/* gb.h - v0.03 - public domain C helper library - no warranty implied; use at your own risk */ /* (Experimental) A C helper library geared towards game development */ /* * LICENSE * This software is in the public domain. Where that dedication is not * recognized, you are granted a perpetual, irrevocable license to copy, * distribute, and modify this file as you see fit. * * WARNING * - This library is _highly_ experimental and features may not work as expected. * - This also means that many functions are not documented. * */ /* Version History: 0.03 - Allocators can be passed to gb_alloc/free/etc. without cast using `typedef void *gb_Allocator_Ptr` 0.02 - Implement all functions (from gb.hpp) 0.01 - Initial Version (just prototypes) */ #ifndef GB_INCLUDE_GB_H #define GB_INCLUDE_GB_H #if defined(__cplusplus) extern "C" { #endif /* NOTE(bill): Because static means three different things in C/C++ * Great Design(!) */ #ifndef global_variable #define global_variable static #define internal_linkage static #define local_persist static #endif /* Example for static defines global_variable const f32 TAU = 6.283185f; global_variable void* g_memory; internal_linkage void some_function(...) { local_persist u32 count = 0; ... count++; ... } */ #if defined(_MSC_VER) #define _ALLOW_KEYWORD_MACROS #ifndef alignof /* Needed for MSVC 2013 'cause Microsoft "loves" standards */ #define alignof(x) __alignof(x) #endif #endif /**********************************/ /* */ /* System OS */ /* */ /**********************************/ #if defined(_WIN32) || defined(_WIN64) #ifndef GB_SYSTEM_WINDOWS #define GB_SYSTEM_WINDOWS 1 #endif #elif defined(__APPLE__) && defined(__MACH__) #ifndef GB_SYSTEM_OSX #define GB_SYSTEM_OSX 1 #endif #elif defined(__unix__) #ifndef GB_SYSTEM_UNIX #define GB_SYSTEM_UNIX 1 #endif #if defined(__linux__) #ifndef GB_SYSTEM_LINUX #define GB_SYSTEM_LINUX 1 #endif #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) #ifndef GB_SYSTEM_FREEBSD #define GB_SYSTEM_FREEBSD 1 #endif #else #error This UNIX operating system is not supported by gb.hpp #endif #else #error This operating system is not supported by gb.hpp #endif #if defined(_MSC_VER) /* Microsoft Visual Studio */ #define GB_COMPILER_MSVC 1 #elif defined(__clang__) /* Clang */ #define GB_COMPILER_CLANG 1 #elif defined(__GNUC__) || defined(__GNUG__) && !(defined(__clang__) || defined(__INTEL_COMPILER)) /* GNU GCC/G++ Compiler */ #define GB_COMPILER_GNU_GCC 1 #elif defined(__INTEL_COMPILER) /* Intel C++ Compiler */ #define GB_COMPILER_INTEL 1 #endif /* Environment Bit Size */ #if defined(_WIN32) || defined(_WIN64) #if defined(_WIN64) #ifndef GB_ARCH_64_BIT #define GB_ARCH_64_BIT 1 #endif #else #ifndef GB_ARCH_32_BIT #define GB_ARCH_32_BIT 1 #endif #endif #endif /* TODO(bill): Check if this works on clang */ #if defined(__GNUC__) #if defined(__x86_64__) || defined(__ppc64__) #ifndef GB_ARCH_64_BIT #define GB_ARCH_64_BIT 1 #endif #else #ifndef GB_ARCH_32_BIT #define GB_ARCH_32_BIT 1 #endif #endif #endif #ifndef GB_EDIAN_ORDER #define GB_EDIAN_ORDER #define GB_IS_BIG_EDIAN (!*(unsigned char *)&(unsigned short){1}) #define GB_IS_LITTLE_EDIAN (!GB_IS_BIG_EDIAN) #endif #define GB_IS_POWER_OF_TWO(x) ((x) != 0) && !((x) & ((x) - 1)) #if !defined(GB_HAS_NO_CONSTEXPR) #if defined(_GNUC_VER) && _GNUC_VER < 406 /* Less than gcc 4.06 */ #define GB_HAS_NO_CONSTEXPR 1 #elif defined(_MSC_VER) && _MSC_VER < 1900 /* Less than Visual Studio 2015/MSVC++ 14.0 */ #define GB_HAS_NO_CONSTEXPR 1 #elif !defined(__GXX_EXPERIMENTAL_CXX0X__) && __cplusplus < 201103L #define GB_HAS_NO_CONSTEXPR 1 #endif #endif #if defined(GB_HAS_NO_CONSTEXPR) #define GB_CONSTEXPR #else #define GB_CONSTEXPR constexpr #endif #ifndef GB_FORCE_INLINE #if defined(_MSC_VER) #define GB_FORCE_INLINE __forceinline #else #define GB_FORCE_INLINE __attribute__ ((__always_inline__)) #endif #endif #include #include #include #if defined(GB_SYSTEM_WINDOWS) #define NOMINMAX 1 #define VC_EXTRALEAN 1 #define WIN32_EXTRA_LEAN 1 #define WIN32_LEAN_AND_MEAN 1 #include /* TODO(bill): Should we include only the needed headers? */ #include /* Time functions */ #undef NOMINMAX #undef VC_EXTRALEAN #undef WIN32_EXTRA_LEAN #undef WIN32_LEAN_AND_MEAN #include #else #include #include #endif #ifndef true #define true (0==0) #define false (0!=0) #endif #ifndef NULL #define NULL ((void *)0) #endif #if !defined(NDEBUG) /* TODO(bill): Do a better assert */ #define GB_ASSERT(cond) assert(cond) #else #define GB_ASSERT(cond) ((void)(cond)) #endif #define GB_STATIC_ASSERT(COND, MSG) typedef char gb__static_assertion_##MSG[(!!