
|
||
|
a.z /= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
// Vector4 Operators
|
||
|
bool operator==(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return !operator==(a, b);
|
||
|
}
|
||
|
|
||
|
Vector4 operator-(const Vector4& a)
|
||
|
{
|
||
|
return {-a.x, -a.y, -a.z, -a.w};
|
||
|
}
|
||
|
|
||
|
Vector4 operator+(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
|
||
|
}
|
||
|
|
||
|
Vector4 operator-(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
|
||
|
}
|
||
|
|
||
|
Vector4 operator*(const Vector4& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
|
||
|
}
|
||
|
|
||
|
Vector4 operator*(f32 scalar, const Vector4& a)
|
||
|
{
|
||
|
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
|
||
|
}
|
||
|
|
||
|
Vector4 operator/(const Vector4& a, f32 scalar)
|
||
|
{
|
||
|
return {a.x / scalar, a.y / scalar, a.z / scalar, a.w / scalar};
|
||
|
}
|
||
|
|
||
|
Vector4 operator*(const Vector4& a, const Vector4& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
|
||
|
}
|
||
|
|
||
|
Vector4 operator/(const Vector4& a, const Vector4& b) // Hadamard Product
|
||
|
{
|
||
|
return {a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w};
|
||
|
}
|
||
|
|
||
|
Vector4& operator+=(Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
a.x += b.x;
|
||
|
a.y += b.y;
|
||
|
a.z += b.z;
|
||
|
a.w += b.w;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector4& operator-=(Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
a.x -= b.x;
|
||
|
a.y -= b.y;
|
||
|
a.z -= b.z;
|
||
|
a.w -= b.w;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector4& operator*=(Vector4& a, f32 scalar)
|
||
|
{
|
||
|
a.x *= scalar;
|
||
|
a.y *= scalar;
|
||
|
a.z *= scalar;
|
||
|
a.w *= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
Vector4& operator/=(Vector4& a, f32 scalar)
|
||
|
{
|
||
|
a.x /= scalar;
|
||
|
a.y /= scalar;
|
||
|
a.z /= scalar;
|
||
|
a.w /= scalar;
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
// Quaternion Operators
|
||
|
bool operator==(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return !operator==(a, b);
|
||
|
}
|
||
|
|
||
|
Quaternion operator-(const Quaternion& a)
|
||
|
{
|
||
|
return {-a.x, -a.y, -a.z, -a.w};
|
||
|
return {-a.x, -a.y, -a.z, -a.w};
|
||
|
}
|
||
|
|
||
|
Quaternion operator+(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
|
||
|
}
|
||
|
|
||
|
Quaternion operator-(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
|
||
|
|
||
|
}
|
||
|
|
||
|
Quaternion operator*(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
Quaternion q = {};
|
||
|
|
||
|
q.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
|
||
|
q.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x;
|
||
|
q.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w;
|
||
|
q.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
|
||
|
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
Quaternion operator*(const Quaternion& a, f32 s)
|
||
|
{
|
||
|
return {a.x * s, a.y * s, a.z * s, a.w * s};
|
||
|
}
|
||
|
|
||
|
Quaternion operator*(f32 s, const Quaternion& a)
|
||
|
{
|
||
|
return {a.x * s, a.y * s, a.z * s, a.w * s};
|
||
|
}
|
||
|
|
||
|
Quaternion operator/(const Quaternion& a, f32 s)
|
||
|
{
|
||
|
return {a.x / s, a.y / s, a.z / s, a.w / s};
|
||
|
}
|
||
|
|
||
|
// Matrix4 Operators
|
||
|
bool operator==(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
