Dealloc to Free & More Hashing Functions

This commit is contained in:
gingerBill 2015-11-29 19:03:08 +00:00
parent 7c971f24fb
commit fdf6d07472
2 changed files with 236 additions and 202 deletions

View File

@ -5,7 +5,7 @@ gb single-file public domain libraries for C & C++
library | latest version | category | languages | description library | latest version | category | languages | description
----------------|----------------|----------|-----------|------------- ----------------|----------------|----------|-----------|-------------
**gb_string.h** | 0.93 | strings | C, C++ | A better string library for C & C++ **gb_string.h** | 0.93 | strings | C, C++ | A better string library for C & C++
**gb.hpp** | 0.26a | misc | C++11 | (Experimental) A C++11 helper library without STL geared towards game development **gb.hpp** | 0.27 | misc | C++11 | (Experimental) A C++11 helper library without STL geared towards game development
**gb_math.hpp** | 0.02b | math | C++11 | A C++11 math library geared towards game development **gb_math.hpp** | 0.02b | math | C++11 | A C++11 math library geared towards game development
**gb_ini.h** | 0.91a | misc | C, C++ | A simple ini file loader library for C & C++ **gb_ini.h** | 0.91a | misc | C, C++ | A simple ini file loader library for C & C++

436
gb.hpp
View File

@ -1,4 +1,4 @@
// gb.hpp - v0.26a - public domain C++11 helper library - no warranty implied; use at your own risk // gb.hpp - v0.27 - public domain C++11 helper library - no warranty implied; use at your own risk
// (Experimental) A C++11 helper library without STL geared towards game development // (Experimental) A C++11 helper library without STL geared towards game development
/* /*
@ -847,7 +847,6 @@ bool is_running(const Thread& t);
u32 current_id(); u32 current_id();
} // namespace thread } // namespace thread
/// Default alignment for memory allocations /// Default alignment for memory allocations
#ifndef GB_DEFAULT_ALIGNMENT #ifndef GB_DEFAULT_ALIGNMENT
#define GB_DEFAULT_ALIGNMENT 8 #define GB_DEFAULT_ALIGNMENT 8
@ -858,8 +857,8 @@ struct Allocator
{ {
/// Allocates the specified amount of memory aligned to the specified alignment /// Allocates the specified amount of memory aligned to the specified alignment
void* (*alloc)(Allocator* a, usize size, usize align); void* (*alloc)(Allocator* a, usize size, usize align);
/// Deallocates/frees an allocation made with alloc() /// Frees an allocation made with alloc()
void (*dealloc)(Allocator* a, void* ptr); void (*free)(Allocator* a, void* ptr);
/// Returns the amount of usuable memory allocated at `ptr`. /// Returns the amount of usuable memory allocated at `ptr`.
/// ///
/// If the allocator does not support tracking of the allocation size, /// If the allocator does not support tracking of the allocation size,
@ -960,7 +959,7 @@ void swap(T (& a)[N], T (& b)[N]);
} // namespace memory } // namespace memory
void* alloc(Allocator* a, usize size, usize align = GB_DEFAULT_ALIGNMENT); void* alloc(Allocator* a, usize size, usize align = GB_DEFAULT_ALIGNMENT);
void dealloc(Allocator* a, void* ptr); void free(Allocator* a, void* ptr);
s64 allocated_size(Allocator* a, const void* ptr); s64 allocated_size(Allocator* a, const void* ptr);
s64 total_allocated(Allocator* a); s64 total_allocated(Allocator* a);