(COND))*2-1] /* token pasting madness: */ #define GB_COMPILE_TIME_ASSERT3(cond, line) GB_STATIC_ASSERT(cond, static_assertion_at_line_##line) #define GB_COMPILE_TIME_ASSERT2(cond, line) GB_COMPILE_TIME_ASSERT3(cond, line) #define GB_COMPILE_TIME_ASSERT(cond) GB_COMPILE_TIME_ASSERT2(cond, __LINE__) /* snprintf_msvc */ #if defined(_MSC_VER) int gb__vsnprintf_compatible(char *buffer, size_t size, const char *format, va_list args) { int result = -1; if (size > 0) result = _vsnprintf_s(buffer, size, _TRUNCATE, format, args); if (result == -1) return _vscprintf(format, args); return result; } int gb__snprintf_compatible(char *buffer, size_t size, const char *format, ...) { va_list args; va_start(args, format); int result = gb__vsnprintf_compatible(buffer, size, format, args); va_end(args); return result; } #if !defined(GB_DO_NOT_USE_MSVC_SPRINTF_FIX) #define snprintf gb__snprintf_compatible #define vsnprintf gb__vsnprintf_compatible #endif /* GB_DO_NOT_USE_MSVC_SPRINTF_FIX */ #endif #if defined(_MSC_VER) typedef unsigned __int8 u8; typedef signed __int8 s8; typedef unsigned __int16 u16; typedef signed __int16 s16; typedef unsigned __int32 u32; typedef signed __int32 s32; typedef unsigned __int64 u64; typedef signed __int64 s64; #else typedef uint8_t u8; typedef int8_t s8; typedef uint16_t u16; typedef int16_t s16; typedef uint32_t u32; typedef int32_t s32; typedef uint64_t u64; typedef int64_t s64; #endif GB_COMPILE_TIME_ASSERT(sizeof(s8) == 1); GB_COMPILE_TIME_ASSERT(sizeof(s16) == 2); GB_COMPILE_TIME_ASSERT(sizeof(s32) == 4); GB_COMPILE_TIME_ASSERT(sizeof(s64) == 8); typedef float f32; typedef double f64; typedef s32 bool32; #if defined(GB_ARCH_32_BIT) typedef u32 usize; typedef s32 ssize; #elif defined(GB_ARCH_64_BIT) typedef u64 usize; typedef s64 ssize; #else #error Unknown architecture bit size #endif GB_COMPILE_TIME_ASSERT(sizeof(usize) == sizeof(size_t)); typedef uintptr_t uintptr; typedef intptr_t intptr; typedef ptrdiff_t ptrdiff; #define U8_MIN 0u #define U8_MAX 0xffu #define S8_MIN (-0x7f - 1) #define S8_MAX 0x7f #define U16_MIN 0u #define U16_MAX 0xffffu #define S16_MIN (-0x7fff - 1) #define S16_MAX 0x7fff #define U32_MIN 0u #define U32_MAX 0xffffffffu #define S32_MIN (-0x7fffffff - 1) #define S32_MAX 0x7fffffff #define U64_MIN 0ull #define U64_MAX 0xffffffffffffffffull #define S64_MIN (-0x7fffffffffffffffll - 1) #define S64_MAX 0x7fffffffffffffffll #if defined(GB_ARCH_64_BIT) && !defined(GB_USIZE_MIX) #define USIZE_MIX U64_MIN #define USIZE_MAX U64_MAX #define SSIZE_MIX S64_MIN #define SSIZE_MAX S64_MAX #elif defined(GB_ARCH_32_BIT) && !defined(GB_USIZE_MIX) #define USIZE_MIX U32_MIN #define USIZE_MAX U32_MAX #define SSIZE_MIX S32_MIN #define SSIZE_MAX S32_MAX #endif /**********************************/ /* */ /* Casts */ /* */ /**********************************/ /* NOTE(bill): Easier to grep/find for casts */ /* Still not as type safe as C++ static_cast, reinterpret_cast, const_cast */ #define cast(Type, var) ((Type)(var)) /**********************************/ /* */ /* Memory */ /* */ /**********************************/ /* NOTE(bill): 0[x] is used to prevent C++ style arrays with operator overloading */ #define GB_ARRAY_COUNT(x) ((sizeof(x)/sizeof(0[x])) / (cast(size_t, !(sizeof(x) % sizeof(0[x]))))) #define GB_KILOBYTES(x) ( (x) * 1024ll) #define GB_MEGABYTES(x) (GB_KILOBYTES(x) * 1024ll) #define GB_GIGABYTES(x) (GB_MEGABYTES(x) * 1024ll) #define GB_TERABYTES(x) (GB_GIGABYTES(x) * 1024ll) typedef struct gb_Mutex { #if defined(GB_SYSTEM_WINDOWS) HANDLE win32_mutex; #else pthread_mutex_t posix_mutex; #endif } gb_Mutex; gb_Mutex gb_mutex_make(void); void gb_mutex_destroy(gb_Mutex *mutex); void gb_mutex_lock(gb_Mutex *mutex); bool32 gb_mutex_try_lock(gb_Mutex *mutex); void gb_mutex_unlock(gb_Mutex *mutex); typedef struct gb_Atomic32 { u32 nonatomic; } gb_Atomic32; typedef struct gb_Atomic64 { u64 nonatomic; } gb_Atomic64; u32 gb_atomic32_load(const volatile gb_Atomic32 *a); void gb_atomic32_store(volatile gb_Atomic32 *a, u32 value); u32 gb_atomic32_compare_exchange_strong(volatile gb_Atomic32 *a, u32 expected, u32 desired); u32 gb_atomic32_exchanged(volatile gb_Atomic32 *a, u32 desired); u32 gb_atomic32_fetch_add(volatile gb_Atomic32 *a, s32 operand); u32 gb_atomic32_fetch_and(volatile gb_Atomic32 *a, u32 operand); u32 gb_atomic32_fetch_or(volatile gb_Atomic32 *a, u32 operand); u64 gb_atomic64_load(const volatile gb_Atomic64 *a); void gb_atomic64_store(volatile gb_Atomic64 *a, u64 value); u64 gb_atomic64_compare_exchange_strong(volatile gb_Atomic64 *a, u64 expected, u64 desired); u64 gb_atomic64_exchanged(volatile gb_Atomic64 *a, u64 desired); u64 gb_atomic64_fetch_add(volatile gb_Atomic64 *a, s64 operand); u64 gb_atomic64_fetch_and(volatile gb_Atomic64 *a, u64 operand); u64 gb_atomic64_fetch_or(volatile gb_Atomic64 *a, u64 operand); typedef struct gb_Semaphore { #if defined(GB_SYSTEM_WINDOWS) HANDLE win32_handle; #else gb_Mutex mutex; pthread_cond_t cond; s32 count; #endif } gb_Semaphore; gb_Semaphore gb_semaphore_make(void); void gb_semaphore_destroy(gb_Semaphore *s); void gb_semaphore_post(gb_Semaphore *s); void gb_semaphore_post_count(gb_Semaphore *s, u32 count); void gb_semaphore_wait(gb_Semaphore *s); typedef void(gb_Thread_Procedure)(void*); typedef struct gb_Thread { #if defined(GB_SYSTEM_WINDOWS) HANDLE win32_handle; #else pthread_t posix_handle; #endif gb_Thread_Procedure *proc; void *data; gb_Semaphore semaphore; usize stack_size; bool32 is_running; } gb_Thread; gb_Thread gb_thread_make(void); void gb_thread_destroy(gb_Thread *t); void gb_thread_start(gb_Thread *t, gb_Thread_Procedure *proc, void *data); void gb_thread_start_with_stack(gb_Thread *t, gb_Thread_Procedure *proc, void *data, usize stack_size); void gb_thread_join(gb_Thread *t); bool32 gb_thread_is_running(const gb_Thread *t); /* NOTE(bill): Can this be just pass by value? */ u32 gb_thread_current_id(void); /**********************************/ /* */ /* Allocators */ /* */ /**********************************/ /* Default aligment for memory allocations */ #ifndef GB_DEFAULT_ALIGNMENT #define GB_DEFAULT_ALIGNMENT 8 #endif /* * NOTE(bill): The cost of the function pointer lookup is minor compared to the actually allocation in most cases */ typedef struct gb_Allocator { /* Allocates the specified amount of memory aligned to the specified alignment */ void *(*alloc)(struct gb_Allocator *a, usize size, usize align); /* Frees an allocation made with alloc() */ void (*free)(struct gb_Allocator *a, void *ptr); /* Returns the amount of usuable memory allocated at `ptr`. * If the allocator does not support tracking of the allocation size, * the function will return -1 */ s64 (*allocated_size)(struct gb_Allocator *a, const void *ptr); /* Returns the total amount of memory allocated by this allocator * If the allocator does not track memory, the function will return -1 */ s64 (*total_allocated)(struct gb_Allocator *a); } gb_Allocator; typedef void *gb_Allocator_Ptr; void * gb_alloc_align(gb_Allocator_Ptr allocator, usize size, usize align) { GB_ASSERT(allocator != NULL); gb_Allocator *a = allocator; return a->alloc(a, size, align); } void * gb_alloc(gb_Allocator_Ptr allocator, usize size) { GB_ASSERT(allocator != NULL); return gb_alloc_align(allocator, size, GB_DEFAULT_ALIGNMENT); } #define gb_alloc_struct(allocator, Type) cast(Type *, gb_alloc_align(allocator, sizeof(Type), alignof(Type))) #define gb_alloc_array(allocator, Type, count) cast(Type *, gb_alloc_align(allocator, sizeof(Type)*(count), alignof(Type))) void gb_free(gb_Allocator_Ptr allocator, void *ptr) { GB_ASSERT(allocator != NULL); gb_Allocator *a = allocator; if (ptr) a->free(a, ptr); } s64 gb_allocated_size(gb_Allocator_Ptr allocator, const void *ptr) { GB_ASSERT(allocator != NULL); gb_Allocator *a = allocator; return a->allocated_size(a, ptr); } s64 gb_total_allocated(gb_Allocator_Ptr allocator) { GB_ASSERT(allocator != NULL); gb_Allocator *a = allocator; return a->total_allocated(a); } typedef struct gb_Heap { gb_Allocator base; /* NOTE(bill): Must be first into order to allow for polymorphism */ gb_Mutex mutex; bool32 use_mutex; s64 total_allocated_count; s64 allocation_count; #if defined(GB_SYSTEM_WINDOWS) HANDLE win32_heap_handle; #endif } gb_Heap; gb_Heap gb_heap_make(bool32 use_mutex); void gb_heap_destroy(gb_Heap *heap); typedef struct gb_Arena { gb_Allocator base; /* NOTE(bill): Must be first into order to allow for polymorphism */ gb_Allocator *backing; void *physical_start; s64 total_size; s64 total_allocated_count; s64 temp_count; } gb_Arena; gb_Arena gb_arena_make_from_backing(gb_Allocator *backing, usize size); gb_Arena gb_arena_make_from_pointer(void *start, usize size); void gb_arena_destroy(gb_Arena *arena); void gb_arena_clear(gb_Arena *arena); typedef struct gb_Temporary_Arena_Memory { gb_Arena *arena; s64 original_count; } gb_Temporary_Arena_Memory; gb_Temporary_Arena_Memory gb_make_temporary_arena_memory(gb_Arena *arena); void gb_temporary_arena_memory_free(gb_Temporary_Arena_Memory t); typedef struct gb_Pool { gb_Allocator base; /* NOTE(bill): Must be first into order to allow for polymorphism */ gb_Allocator *backing; void *physical_start; void *free_list; usize block_size; usize block_align; s64 total_size; } gb_Pool; gb_Pool gb_pool_make(gb_Allocator *backing, usize num_blocks, usize block_size); gb_Pool gb_pool_make_align(gb_Allocator *backing, usize num_blocks, usize block_size, usize block_align); void gb_pool_destroy(gb_Pool *pool); /**********************************/ /* */ /* Memory */ /* */ /**********************************/ void *gb_align_forward(void *ptr, usize align); void *gb_zero_size(void *ptr, usize bytes); #define gb_zero_struct(element) ((void)gb_zero_size(&(element), sizeof(element))) #define gb_zero_array(ptr, Type, count) cast(Type, gb_zero_size((ptr), sizeof(Type)*(count))) /**********************************/ /* */ /* Array */ /* */ /**********************************/ /* * Array structure: * * * | Allocator * | usize count | usize capacity | char * | * | * `-- Returned pointer */ typedef struct gb_Array_Header { gb_Allocator *allocator; usize count; usize capacity; } gb_Array_Header; /* TODO(bill): Implement a c style array maybe like stb/stretchy_buffer.h but with a custom allocator */ #define gb_array_header(arr) (cast(gb_Array_Header *, arr) - 1) #define gb_array_make_count(allocator, Type, count) /* TODO(bill): */ #define gb_array_make(allocator, Type) (gb_array_make_count(allocator, Type, 0)) #define gb_array_free(arr) (gb_free(gb_array_header(arr)->allocator, gb_array_header(arr))) #define gb_array_allocator(arr) (gb_array_header(arr)->allocator) #define gb_array_count(arr) (gb_array_header(arr)->count) #define gb_array_capacity(arr) (gb_array_header(arr)->capacity) #define gb_array_append(arr, item) /* TODO(bill): */ #define gb_array_append_array(arr, items, count) /* TODO(bill): */ #define gb_array_pop(arr) (GB_ASSERT(gb_array_header(arr)->count > 0), gb_array_header(arr)->count--) #define gb_array_clear(arr) (gb_array_header(arr)->count = 0) #define gb_array_resize(arr, count) /* TODO(bill): */ #define gb_array_reserve(arr, capacity) /* TODO(bill): */ #define gb_array_set_capacity(arr, capacity) /* TODO(bill): */ #define gb_array_grow(arr, min_capacity) /* TODO(bill): */ /**********************************/ /* */ /* String - C Compatibile */ /* */ /**********************************/ /* Pascal like strings in C */ typedef char *gb_String; #ifndef GB_STRING_SIZE #define GB_STRING_SIZE /* define GB_STRING_SIZE to allow for a custom size e.g. u16, usize, int, etc. */ typedef u32 gb_String_Size; #endif typedef struct gb_String_Header { gb_Allocator *allocator; gb_String_Size length; gb_String_Size capacity; } gb_String_Header; #define GB_STRING_HEADER(str) (cast(gb_String_Header *, str) - 1) gb_String gb_string_make(gb_Allocator *a, const char* str); gb_String gb_string_make_length(gb_Allocator *a, const void* str, gb_String_Size num_bytes); void gb_string_free(gb_String str); gb_String gb_string_duplicate(gb_Allocator *a, const gb_String str); gb_String_Size gb_string_length(const gb_String str); gb_String_Size gb_string_capacity(const gb_String str); gb_String_Size gb_string_available_space(const gb_String str); void gb_string_clear(gb_String str); gb_String gb_string_append_string(gb_String str, const gb_String other); gb_String gb_string_append_string_length(gb_String str, const void *other, gb_String_Size num_bytes); gb_String gb_string_append_cstring(gb_String str, const char *other); gb_String gb_string_set(gb_String str, const char *cstr); gb_String gb_string_make_space_for(gb_String str, gb_String_Size add_len); gb_String_Size gb_string_allocation_size(const gb_String str); bool32 gb_strings_are_equal(const gb_String lhs, const gb_String rhs); gb_String gb_string_trim(gb_String str, const char *cut_set); gb_String gb_string_trim_space(gb_String str); /* Whitespace ` \t\r\n\v\f` */ /**********************************/ /* */ /* Hash */ /* */ /**********************************/ u32 gb_hash_adler32(const void *ket, u32 num_bytes); u32 gb_hash_crc32(const void* key, u32 num_bytes); u64 gb_hash_crc64(const void* key, usize num_bytes); u32 gb_hash_fnv32(const void* key, usize num_bytes); u64 gb_hash_fnv64(const void* key, usize num_bytes); u32 gb_hash_fnv32a(const void* key, usize num_bytes); u64 gb_hash_fnv64a(const void* key, usize num_bytes); u32 gb_hash_murmur32(const void* key, u32 num_bytes, u32 seed); u64 gb_hash_murmur64(const void* key, usize num_bytes, u64 seed); /**********************************/ /* */ /* Time */ /* */ /**********************************/ /* TODO(bill): How should I this */ typedef struct gb_Time { s64 microseconds; } gb_Time; #define GB_TIME_ZERO (cast(gb_Time, {0})) gb_Time gb_time_now(void); void gb_time_sleep(gb_Time time); gb_Time gb_time_seconds(f32 s); gb_Time gb_time_milliseconsd(s32 ms); gb_Time gb_time_microseconds(s64 us); f32 gb_time_as_seconds(gb_Time t); s32 gb_time_as_milliseconds(gb_Time t); s64 gb_time_as_microseconds(gb_Time t); /* * lhs < rhs -1 * lhs == rhs 0 * lhs > rhs +1 */ s32 gb_time_cmp(gb_Time lhs, gb_Time rhs); gb_Time gb_time_add(gb_Time lhs, gb_Time rhs); gb_Time gb_time_sub(gb_Time lhs, gb_Time rhs); gb_Time gb_time_mod(gb_Time lhs, gb_Time rhs); gb_Time