{
|
||
|
if (a[i] != b[i])
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
return !operator==(a, b);
|
||
|
}
|
||
|
|
||
|
Matrix4 operator+(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
Matrix4 mat;
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
mat[i] = a[i] + b[i];
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Matrix4 operator-(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
Matrix4 mat;
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
mat[i] = a[i] - b[i];
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Matrix4 operator*(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
Matrix4 result;
|
||
|
result[0] = a[0] * b[0][0] + a[1] * b[0][1] + a[2] * b[0][2] + a[3] * b[0][3];
|
||
|
result[1] = a[0] * b[1][0] + a[1] * b[1][1] + a[2] * b[1][2] + a[3] * b[1][3];
|
||
|
result[2] = a[0] * b[2][0] + a[1] * b[2][1] + a[2] * b[2][2] + a[3] * b[2][3];
|
||
|
result[3] = a[0] * b[3][0] + a[1] * b[3][1] + a[2] * b[3][2] + a[3] * b[3][3];
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Vector4 operator*(const Matrix4& a, const Vector4& v)
|
||
|
{
|
||
|
Vector4 mul0 = a[0] * v[0];
|
||
|
Vector4 mul1 = a[1] * v[1];
|
||
|
Vector4 mul2 = a[2] * v[2];
|
||
|
Vector4 mul3 = a[3] * v[3];
|
||
|
|
||
|
Vector4 add0 = mul0 + mul1;
|
||
|
Vector4 add1 = mul2 + mul3;
|
||
|
|
||
|
return add0 + add1;
|
||
|
}
|
||
|
|
||
|
Matrix4 operator*(const Matrix4& a, f32 scalar)
|
||
|
{
|
||
|
Matrix4 mat;
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
mat[i] = a[i] * scalar;
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Matrix4 operator*(f32 scalar, const Matrix4& a)
|
||
|
{
|
||
|
Matrix4 mat;
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
mat[i] = a[i] * scalar;
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Matrix4 operator/(const Matrix4& a, f32 scalar)
|
||
|
{
|
||
|
Matrix4 mat;
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
mat[i] = a[i] / scalar;
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Matrix4& operator+=(Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
return (a = a + b);
|
||
|
}
|
||
|
|
||
|
Matrix4& operator-=(Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
return (a = a - b);
|
||
|
}
|
||
|
|
||
|
Matrix4& operator*=(Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
return (a = a * b);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////
|
||
|
/// Math Functions ///
|
||
|
////////////////////////////////
|
||
|
|
||
|
|
||
|
namespace math
|
||
|
{
|
||
|
const f32 EPSILON = FLT_EPSILON;
|
||
|
const f32 ZERO = 0.0f;
|
||
|
const f32 ONE = 1.0f;
|
||
|
const f32 THIRD = 0.33333333f;
|
||
|
const f32 TWO_THIRDS = 0.66666667f;
|
||
|
const f32 E = 2.718281828f;
|
||
|
const f32 PI = 3.141592654f;
|
||
|
const f32 TAU = 6.283185307f;
|
||
|
const f32 SQRT_2 = 1.414213562f;
|
||
|
const f32 SQRT_3 = 1.732050808f;
|
||
|
|
||
|
// Power
|
||
|
inline f32 sqrt(f32 x) { return ::sqrtf(x); }
|
||
|
inline f32 pow(f32 x, f32 y) { return (f32)::powf(x, y); }
|
||
|
inline f32 cbrt(f32 x) { return (f32)::cbrtf(x); }
|
||
|
|
||
|
inline f32 fast_inv_sqrt(f32 x)
|
||
|
{
|
||
|
const f32 three_halfs = 1.5f;
|
||
|
|
||
|
f32 x2 = x * 0.5f;
|
||
|
f32 y = x;
|
||
|
u32 i = *(u32*)&y; // Evil floating point bit level hacking
|
||
|
// i = 0x5f3759df - (i >> 1); // What the fuck? Old
|
||
|
i = 0x5f375a86 - (i >> 1); // What the fuck? Improved!