@ -1210,11 +1209,10 @@ u32 adler32(const void* key, u32 num_bytes);
u32 crc32(const void* key, u32 num_bytes); u32 crc32(const void* key, u32 num_bytes);
u64 crc64(const void* key, usize num_bytes); u64 crc64(const void* key, usize num_bytes);
// TODO(bill): Complete hashing functions u32 fnv32(const void* key, usize num_bytes);
// u32 fnv32(const void* key, usize num_bytes); u64 fnv64(const void* key, usize num_bytes);
// u64 fnv64(const void* key, usize num_bytes); u32 fnv32a(const void* key, usize num_bytes);
// u32 fnv32a(const void* key, usize num_bytes); u64 fnv64a(const void* key, usize num_bytes);
// u64 fnv64a(const void* key, usize num_bytes);
u32 murmur32(const void* key, u32 num_bytes, u32 seed = 0x9747b28c); u32 murmur32(const void* key, u32 num_bytes, u32 seed = 0x9747b28c);
u64 murmur64(const void* key, usize num_bytes, u64 seed = 0x9747b28c); u64 murmur64(const void* key, usize num_bytes, u64 seed = 0x9747b28c);
@ -1411,7 +1409,7 @@ inline
Array<T>::~Array() Array<T>::~Array()
{ {
if (allocator && capacity > 0) if (allocator && capacity > 0)
dealloc(allocator, data); free(allocator, data);
} }
@ -1435,7 +1433,7 @@ Array<T>::operator=(Array<T>&& other)
if (this != &other) if (this != &other)
{ {
if (allocator && capacity > 0) if (allocator && capacity > 0)
dealloc(allocator, data); free(allocator, data);
allocator = other.allocator; allocator = other.allocator;
count = other.count; count = other.count;
@ -1497,7 +1495,7 @@ inline void
free(Array<T>* a) free(Array<T>* a)
{ {
if (a->allocator) if (a->allocator)
dealloc(a->allocator, a->data); free(a->allocator, a->data);
a->count = 0; a->count = 0;
a->capacity = 0; a->capacity = 0;
a->data = nullptr; a->data = nullptr;
@ -1581,7 +1579,7 @@ set_capacity(Array<T>* a, usize capacity)
data = alloc_array<T>(a->allocator, capacity); data = alloc_array<T>(a->allocator, capacity);
memory::copy_array(a->data, a->count, data); memory::copy_array(a->data, a->count, data);
} }
dealloc(a->allocator, a->data); free(a->allocator, a->data);
a->data = data; a->data = data;
a->capacity = capacity; a->capacity = capacity;
} }
@ -2658,7 +2656,7 @@ alloc(Allocator* a, usize size, usize align)
} }
internal_linkage void internal_linkage void
dealloc(Allocator* a, void* ptr) free(Allocator* a, void* ptr)
{ {
if (!ptr) if (!ptr)
return; return;
@ -2702,7 +2700,7 @@ allocated_size(Allocator* a, const void* ptr)
return static_cast<usize>(malloc_size(ptr)); return static_cast<usize>(malloc_size(ptr));
#elif defined(GB_SYSTEM_LINUX) #elif defined(GB_SYSTEM_LINUX)
return static_cast<usize>(malloc_usable_size(const_cast<void*>(ptr))); return static_cast<usize>(malloc_usable_size(ptr));
#else #else
#error Implement heap_allocator::allocated_size #error Implement heap_allocator::allocated_size
@ -2739,7 +2737,7 @@ make(bool use_mutex)
#endif #endif
heap.alloc = functions::alloc; heap.alloc = functions::alloc;
heap.dealloc = functions::dealloc; heap.free = functions::free;
heap.allocated_size = functions::allocated_size; heap.allocated_size = functions::allocated_size;
heap.total_allocated = functions::total_allocated; heap.total_allocated = functions::total_allocated;
@ -2781,7 +2779,7 @@ alloc(Allocator* a, usize size, usize align)
} }
inline void inline void