gb_time_mul(gb_Time t, f32 s); gb_Time gb_time_div(gb_Time t, f32 s); f32 gb_time_div_time(gb_Time num, gb_Time dom); #if defined(__cplusplus) } #endif /* extern "C" */ #endif // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // Woo hoo! // // // // // //////////////////////////////// // // // Implemenation // // // //////////////////////////////// #if defined(GB_IMPLEMENTATION) #if defined(__cplusplus) extern "C" { #endif /**********************************/ /* */ /* Memory */ /* */ /**********************************/ gb_Mutex gb_mutex_make(void) { gb_Mutex m = {0}; #if defined(GB_SYSTEM_WINDOWS) m.win32_mutex = CreateMutex(0, false, 0); #else pthread_mutex_init(&m.posix_mutex, NULL); #endif return m; } void gb_mutex_destroy(gb_Mutex *m) { #if defined(GB_SYSTEM_WINDOWS) CloseHandle(m->win32_mutex); #else pthread_mutex_destroy(&m->posix_mutex); #endif } void gb_mutex_lock(gb_Mutex *m) { #if defined(GB_SYSTEM_WINDOWS) WaitForSingleObject(m->win32_mutex, INFINITE); #else pthread_mutex_lock(&m->posix_mutex); #endif } bool32 gb_mutex_try_lock(gb_Mutex *m) { #if defined(GB_SYSTEM_WINDOWS) return WaitForSingleObject(m->win32_mutex, 0) == WAIT_OBJECT_0; #else return pthread_mutex_trylock(&m->posix_mutex) == 0; #endif } void gb_mutex_unlock(gb_Mutex *m) { #if defined(GB_SYSTEM_WINDOWS) ReleaseMutex(m->win32_mutex); #else pthread_mutex_unlock(&m->posix_mutex); #endif } #if defined(_MSC_VER) u32 gb_atomic32_load(const volatile gb_Atomic32 *object) { return object->nonatomic; } void gb_atomic32_store(volatile gb_Atomic32 *object, u32 value) { object->nonatomic = value; } u32 gb_atomic32_compare_exchange_strong(volatile gb_Atomic32 *object, u32 expected, u32 desired) { return _InterlockedCompareExchange(cast(volatile long *, object), desired, expected); } u32 gb_atomic32_exchanged(volatile gb_Atomic32 *object, u32 operand) { return _InterlockedExchangeAdd(cast(volatile long *, object), operand); } u32 gb_atomic32_fetch_add(volatile gb_Atomic32 *object, s32 operand) { return _InterlockedExchangeAdd(cast(volatile long *, object), operand); } u32 gb_atomic32_fetch_and(volatile gb_Atomic32 *object, u32 operand) { return _InterlockedAnd(cast(volatile long *, object), operand); } u32 gb_atomic32_fetch_or(volatile gb_Atomic32 *object, u32 operand) { return _InterlockedOr(cast(volatile long *, object), operand); } u64 gb_atomic64_load(const volatile gb_Atomic64 *object) { #if defined(GB_ARCH_64_BIT) return object->nonatomic; #else /* NOTE(bill): The most compatible way to get an atomic 64-bit load on x86 is with cmpxchg8b */ u64 result; __asm { mov esi, object; mov ebx, eax; mov ecx, edx; lock cmpxchg8b [esi]; mov dword ptr result, eax; mov dword ptr result[4], edx; } return result; #endif } void gb_atomic64_store(volatile gb_Atomic64 *object, u64 value) { #if defined(GB_ARCH_64_BIT) object->nonatomic = value; #else /* NOTE(bill): The most compatible way to get an atomic 64-bit store on x86 is with cmpxchg8b */ __asm { mov esi, object; mov ebx, dword ptr value; mov ecx, dword ptr value[4]; retry: cmpxchg8b [esi]; jne retry; } #endif } u64 gb_atomic64_compare_exchange_strong(volatile gb_Atomic64 *object, u64 expected, u64 desired) { return _InterlockedCompareExchange64(cast(volatile s64 *, object), desired, expected); } u64 gb_atomic64_exchanged(volatile gb_Atomic64 *object, u64 desired) { #if defined(GB_ARCH_64_BIT) return _InterlockedExchange64(cast(volatile s64 *, object), desired); #else u64 expected = object->nonatomic; while (true) { u64 original = _InterlockedCompareExchange64(cast(volatile s64 *, object), desired, expected); if (original == expected) return original; expected = original; } #endif } u64 gb_atomic64_fetch_add(volatile gb_Atomic64 *object, s64 operand) { #if defined(GB_ARCH_64_BIT) return _InterlockedExchangeAdd64(cast(volatile s64 *, object), operand); #else u64 expected = object->nonatomic; while (true) { u64 original = _InterlockedExchange64(cast(volatile s64 *, object), expected + operand, expected); if (original == expected) return original; expected = original; } #endif } u64 gb_atomic64_fetch_and(volatile gb_Atomic64 *object, u64 operand) { #if defined(GB_ARCH_64_BIT) return _InterlockedAnd64(cast(volatile s64 *, object), operand); #else u64 expected = object->nonatomic; while (true) { u64 original = _InterlockedCompareExchange64(cast(volatile s64 *, object), expected & operand, expected); if (original == expected) return original; expected = original; } #endif } u64 gb_atomic64_fetch_or(volatile gb_Atomic64 *object, u64 operand) { #if defined(GB_ARCH_64_BIT) return _InterlockedAnd64(cast(volatile s64 *, object), operand); #else u64 expected = object->nonatomic; while (true) { u64 original = _InterlockedCompareExchange64(cast(volatile s64 *, object), expected | operand, expected); if (original == expected) return original; expected = original; } #endif } #else #error TODO(bill): Implement atomics for this platform #endif gb_Semaphore gb_semaphore_make(void) { gb_Semaphore semaphore = {0}; #if defined(GB_SYSTEM_WINDOWS) semaphore.win32_handle = CreateSemaphore(NULL, 0, S32_MAX, NULL); GB_ASSERT(semaphore.win32_handle != NULL); #else semaphore.count = 0; s32 result = pthread_cond_init(&semaphore.cond, NULL); GB_ASSERT(result == 0); semaphore.mutex = gb_mutex_make(); #endif return semaphore; } void gb_semaphore_destroy(gb_Semaphore *s) { #if defined(GB_SYSTEM_WINDOWS) BOOL err = CloseHandle(s->win32_handle); GB_ASSERT(err != 0); #else s32 result = pthread_cond_destroy(&s->cond); GB_ASSERT(result == 0); gb_mutex_destroy(&s->mutex); #endif } void gb_semaphore_post(gb_Semaphore *s) { gb_semaphore_post_count(s, 1); } void gb_semaphore_post_count(gb_Semaphore *s, u32 count) { #if defined(GB_SYSTEM_WINDOWS) BOOL err = ReleaseSemaphore(s->win32_handle, count, NULL); GB_ASSERT(err != 0); #else gb_mutex_lock(&s->mutex); for (u32 i = 0; i < count; i++) { s32 result = pthread_cond_signal(&s->cond); GB_ASSERT(result == 0); } s->count += count; gb_mutex_unlock(&s->mutex); #endif } void gb_semaphore_wait(gb_Semaphore *s) { #if defined(GB_SYSTEM_WINDOWS) DWORD result = WaitForSingleObject(s->win32_handle, INFINITE); GB_ASSERT(result == WAIT_OBJECT_0); #else gb_mutex_lock(&s->mutex); while (count <= 0) { s32 result = pthread_cond_wait(&s->cond, &s->mutex.posix_mutex); GB_ASSERT(result == 0); } count--; gb_mutex_unlock(&s->mutex); #endif } gb_Thread gb_thread_make(void) { gb_Thread t = {0}; #if defined(GB_SYSTEM_WINDOWS) t.win32_handle = INVALID_HANDLE_VALUE; #else t.posix_handle = 0; #endif t.proc = NULL; t.data = NULL; t.stack_size = 0; t.is_running = false; t.semaphore = gb_semaphore_make(); return t; } void gb_thread_destroy(gb_Thread *t) { if (t->is_running) gb_thread_join(t); gb_semaphore_destroy(&t->semaphore); } internal_linkage void gb__thread_run(gb_Thread *t) { gb_semaphore_post(&t->semaphore); t->proc(t->data); } #if defined(GB_SYSTEM_WINDOWS) internal_linkage DWORD WINAPI gb__thread_proc(void* arg) { gb__thread_run(cast(gb_Thread *, arg)); return 0; } #else internal_linkage void* gb__thread_proc(void* arg) { gb__thread_run(cast(gb_Thread *, arg)); return NULL; } #endif void gb_thread_start(gb_Thread *t, gb_Thread_Procedure *proc, void *data) { gb_thread_start_with_stack(t, proc, data, 0); } void gb_thread_start_with_stack(gb_Thread *t, gb_Thread_Procedure *proc, void *data, usize stack_size) { GB_ASSERT(!t->is_running); GB_ASSERT(proc != NULL); t->proc = proc; t->data = data; t->stack_size = stack_size; #if defined(GB_SYSTEM_WINDOWS) t->win32_handle = CreateThread(NULL, stack_size, gb__thread_proc, t, 0, NULL); GB_ASSERT(t->win32_handle != NULL); #else pthread_attr_t attr; s32 result = pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); GB_ASSERT(result == 0); if (t->stack_size != 0) { result = pthread_attr_setstacksize(&attr, t->stack_size); GB_ASSERT(result == 0); } result = pthread_create(&t->posix_handle, &attr, gb__thread_proc, thread); GB_ASSERT(result == 0); /* NOTE(bill): Free attr memory */ result = pthread_attr_destroy(&attr); GB_ASSERT(result == 0); /* NOTE(bill): So much boiler patch compared to windows.h (for once) */ #endif t->is_running = true; gb_semaphore_wait(&t->semaphore); } void gb_thread_join(gb_Thread *t) { if (!t->is_running) return; #if defined(GB_SYSTEM_WINDOWS) WaitForSingleObject(t->win32_handle, INFINITE); CloseHandle(t->win32_handle); t->win32_handle = INVALID_HANDLE_VALUE; #else int result = pthread_join(t->posix_handle, NULL); t->posix_handle = 0; #endif t->is_running = false; } bool32 gb_thread_is_running(const gb_Thread *t) /* NOTE(bill): Can this be just pass by value? */ { return t->is_running != 0; } u32 gb_thread_current_id(void) { u32 thread_id; #if defined(GB_SYSTEM_WINDOWS) u8* thread_local_storage = cast(u8 *, __readgsqword(0x30)); thread_id = *cast(u32 *, thread_local_storage + 0x48); #elif defined(GB_SYSTEM_OSX) && defined(GB_ARCH_64_BIT) asm("mov %%gs:0x00,%0" : "=r"(thread_id)); #elif defined(GB_ARCH_32_BIT) asm("mov %%gs:0x08,%0" : "=r"(thread_id)); #elif defined(GB_ARCH_64_BIT) asm("mov %%gs:0x10,%0" : "=r"(thread_id)); #else #error Unsupported architecture for thread::current_id() #endif return thread_id; } /**********************************/ /* */ /* Allocators */ /* */ /**********************************/ typedef struct gb__Heap_Header { usize size; } gb__Heap_Header; internal_linkage void* gb__heap_alloc(gb_Allocator *a, usize size, usize align) { gb_Heap *heap = cast(gb_Heap *, a); if (heap->use_mutex) gb_mutex_lock(&heap->mutex); usize total = size + align - (size % align); #if defined(GB_SYSTEM_WINDOWS) total += sizeof(gb__Heap_Header); void* data = HeapAlloc(heap->win32_heap_handle, 0, total); gb__Heap_Header *h = cast(gb__Heap_Header *, data); h->size = total; data = (h + 1); #else /* TODO(bill): Find a better malloc alternative for this platform */ void* data = malloc(total); #endif heap->total_allocated_count += total; heap->allocation_count++; if (heap->use_mutex) gb_mutex_unlock(&heap->mutex); return data; } internal_linkage void gb__heap_free(gb_Allocator *a, void *ptr) { if (!ptr) return; gb_Heap* heap = cast(gb_Heap *, a); if (heap->use_mutex) gb_mutex_lock(&heap->mutex); heap->total_allocated_count -= gb_allocated_size(heap, ptr); heap->allocation_count--; #if defined (GB_SYSTEM_WINDOWS) gb__Heap_Header *header = cast(gb__Heap_Header *, ptr) - 1; HeapFree(heap->win32_heap_handle, 0, header); #else free(ptr); #endif if (heap->use_mutex) gb_mutex_unlock(&heap->mutex); } internal_linkage s64 gb__heap_allocated_size(gb_Allocator *a, const void *ptr) { #if defined(GB_SYSTEM_WINDOWS) gb_Heap *heap = cast(gb_Heap *, a); if (heap->use_mutex) gb_mutex_lock(&heap->mutex); const gb__Heap_Header* h = cast(const gb__Heap_Header *, ptr) - 1; s64 result = h->size; if (heap->use_mutex) gb_mutex_unlock(&heap->mutex); return cast(s64, result); #elif defined(GB_SYSTEM_OSX) return cast(s64, malloc_size(ptr)); #elif defined(GB_SYSTEM_LINUX) return cast(s64, malloc_usable_size(ptr)); #else #error Implement Heap::allocated_size #endif } internal_linkage s64 gb__heap_total_allocated(gb_Allocator *a) { gb_Heap *heap = cast(gb_Heap *, a); if (heap->use_mutex) gb_mutex_lock(&heap->mutex); s64 result = heap->total_allocated_count; if (heap->use_mutex) gb_mutex_unlock(&heap->mutex); return result; } gb_Heap gb_heap_make(bool32 use_mutex) { gb_Heap heap = {0}; heap.use_mutex = use_mutex; if (use_mutex) heap.mutex = gb_mutex_make(); #if defined(GB_SYSTEM_WINDOWS) heap.win32_heap_handle = HeapCreate(0, 0, 0); #endif heap.base.alloc = gb__heap_alloc; heap.base.free = gb__heap_free; heap.base.allocated_size = gb__heap_allocated_size; heap.base.total_allocated = gb__heap_total_allocated; return heap; } void gb_heap_destroy(gb_Heap *heap) { if (heap->use_mutex) gb_mutex_destroy(&heap->mutex); #if defined (GB_SYSTEM_WINDOWS) HeapDestroy(heap->win32_heap_handle); #endif } internal_linkage void * gb__arena_alloc(gb_Allocator *a, usize size, usize align) { gb_Arena* arena = cast(gb_Arena *, a); s64 actual_size = size + align; if (arena->total_allocated_count + actual_size > arena->total_size) { GB_ASSERT(arena->total_allocated_count + actual_size <= arena->total_size); return NULL; } void *ptr = gb_align_forward(cast(u8 *, arena->physical_start) + arena->total_allocated_count, align); arena->total_allocated_count += actual_size; return ptr; } internal_linkage void gb__arena_free(gb_Allocator *a, void *ptr) /* NOTE(bill): Arenas free all at once */ { cast(void, a); cast(void, ptr); } internal_linkage s64 gb__arena_allocated_size(gb_Allocator *a, const void* ptr) { cast(void, a); cast(void, ptr); return -1; } internal_linkage s64 gb__arena_total_allocated(gb_Allocator *a) { return cast(gb_Arena *, a)->total_allocated_count; } gb_Arena gb_arena_make_from_backing(gb_Allocator *backing, usize size) { gb_Arena arena = {0}; arena.backing = backing; arena.physical_start = NULL; arena.total_size = size; arena.temp_count = 0; arena.total_allocated_count = 0; arena.physical_start = gb_alloc(arena.backing, size); arena.base.alloc = gb__arena_alloc; arena.base.free = gb__arena_free; arena.base.allocated_size = gb__arena_allocated_size; arena.base.total_allocated = gb__arena_total_allocated; return arena; } gb_Arena gb_arena_make_from_pointer(void *start, usize size) { gb_Arena arena = {0}; arena.backing = NULL; arena.physical_start = start; arena.total_size = size; arena.temp_count = 0; arena.total_allocated_count = 0; arena.base.alloc = gb__arena_alloc; arena.base.free = gb__arena_free; arena.base.allocated_size = gb__arena_allocated_size; arena.base.total_allocated = gb__arena_total_allocated; return arena; } void gb_arena_destroy(gb_Arena *arena) { if (arena->backing) gb_free(arena->backing, arena->physical_start); gb_arena_clear(arena); } void gb_arena_clear(gb_Arena *arena) { GB_ASSERT(arena->temp_count == 0); arena->total_allocated_count = 0; } gb_Temporary_Arena_Memory gb_make_temporary_arena_memory(gb_Arena *arena) { gb_Temporary_Arena_Memory tmp = {0}; tmp.arena = arena; tmp.original_count = arena->total_allocated_count; arena->temp_count++; return tmp; } void gb_temporary_arena_memory_free(gb_Temporary_Arena_Memory