|
||
|
y = *(f32*)&i;
|
||
|
y = y * (three_halfs - (x2 * y * y)); // 1st iteration
|
||
|
// y = y * (three_halfs - (x2 * y * y)); // 2nd iteration, this can be removed
|
||
|
|
||
|
return y;
|
||
|
}
|
||
|
|
||
|
// Trigonometric
|
||
|
inline f32 sin(f32 radians) { return ::sinf(radians); }
|
||
|
inline f32 cos(f32 radians) { return ::cosf(radians); }
|
||
|
inline f32 tan(f32 radians) { return ::tanf(radians); }
|
||
|
|
||
|
inline f32 asin(f32 x) { return ::asinf(x); }
|
||
|
inline f32 acos(f32 x) { return ::acosf(x); }
|
||
|
inline f32 atan(f32 x) { return ::atanf(x); }
|
||
|
inline f32 atan2(f32 y, f32 x) { return ::atan2f(y, x); }
|
||
|
|
||
|
inline f32 radians(f32 degrees) { return TAU * degrees / 360.0f; }
|
||
|
inline f32 degrees(f32 radians) { return 360.0f * radians / TAU; }
|
||
|
|
||
|
// Hyperbolic
|
||
|
inline f32 sinh(f32 x) { return ::sinhf(x); }
|
||
|
inline f32 cosh(f32 x) { return ::coshf(x); }
|
||
|
inline f32 tanh(f32 x) { return ::tanhf(x); }
|
||
|
|
||
|
inline f32 asinh(f32 x) { return ::asinhf(x); }
|
||
|
inline f32 acosh(f32 x) { return ::acoshf(x); }
|
||
|
inline f32 atanh(f32 x) { return ::atanhf(x); }
|
||
|
|
||
|
// Rounding
|
||
|
inline f32 ceil(f32 x) { return ::ceilf(x); }
|
||
|
inline f32 floor(f32 x) { return ::floorf(x); }
|
||
|
inline f32 mod(f32 x, f32 y) { return ::fmodf(x, y); }
|
||
|
inline f32 truncate(f32 x) { return ::truncf(x); }
|
||
|
inline f32 round(f32 x) { return ::roundf(x); }
|
||
|
|
||
|
inline s32 sign(s32 x) { return x >= 0 ? +1 : -1; }
|
||
|
inline s64 sign(s64 x) { return x >= 0 ? +1 : -1; }
|
||
|
inline f32 sign(f32 x) { return x >= 0 ? +1 : -1; }
|
||
|
|
||
|
// Other
|
||
|
inline f32 abs(f32 x)
|
||
|
{
|
||
|
u32 i = reinterpret_cast<const u32&>(x);
|
||
|
i &= 0x7FFFFFFFul;
|
||
|
return reinterpret_cast<const f32&>(i);
|
||
|
}
|
||
|
|
||
|
inline s8 abs(s8 x)
|
||
|
{
|
||
|
u8 i = reinterpret_cast<const u8&>(x);
|
||
|
i &= 0x7Fu;
|
||
|
return reinterpret_cast<const s8&>(i);
|
||
|
}
|
||
|
|
||
|
inline s16 abs(s16 x)
|
||
|
{
|
||
|
u16 i = reinterpret_cast<const u16&>(x);
|
||
|
i &= 0x7FFFu;
|
||
|
return reinterpret_cast<const s16&>(i);
|
||
|
}
|
||
|
|
||
|
inline s32 abs(s32 x)
|
||
|
{
|
||
|
u32 i = reinterpret_cast<const u32&>(x);
|
||
|
i &= 0x7FFFFFFFul;
|
||
|
return reinterpret_cast<const s32&>(i);
|
||
|
}
|
||
|
|
||
|
inline s64 abs(s64 x)
|
||
|
{
|
||
|
u64 i = reinterpret_cast<const u64&>(x);
|
||
|
i &= 0x7FFFFFFFFFFFFFFFull;
|
||
|
return reinterpret_cast<const s64&>(i);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
// Vector2 functions
|
||
|
f32 dot(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y;
|
||
|
}
|
||
|
|
||
|
f32 cross(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return a.x * b.y - a.y * b.x;
|
||
|
}
|
||
|
|
||
|
f32 magnitude(const Vector2& a)
|
||
|
{
|
||
|
return math::sqrt(math::dot(a, a));
|
||
|
}
|
||
|
|
||
|
Vector2 normalize(const Vector2& a)
|
||
|
{
|
||
|
f32 m = 1.0f / magnitude(a);
|
||
|
return a * m;
|
||
|
}
|
||
|
|
||
|
Vector2 hadamard_product(const Vector2& a, const Vector2& b)
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y};
|
||
|
}
|
||
|
|
||
|
// Vector3 functions
|
||
|
f32 dot(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||
|
}
|
||
|
|
||
|