dealloc(Allocator* a, void*) {} free(Allocator* a, void*) {}
inline s64 allocated_size(Allocator*, const void*) { return -1; } inline s64 allocated_size(Allocator*, const void*) { return -1; }
@ -2806,7 +2804,7 @@ make(Allocator* backing, usize size)
arena.physical_start = alloc(arena.backing, size); arena.physical_start = alloc(arena.backing, size);
arena.alloc = functions::alloc; arena.alloc = functions::alloc;
arena.dealloc = functions::dealloc; arena.free = functions::free;
arena.allocated_size = functions::allocated_size; arena.allocated_size = functions::allocated_size;
arena.total_allocated = functions::total_allocated; arena.total_allocated = functions::total_allocated;
@ -2825,7 +2823,7 @@ make(void* start, usize size)
arena.total_allocated_count = 0; arena.total_allocated_count = 0;
arena.alloc = functions::alloc; arena.alloc = functions::alloc;
arena.dealloc = functions::dealloc; arena.free = functions::free;
arena.allocated_size = functions::allocated_size; arena.allocated_size = functions::allocated_size;
arena.total_allocated = functions::total_allocated; arena.total_allocated = functions::total_allocated;
@ -2836,7 +2834,7 @@ void
destroy(Arena_Allocator* arena) destroy(Arena_Allocator* arena)
{ {
if (arena->backing) if (arena->backing)
dealloc(arena->backing, arena->physical_start); free(arena->backing, arena->physical_start);
GB_ASSERT(arena->temp_count == 0, GB_ASSERT(arena->temp_count == 0,
"%ld Temporary_Arena_Memory have not be cleared", arena->temp_count); "%ld Temporary_Arena_Memory have not be cleared", arena->temp_count);
@ -2963,11 +2961,11 @@ alloc(Allocator* a, usize size, usize align)
} }
inline void inline void
dealloc(Allocator* a, void* ptr) free(Allocator* a, void* ptr)
{ {
GB_ASSERT(a != nullptr); GB_ASSERT(a != nullptr);
if (ptr) if (ptr)
a->dealloc(a, ptr); a->free(a, ptr);
} }
inline s64 inline s64
@ -3032,7 +3030,7 @@ free(String str)
string::Header* h = string::header(str); string::Header* h = string::header(str);
if (h->allocator) if (h->allocator)
dealloc(h->allocator, h); free(h->allocator, h);
} }
inline String inline String
@ -3130,7 +3128,7 @@ string_realloc(Allocator* a, void* ptr, usize old_size, usize new_size)
memory::copy(ptr, old_size, new_ptr); memory::copy(ptr, old_size, new_ptr);
dealloc(a, ptr); free(a, ptr);
return new_ptr; return new_ptr;
} }
@ -3609,25 +3607,61 @@ crc64(const void* key, usize num_bytes)
return ~result; return ~result;
} }
// u32 fnv32(const void* key, usize num_bytes) inline u32
// { fnv32(const void* key, usize num_bytes)
{
u32 h = 0x811c9dc5;
const u8* buffer = static_cast<const u8*>(key);
// } for (usize i = 0; i < num_bytes; i++)
{
h = (h * 0x01000193) ^ buffer[i];
}
// u64 fnv64(const void* key, usize num_bytes) return h;
// { }
// } inline u64
fnv64(const void* key, usize num_bytes)
{
u64 h = 0xcbf29ce484222325ull;
const u8* buffer = static_cast<const u8*>(key);
// u32 fnv32a(const void* key, usize num_bytes) for (usize i = 0; i < num_bytes; i++)
// { {
h = (h * 0x100000001B3ll) ^ buffer[i];
}
// } return h;
}
// u64 fnv64a(const void* key, usize num_bytes) inline u32
// { fnv32a(const void* key, usize num_bytes)
{
u32 h = 0x811c9dc5;
const u8* buffer = static_cast<const u8*>(key);
// } for (usize i = 0; i < num_bytes; i++)
{
h = (h ^ buffer[i]) * 0x01000193;