Vector3 cross(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return {
|
||
|
a.y * b.z - b.y * a.z, // x
|
||
|
a.z * b.x - b.z * a.x, // y
|
||
|
a.x * b.y - b.x * a.y // z
|
||
|
};
|
||
|
}
|
||
|
|
||
|
f32 magnitude(const Vector3& a)
|
||
|
{
|
||
|
return math::sqrt(math::dot(a, a));
|
||
|
}
|
||
|
|
||
|
Vector3 normalize(const Vector3& a)
|
||
|
{
|
||
|
f32 m = 1.0f / magnitude(a);
|
||
|
return a * m;
|
||
|
}
|
||
|
|
||
|
Vector3 hadamard_product(const Vector3& a, const Vector3& b)
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y, a.z * b.z};
|
||
|
}
|
||
|
|
||
|
// Vector4 functions
|
||
|
f32 dot(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
|
||
|
}
|
||
|
|
||
|
f32 magnitude(const Vector4& a)
|
||
|
{
|
||
|
return math::sqrt(math::dot(a, a));
|
||
|
}
|
||
|
|
||
|
Vector4 normalize(const Vector4& a)
|
||
|
{
|
||
|
f32 m = 1.0f / magnitude(a);
|
||
|
return a * m;
|
||
|
}
|
||
|
|
||
|
Vector4 hadamard_product(const Vector4& a, const Vector4& b)
|
||
|
{
|
||
|
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
|
||
|
}
|
||
|
|
||
|
// Quaternion functions
|
||
|
f32 dot(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return math::dot(a.xyz, b.xyz) + a.w*b.w;
|
||
|
}
|
||
|
|
||
|
Quaternion cross(const Quaternion& a, const Quaternion& b)
|
||
|
{
|
||
|
return {a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
|
||
|
a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z,
|
||
|
a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x,
|
||
|
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z};
|
||
|
}
|
||
|
|
||
|
f32 magnitude(const Quaternion& a)
|
||
|
{
|
||
|
return math::sqrt(math::dot(a, a));
|
||
|
}
|
||
|
|
||
|
Quaternion normalize(const Quaternion& a)
|
||
|
{
|
||
|
f32 m = 1.0f / magnitude(a);
|
||
|
return a * m;
|
||
|
}
|
||
|
|
||
|
Quaternion conjugate(const Quaternion& a)
|
||
|
{
|
||
|
return {-a.x, -a.y, -a.z, a.w};
|
||
|
}
|
||
|
|
||
|
Quaternion inverse(const Quaternion& a)
|
||
|
{
|
||
|
f32 m = 1.0f / dot(a, a);
|
||
|
return math::conjugate(a) * m;
|
||
|
}
|
||
|
|
||
|
Vector3 operator*(const Quaternion& a, const Vector3& v) // Rotate v by q
|
||
|
{
|
||
|
// return (q * Quaternion(v, 0) * conjugate(q)).xyz; // More Expensive
|
||
|
const Vector3 t = 2.0f * cross(a.xyz, v);
|
||
|
return (v + a.w * t + cross(a.xyz, t));
|
||
|
}
|
||
|
|
||
|
f32 quaternion_angle(const Quaternion& a)
|
||
|
{
|
||
|
return 2.0f * math::acos(a.w);
|
||
|
}
|
||
|
|
||
|
Vector3 quaternion_axis(const Quaternion& a)
|
||
|
{
|
||
|
f32 s2 = 1.0f - a.w * a.w;
|
||
|
|
||
|
if (s2 <= 0.0f)
|
||
|
return {0, 0, 1};
|
||
|
|
||
|
f32 invs2 = 1.0f / math::sqrt(s2);
|
||
|
|
||
|
return a.xyz * invs2;
|
||
|
}
|
||
|
|
||
|
Quaternion axis_angle(const Vector3& axis, f32 radians)
|
||
|
{
|
||
|
Vector3 a = math::normalize(axis);
|
||
|
f32 s = math::sin(0.5f * radians);
|
||
|
|
||
|
Quaternion q;
|
||
|
q.xyz = a * s;
|
||
|
q.w = math::cos(0.5f * radians);
|
||
|
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
f32 quaternion_roll(const Quaternion& a)
|
||
|
{
|
||
|
return math::atan2(2.0f * a.x * a.y + a.z * a.w,
|
||
|
a.x * a.x + a.w * a.w - a.y * a.y - a.z * a.z);
|
||
|
}
|
||
|
|
||
|
f32 quaternion_pitch(const Quaternion& a)
|
||
|
{
|
||
|
return math::atan2(2.0f * a.y * a.z + a.w * a.x,
|
||
|
a.w * a.w - a.x * a.x - a.y * a.y + a.z * a.z);
|
||
|
}
|
||
|
|
||
|
f32 quaternion_yaw(const Quaternion& a)
|
||
|
{
|
||
|
return math::asin(-2.0f * (a.x * a.z - a.w * a.y));
|
||
|
|
||
|
}
|
||
|
|
||
|
Euler_Angles quaternion_to_euler_angles(const Quaternion& a)
|
||
|
{
|
||
|
return {quaternion_pitch(a), quaternion_yaw(a), quaternion_roll(a)};
|
||
|
}
|
||
|
|
||
|
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
|
||
|
const Vector3& x_axis,
|
||
|
const Vector3& y_axis,
|
||
|
const Vector3& z_axis)
|
||
|
{
|
||
|
Quaternion p = axis_angle(x_axis, e.pitch);
|
||
|
Quaternion y = axis_angle(y_axis, e.yaw);
|
||
|
Quaternion r = axis_angle(z_axis, e.roll);
|
||
|
|
||
|
return y * p * r;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Matrix4 functions
|
||
|
Matrix4 transpose(const Matrix4& m)
|
||
|
{
|
||
|
Matrix4 result;
|
||
|
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
{
|
||
|
for (usize j = 0; j < 4; j++)
|
||
|
result[i][j] = m[j][i];
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
f32 determinant(const Matrix4& m)
|
||
|
{
|
||
|
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
||
|
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
||
|
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
||
|
|
||
|
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
||
|
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
||
|
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
||
|
|
||
|
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
||
|
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
||
|
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
||
|
|
||
|
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
||
|
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
||
|
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
||
|
|
||
|
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
||
|
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
||
|
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
||
|
|
||
|
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
||
|
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
||
|
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
||
|
|
||
|
Vector4 fac0 = {coef00, coef00, coef02, coef03};
|
||
|
Vector4 fac1 = {coef04, coef04, coef06, coef07};
|
||
|
Vector4 fac2 = {coef08, coef08, coef10, coef11};
|
||
|
Vector4 fac3 = {coef12, coef12, coef14, coef15};
|
||
|
Vector4 fac4 = {coef16, coef16, coef18, coef19};
|
||
|
Vector4 fac5 = {coef20, coef20, coef22, coef23};
|
||
|
|
||
|
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
|
||
|
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
|
||
|
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
|
||
|
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
|
||
|
|
||
|
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
|
||
|
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
|
||
|
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
|
||
|
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
|
||
|
|
||
|
Vector4 signA = {+1, -1, +1, -1};
|
||
|
Vector4 signB = {-1, +1, -1, +1};
|
||
|
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
|
||
|
|
||
|
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
|
||
|
|
||
|
Vector4 dot0 = m[0] * row0;
|
||
|