}
return h;
}
inline u64
fnv64a(const void* key, usize num_bytes)
{
u64 h = 0xcbf29ce484222325ull;
const u8* buffer = static_cast<const u8*>(key);
for (usize i = 0; i < num_bytes; i++)
{
h = (h ^ buffer[i]) * 0x100000001B3ll;
}
return h;
}
u32 u32
murmur32(const void* key, u32 num_bytes, u32 seed) murmur32(const void* key, u32 num_bytes, u32 seed)
@ -3681,116 +3715,116 @@ murmur32(const void* key, u32 num_bytes, u32 seed)
} }
#if defined(GB_ARCH_64_BIT) #if defined(GB_ARCH_64_BIT)
u64 u64
murmur64(const void* key, usize num_bytes, u64 seed) murmur64(const void* key, usize num_bytes, u64 seed)
{
local_persist const u64 m = 0xc6a4a7935bd1e995ULL;
local_persist const s32 r = 47;
u64 h = seed ^ (num_bytes * m);
const u64* data = static_cast<const u64*>(key);
const u64* end = data + (num_bytes / 8);
while (data != end)
{ {
u64 k = *data++; local_persist const u64 m = 0xc6a4a7935bd1e995ULL;
local_persist const s32 r = 47;
k *= m; u64 h = seed ^ (num_bytes * m);
k ^= k >> r;
k *= m;
h ^= k; const u64* data = static_cast<const u64*>(key);
const u64* end = data + (num_bytes / 8);
while (data != end)
{
u64 k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
const u8* data2 = reinterpret_cast<const u8*>(data);
switch (num_bytes & 7)
{
case 7: h ^= static_cast<u64>(data2[6]) << 48;
case 6: h ^= static_cast<u64>(data2[5]) << 40;
case 5: h ^= static_cast<u64>(data2[4]) << 32;
case 4: h ^= static_cast<u64>(data2[3]) << 24;
case 3: h ^= static_cast<u64>(data2[2]) << 16;
case 2: h ^= static_cast<u64>(data2[1]) << 8;
case 1: h ^= static_cast<u64>(data2[0]);
h *= m;
};
h ^= h >> r;
h *= m; h *= m;
h ^= h >> r;
return h;
} }
const u8* data2 = reinterpret_cast<const u8*>(data);
switch (num_bytes & 7)
{
case 7: h ^= static_cast<u64>(data2[6]) << 48;
case 6: h ^= static_cast<u64>(data2[5]) << 40;
case 5: h ^= static_cast<u64>(data2[4]) << 32;
case 4: h ^= static_cast<u64>(data2[3]) << 24;
case 3: h ^= static_cast<u64>(data2[2]) << 16;
case 2: h ^= static_cast<u64>(data2[1]) << 8;
case 1: h ^= static_cast<u64>(data2[0]);
h *= m;
};
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
#elif GB_ARCH_32_BIT #elif GB_ARCH_32_BIT
u64 u64
murmur64(const void* key, usize num_bytes, u64 seed) murmur64(const void* key, usize num_bytes, u64 seed)
{
local_persist const u32 m = 0x5bd1e995;
local_persist const s32 r = 24;
u32 h1 = static_cast<u32>(seed) ^ static_cast<u32>(num_bytes);
u32 h2 = static_cast<u32>(seed >> 32);
const u32* data = static_cast<const u32*>(key);
while (num_bytes >= 8)
{ {
u32 k1 = *data++; local_persist const u32 m = 0x5bd1e995;
k1 *= m; local_persist const s32 r = 24;
k1 ^= k1 >> r;
k1 *= m; u32 h1 = static_cast<u32>(seed) ^ static_cast<u32>(num_bytes);
u32 h2 = static_cast<u32>(seed >> 32);
const u32* data = static_cast<const u32*>(key);
while (num_bytes >= 8)
{
u32 k1 = *data++;
k1 *= m;
k1 ^= k1 >> r;
k1 *= m;
h1 *= m;
h1 ^= k1;
num_bytes -= 4;
u32 k2 = *data++;
k2 *= m;
k2 ^= k2 >> r;
k2 *= m;
h2 *= m;
h2 ^= k2;
num_bytes -= 4;
}
if (num_bytes >= 4)
{
u32 k1 = *data++;
k1 *= m;
k1 ^= k1 >> r;
k1 *= m;
h1 *= m;
h1 ^= k1;
num_bytes -= 4;
}
switch (num_bytes)
{
case 3: h2 ^= reinterpret_cast<const u8*>(data)[2] << 16;
case 2: h2 ^= reinterpret_cast<const u8*>(data)[1] << 8;
case 1: h2 ^= reinterpret_cast<const u8*>(data)[0] << 0;