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
|
||
|
return dot1;
|
||
|
}
|
||
|
|
||
|
Matrix4 inverse(const Matrix4& m)
|
||
|
{
|
||
|
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
||
|
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
||
|
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
||
|
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
||
|
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
||
|
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
||
|
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
||
|
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
||
|
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
||
|
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
||
|
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
||
|
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
||
|
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
||
|
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
||
|
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
||
|
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
||
|
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
||
|
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
||
|
|
||
|
Vector4 fac0 = {coef00, coef00, coef02, coef03};
|
||
|
Vector4 fac1 = {coef04, coef04, coef06, coef07};
|
||
|
Vector4 fac2 = {coef08, coef08, coef10, coef11};
|
||
|
Vector4 fac3 = {coef12, coef12, coef14, coef15};
|
||
|
Vector4 fac4 = {coef16, coef16, coef18, coef19};
|
||
|
Vector4 fac5 = {coef20, coef20, coef22, coef23};
|
||
|
|
||
|
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
|
||
|
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
|
||
|
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
|
||
|
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
|
||
|
|
||
|
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
|
||
|
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
|
||
|
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
|
||
|
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
|
||
|
|
||
|
Vector4 signA = {+1, -1, +1, -1};
|
||
|
Vector4 signB = {-1, +1, -1, +1};
|
||
|
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
|
||
|
|
||
|
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
|
||
|
|
||
|
Vector4 dot0 = m[0] * row0;
|
||
|
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
|
||
|
|
||
|
f32 oneOverDeterminant = 1.0f / dot1;
|
||
|
|
||
|
return inverse * oneOverDeterminant;
|
||
|
}
|
||
|
|
||
|
Matrix4 hadamard_product(const Matrix4& a, const Matrix4& b)
|
||
|
{
|
||
|
Matrix4 result;
|
||
|
|
||
|
for (usize i = 0; i < 4; i++)
|
||
|
result[i] = a[i] * b[i];
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Matrix4 quaternion_to_matrix4(const Quaternion& q)
|
||
|
{
|
||
|
Matrix4 mat = MATRIX4_IDENTITY;
|
||
|
|
||
|
Quaternion a = math::normalize(q);
|
||
|
|
||
|
f32 xx = a.x * a.x;
|
||
|
f32 yy = a.y * a.y;
|
||
|
f32 zz = a.z * a.z;
|
||
|
f32 xy = a.x * a.y;
|
||
|
f32 xz = a.x * a.z;
|
||
|
f32 yz = a.y * a.z;
|
||
|
f32 wx = a.w * a.x;
|
||
|
f32 wy = a.w * a.y;
|
||
|
f32 wz = a.w * a.z;
|
||
|
|
||
|
mat[0][0] = 1.0f - 2.0f * (yy + zz);
|
||
|
mat[0][1] = 2.0f * (xy + wz);
|
||
|
mat[0][2] = 2.0f * (xz - wy);
|
||
|
|
||
|
mat[1][0] = 2.0f * (xy - wz);
|
||
|
mat[1][1] = 1.0f - 2.0f * (xx + zz);
|
||
|
mat[1][2] = 2.0f * (yz + wx);
|
||
|
|
||
|
mat[2][0] = 2.0f * (xz + wy);
|
||
|
mat[2][1] = 2.0f * (yz - wx);
|
||
|
mat[2][2] = 1.0f - 2.0f * (xx + yy);
|
||
|
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Quaternion matrix4_to_quaternion(const Matrix4& m)
|
||
|
{
|
||
|
f32 four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
|
||
|
f32 four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
|
||
|
f32 four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
|
||
|
f32 four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
|
||
|
|
||
|
s32 biggestIndex = 0;
|
||
|
f32 four_biggest_squared_minus_1 = four_w_squared_minus_1;
|
||
|
if (four_x_squared_minus_1 > four_biggest_squared_minus_1)
|
||
|
{
|
||
|
four_biggest_squared_minus_1 = four_x_squared_minus_1;
|
||
|
biggestIndex = 1;
|
||
|
}
|
||
|
if (four_y_squared_minus_1 > four_biggest_squared_minus_1)
|
||
|
{
|
||
|
four_biggest_squared_minus_1 = four_y_squared_minus_1;
|
||
|
biggestIndex = 2;
|
||
|
}
|
||
|
if (four_z_squared_minus_1 > four_biggest_squared_minus_1)
|
||
|
{
|
||
|
four_biggest_squared_minus_1 = four_z_squared_minus_1;
|
||
|
biggestIndex = 3;
|
||
|
}
|
||
|
|
||
|
f32 biggestVal = math::sqrt(four_biggest_squared_minus_1 + 1.0f) * 0.5f;
|
||
|
f32 mult = 0.25f / biggestVal;
|
||
|
|
||
|
Quaternion q = QUATERNION_IDENTITY;
|
||
|
|
||
|
switch (biggestIndex)
|
||
|
{
|
||
|
case 0:
|
||
|
{
|
||
|
q.w = biggestVal;
|
||
|
q.x = (m[1][2] - m[2][1]) * mult;
|
||
|
q.y = (m[2][0] - m[0][2]) * mult;
|
||
|
q.z = (m[0][1] - m[1][0]) * mult;
|
||
|
}
|
||
|
break;
|
||
|
case 1:
|
||
|
{
|
||
|
q.w = (m[1][2] - m[2][1]) * mult;
|
||
|
q.x = biggestVal;
|
||
|
q.y = (m[0][1] + m[1][0]) * mult;
|
||
|
q.z = (m[2][0] + m[0][2]) * mult;
|
||
|
}
|
||
|
break;
|
||
|
case 2:
|
||
|
{
|
||
|
q.w = (m[2][0] - m[0][2]) * mult;
|
||
|
q.x = (m[0][1] + m[1][0]) * mult;
|
||
|
q.y = biggestVal;
|
||
|
q.z = (m[1][2] + m[2][1]) * mult;
|
||
|
}
|
||
|
break;
|
||
|
case 3:
|
||
|
{
|
||
|
q.w = (m[0][1] - m[1][0]) * mult;
|
||
|
q.x = (m[2][0] + m[0][2]) * mult;
|
||
|
q.y = (m[1][2] + m[2][1]) * mult;
|
||
|
q.z = biggestVal;
|
||
|
}
|
||
|
break;
|
||
|
default: // Should never actually get here. Just for sanities sake.
|
||
|
{
|
||
|
GB_ASSERT(false, "How did you get here?!");
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
|
||
|
Matrix4 translate(const Vector3& v)
|
||
|
{
|
||
|
Matrix4 result = MATRIX4_IDENTITY;
|
||
|
result[3].xyz = v;
|
||
|
result[3].w = 1;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Matrix4 rotate(const Vector3& v, f32 radians)
|
||
|
{
|
||
|
const f32 c = math::cos(radians);
|
||
|
const f32 s = math::sin(radians);
|
||
|
|
||
|
const Vector3 axis = math::normalize(v);
|
||
|
const Vector3 t = (1.0f - c) * axis;
|
||
|
|
||
|
Matrix4 rot = MATRIX4_IDENTITY;
|
||
|
rot[0][0] = c + t.x * axis.x;
|
||
|
rot[0][1] = 0 + t.x * axis.y + s * axis.z;
|
||
|
rot[0][2] = 0 + t.x * axis.z - s * axis.y;
|
||
|
rot[0][3] = 0;
|
||
|
|
||
|
rot[1][0] = 0 + t.y * axis.x - s * axis.z;
|
||
|
rot[1][1] = c + t.y * axis.y;
|
||
|
rot[1][2] = 0 + t.y * axis.z + s * axis.x;
|
||
|
rot[1][3] = 0;
|
||
|
|
||
|
rot[2][0] = 0 + t.z * axis.x + s * axis.y;
|
||
|
rot[2][1] = 0 + t.z * axis.y - s * axis.x;
|
||
|
rot[2][2] = c + t.z * axis.z;