h2 *= m;
};
h1 ^= h2 >> 18;
h1 *= m; h1 *= m;
h1 ^= k1; h2 ^= h1 >> 22;
num_bytes -= 4;
u32 k2 = *data++;
k2 *= m;
k2 ^= k2 >> r;
k2 *= m;
h2 *= m; h2 *= m;
h2 ^= k2; h1 ^= h2 >> 17;
num_bytes -= 4;
}
if (num_bytes >= 4)
{
u32 k1 = *data++;
k1 *= m;
k1 ^= k1 >> r;
k1 *= m;
h1 *= m; h1 *= m;
h1 ^= k1; h2 ^= h1 >> 19;
num_bytes -= 4;
}
switch (num_bytes)
{
case 3: h2 ^= reinterpret_cast<const u8*>(data)[2] << 16;
case 2: h2 ^= reinterpret_cast<const u8*>(data)[1] << 8;
case 1: h2 ^= reinterpret_cast<const u8*>(data)[0] << 0;
h2 *= m; h2 *= m;
};
h1 ^= h2 >> 18; u64 h = h1;
h1 *= m;
h2 ^= h1 >> 22;
h2 *= m;
h1 ^= h2 >> 17;
h1 *= m;
h2 ^= h1 >> 19;
h2 *= m;
u64 h = h1; h = (h << 32) | h2;
h = (h << 32) | h2; return h;
}
return h;
}
#else #else
#error murmur64 function not supported on this architecture #error murmur64 function not supported on this architecture
#endif #endif
} // namespace hash } // namespace hash
@ -3805,97 +3839,97 @@ const Time TIME_ZERO = time::seconds(0);
namespace time namespace time
{ {
#if defined(GB_SYSTEM_WINDOWS) #if defined(GB_SYSTEM_WINDOWS)
internal_linkage LARGE_INTEGER
win32_get_frequency()
{
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
return f;
}
internal_linkage LARGE_INTEGER Time
win32_get_frequency() now()
{ {
LARGE_INTEGER f; // NOTE(bill): std::chrono does not have a good enough precision in MSVC12
QueryPerformanceFrequency(&f); // and below. This may have been fixed in MSVC14 but unsure as of yet.
return f;
}
Time // Force the following code to run on first core
now() // NOTE(bill): See
{ // http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
// NOTE(bill): std::chrono does not have a good enough precision in MSVC12 HANDLE currentThread = GetCurrentThread();
// and below. This may have been fixed in MSVC14 but unsure as of yet. DWORD_PTR previousMask = SetThreadAffinityMask(currentThread, 1);
// Force the following code to run on first core // Get the frequency of the performance counter
// NOTE(bill): See // It is constant across the program's lifetime
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx local_persist LARGE_INTEGER s_frequency = win32_get_frequency();
HANDLE currentThread = GetCurrentThread();
DWORD_PTR previousMask = SetThreadAffinityMask(currentThread, 1);
// Get the frequency of the performance counter // Get the current time
// It is constant across the program's lifetime LARGE_INTEGER t;
local_persist LARGE_INTEGER s_frequency = win32_get_frequency(); QueryPerformanceCounter(&t);
// Get the current time // Restore the thread affinity
LARGE_INTEGER t; SetThreadAffinityMask(currentThread, previousMask);
QueryPerformanceCounter(&t);
// Restore the thread affinity return time::microseconds(1000000ll * t.QuadPart / s_frequency.QuadPart);
SetThreadAffinityMask(currentThread, previousMask); }
return time::microseconds(1000000ll * t.QuadPart / s_frequency.QuadPart); void
} sleep(Time t)
{
if (t.microseconds <= 0)
return;
void // Get the supported timer resolutions on this system
sleep(Time t) TIMECAPS tc;
{ timeGetDevCaps(&tc, sizeof(TIMECAPS));
if (t.microseconds <= 0) // Set the timer resolution to the minimum for the Sleep call
return; timeBeginPeriod(tc.wPeriodMin);
// Get the supported timer resolutions on this system // Wait...
TIMECAPS tc; ::Sleep(time::as_milliseconds(t));
timeGetDevCaps(&tc, sizeof(TIMECAPS));
// Set the timer resolution to the minimum for the Sleep call
timeBeginPeriod(tc.wPeriodMin);
// Wait... // Reset the timer resolution back to the system default
::Sleep(time::as_milliseconds(t)); timeBeginPeriod(tc.wPeriodMin);
}
// Reset the timer resolution back to the system default
timeBeginPeriod(tc.wPeriodMin);
}
#else #else
Time Time
now() now()
{ {
#if defined(GB_SYSTEM_OSX) #if defined(GB_SYSTEM_OSX)
s64 t = static_cast<s64>(mach_absolute_time()); s64 t = static_cast<s64>(mach_absolute_time());
return microseconds(t); return microseconds(t);
#else #else
struct timeval t; struct timeval t;
gettimeofday(&t, nullptr); gettimeofday(&t, nullptr);
return microseconds((t.tv_sec * 1000000ll) + (t.tv_usec * 1ll)); return microseconds((t.tv_sec * 1000000ll) + (t.tv_usec * 1ll));
#endif #endif
} }
void void
sleep(Time t) sleep(Time t)
{ {
if (t.microseconds <= 0) if (t.microseconds <= 0)
return; return;
struct timespec spec = {}; struct timespec spec = {};
spec.tv_sec = static_cast<s64>(as_seconds(t)); spec.tv_sec = static_cast<s64>(as_seconds(t));
spec.tv_nsec = 1000ll * (as_microseconds(t) % 1000000ll); spec.tv_nsec = 1000ll * (as_microseconds(t) % 1000000ll);
nanosleep(&spec, nullptr); nanosleep(&spec, nullptr);
} }
#endif #endif
Time seconds(f32 s) { return {static_cast<s64>(s * 1000000ll)}; } Time seconds(f32 s) { return {static_cast<s64>(s * 1000000ll)}; }
Time milliseconds(s32 ms) { return {static_cast<s64>(ms * 1000l)}; } Time milliseconds(s32 ms) { return {static_cast<s64>(ms * 1000l)}; }
Time microseconds(s64 us) { return {us}; } Time microseconds(s64 us) { return {us}; }
f32 as_seconds(Time t) { return static_cast<f32>(t.microseconds / 1000000.0f); } f32 as_seconds(Time t) { return static_cast<f32>(t.microseconds / 1000000.0f); }
s32 as_milliseconds(Time t) { return static_cast<s32>(t.microseconds / 1000l); } s32 as_milliseconds(Time t) { return static_cast<s32>(t.microseconds / 1000l); }
s64 as_microseconds(Time t) { return t.microseconds; } s64 as_microseconds(Time t) { return t.microseconds; }
} // namespace time } // namespace time
bool operator==(Time left, Time right) { return left.microseconds == right.microseconds; } bool operator==(Time left, Time right) { return left.microseconds == right.microseconds; }
bool operator!=(Time left, Time right) { return !operator==(left, right); } bool operator!=(Time left, Time right) { return !operator==(left, right); }
@ -3929,7 +3963,6 @@ f32 operator/(Time left, Time right) { return time::as_seconds(left) / time::as_
Time& operator/=(Time& left, f32 right) { return (left = left / right); } Time& operator/=(Time& left, f32 right) { return (left = left / right); }
Time& operator/=(Time& left, s64 right) { return (left = left / right); } Time& operator/=(Time& left, s64 right) { return (left = left / right); }
Time operator%(Time left, Time right) { return time::microseconds(time::as_microseconds(left) % time::as_microseconds(right)); } Time operator%(Time left, Time right) { return time::microseconds(time::as_microseconds(left) % time::as_microseconds(right)); }
Time& operator%=(Time& left, Time right) { return (left = left % right); } Time& operator%=(Time& left, Time right) { return (left = left % right); }
@ -4131,6 +4164,7 @@ __GB_NAMESPACE_END
/* /*
Version History: Version History:
0.27 - Dealloc to Free & More Hashing Functions
0.26a - Heap_Allocator Fix 0.26a - Heap_Allocator Fix
0.26 - Better Allocation system 0.26 - Better Allocation system
0.25a - Array bug fix 0.25a - Array bug fix