|
||
|
rot[2][3] = 0;
|
||
|
|
||
|
return rot;
|
||
|
}
|
||
|
|
||
|
Matrix4 scale(const Vector3& v)
|
||
|
{
|
||
|
return { v.x, 0, 0, 0,
|
||
|
0, v.y, 0, 0,
|
||
|
0, 0, v.z, 0,
|
||
|
0, 0, 0, 1 };
|
||
|
}
|
||
|
|
||
|
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top)
|
||
|
{
|
||
|
Matrix4 result = MATRIX4_IDENTITY;
|
||
|
|
||
|
result[0][0] = 2.0f / (right - left);
|
||
|
result[1][1] = 2.0f / (top - bottom);
|
||
|
result[2][2] = -1.0f;
|
||
|
result[3][1] = -(right + left) / (right - left);
|
||
|
result[3][1] = -(top + bottom) / (top - bottom);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far)
|
||
|
{
|
||
|
Matrix4 result = MATRIX4_IDENTITY;
|
||
|
|
||
|
result[0][0] = 2.0f / (right - left);
|
||
|
result[1][1] = 2.0f / (top - bottom);
|
||
|
result[2][2] = -2.0f / (z_far - z_near);
|
||
|
result[3][0] = -(right + left) / (right - left);
|
||
|
result[3][1] = -(top + bottom) / (top - bottom);
|
||
|
result[3][2] = -(z_far + z_near) / (z_far - z_near);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far)
|
||
|
{
|
||
|
GB_ASSERT(math::abs(aspect) > 0.0f,
|
||
|
"math::perspective `fovy_radians` is %f", fovy_radians);
|
||
|
|
||
|
f32 tan_half_fovy = math::tan(0.5f * fovy_radians);
|
||
|
|
||
|
Matrix4 result = {};
|
||
|
result[0][0] = 1.0f / (aspect * tan_half_fovy);
|
||
|
result[1][1] = 1.0f / (tan_half_fovy);
|
||
|
result[2][2] = -(z_far + z_near) / (z_far - z_near);
|
||
|
result[2][3] = -1.0f;
|
||
|
result[3][2] = -2.0f * z_far * z_near / (z_far - z_near);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near)
|
||
|
{
|
||
|
f32 range = math::tan(0.5f * fovy_radians) * z_near;
|
||
|
f32 left = -range * aspect;
|
||
|
f32 right = range * aspect;
|
||
|
f32 bottom = -range;
|
||
|
f32 top = range;
|
||
|
|
||
|
Matrix4 result = {};
|
||
|
|
||
|
result[0][0] = (2.0f * z_near) / (right - left);
|
||
|
result[1][1] = (2.0f * z_near) / (top - bottom);
|
||
|
result[2][2] = -1.0f;
|
||
|
result[2][3] = -1.0f;
|
||
|
result[3][2] = -2.0f * z_near;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
Matrix4
|
||
|
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up)
|
||
|
{
|
||
|
const Vector3 f = math::normalize(center - eye);
|
||
|
const Vector3 s = math::normalize(math::cross(f, up));
|
||
|
const Vector3 u = math::cross(s, f);
|
||
|
|
||
|
Matrix4 result = MATRIX4_IDENTITY;
|
||
|
result[0][0] = +s.x;
|
||
|
result[1][0] = +s.y;
|
||
|
result[2][0] = +s.z;
|
||
|
|
||
|
result[0][1] = +u.x;
|
||
|
result[1][1] = +u.y;
|
||
|
result[2][1] = +u.z;
|
||
|
|
||
|
result[0][2] = -f.x;
|
||
|
result[1][2] = -f.y;
|
||
|
result[2][2] = -f.z;
|
||
|
|
||
|
result[3][0] = -math::dot(s, eye);
|
||
|
result[3][1] = -math::dot(u, eye);
|
||
|
result[3][2] = +math::dot(f, eye);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
Quaternion
|
||
|
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up)
|
||
|
{
|
||
|
const f32 similar = 0.001f;
|
||
|
|
||
|
if (magnitude(center - eye) < similar)
|
||
|
return QUATERNION_IDENTITY; // You cannot look at where you are!
|
||
|
|
||
|
// TODO(bill): Implement using just quaternions
|
||
|
return matrix4_to_quaternion(look_at_matrix4(eye, center, up));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace gb
|
||
|
|
||
|
#endif // GB_IMPLEMENTATION
|