tmp) { GB_ASSERT(gb_total_allocated(tmp.arena) >= tmp.original_count); tmp.arena->total_allocated_count = tmp.original_count; GB_ASSERT(tmp.arena->temp_count > 0); tmp.arena->temp_count--; } internal_linkage void * gb__pool_alloc(gb_Allocator *a, usize size, usize align) { gb_Pool *pool = cast(gb_Pool *, a); GB_ASSERT(size == pool->block_size); GB_ASSERT(align == pool->block_align); GB_ASSERT(pool->free_list != NULL); uintptr next_free = *cast(uintptr *, pool->free_list); void* ptr = pool->free_list; pool->free_list = cast(void *, next_free); pool->total_size += pool->block_size; return ptr; } internal_linkage void gb__pool_free(gb_Allocator *a, void *ptr) { if (!ptr) return; gb_Pool *pool = cast(gb_Pool *, a); uintptr *next = cast(uintptr *, ptr); *next = cast(uintptr , pool->free_list); pool->free_list = ptr; pool->total_size -= pool->block_size; } internal_linkage s64 gb__pool_allocated_size(gb_Allocator *a, const void *ptr) { cast(void, a); cast(void, ptr); return -1; } internal_linkage s64 gb__pool_total_allocated(gb_Allocator *a) { gb_Pool *pool = cast(gb_Pool *, a); return pool->total_size; } gb_Pool gb_pool_make(gb_Allocator *backing, usize num_blocks, usize block_size) { return gb_pool_make_align(backing, num_blocks, block_size, GB_DEFAULT_ALIGNMENT); } gb_Pool gb_pool_make_align(gb_Allocator *backing, usize num_blocks, usize block_size, usize block_align) { gb_Pool pool = {0}; pool.backing = backing; pool.block_size = block_size; pool.block_align = block_align; usize actual_block_size = block_size + block_align; usize pool_size = num_blocks * actual_block_size; u8 *data = cast(u8 *, gb_alloc_align(backing, pool_size, block_align)); /* Init intrusive freelist */ u8 *curr = data; for (usize block_index = 0; block_index < num_blocks-1; block_index++) { uintptr *next = cast(uintptr *, curr); *next = cast(uintptr, curr) + actual_block_size; curr += actual_block_size; } uintptr *end = cast(uintptr *, curr); *end = cast(uintptr, NULL); pool.physical_start = data; pool.free_list = data; /* Set functions pointers */ pool.base.alloc = gb__pool_alloc; pool.base.free = gb__pool_free; pool.base.allocated_size = gb__pool_allocated_size; pool.base.total_allocated = gb__pool_total_allocated; return pool; } void gb_pool_destroy(gb_Pool *pool) { gb_free(pool->backing, pool->physical_start); } /**********************************/ /* */ /* Memory */ /* */ /**********************************/ void * gb_align_forward(void *ptr, usize align) { GB_ASSERT(GB_IS_POWER_OF_TWO(align)); uintptr p = cast(uintptr, ptr); const usize modulo = p % align; if (modulo) p += (align - modulo); return cast(void *, p); } void *gb_zero_size(void *ptr, usize bytes) { return memset(ptr, 0, bytes); } /**********************************/ /* */ /* String - C Compatibile */ /* */ /**********************************/ internal_linkage void gb__string_set_length(gb_String str, gb_String_Size len) { GB_STRING_HEADER(str)->length = len; } internal_linkage void gb__string_set_capacity(gb_String str, gb_String_Size cap) { GB_STRING_HEADER(str)->capacity = cap; } gb_String gb_string_make(gb_Allocator *a, const char* str) { gb_String_Size len = cast(gb_String_Size, str ? strlen(str) : 0); return gb_string_make_length(a, str, len); } gb_String gb_string_make_length(gb_Allocator *a, const void* init_str, gb_String_Size num_bytes) { gb_String_Size header_size = sizeof(gb_String_Header); void *ptr = gb_alloc(a, header_size + num_bytes + 1); if (!init_str) gb_zero_size(ptr, header_size + num_bytes + 1); if (ptr == NULL) return NULL; gb_String str = (char *)ptr + header_size; gb_String_Header *header = GB_STRING_HEADER(str); header->allocator = a; header->length = num_bytes; header->capacity = num_bytes; if (num_bytes && init_str) memcpy(str, init_str, num_bytes); str[num_bytes] = '\0'; return str; } void gb_string_free(gb_String str) { if (str == NULL) return; gb_String_Header *header = GB_STRING_HEADER(str); gb_free(header->allocator, header); } gb_String gb_string_duplicate(gb_Allocator *a, const gb_String str) { return gb_string_make_length(a, str, gb_string_length(str)); } gb_String_Size gb_string_length(const gb_String str) { return GB_STRING_HEADER(str)->length; } gb_String_Size gb_string_capacity(const gb_String str) { return GB_STRING_HEADER(str)->capacity; } gb_String_Size gb_string_available_space(const gb_String str) { gb_String_Header *h = GB_STRING_HEADER(str); if (h->capacity > h->length) return h->capacity - h->length; return 0; } void gb_string_clear(gb_String str) { gb__string_set_length(str, 0); str[0] = '\0'; } gb_String gb_string_append_string(gb_String str, const gb_String other) { return gb_string_append_string_length(str, other, gb_string_length(other)); } gb_String gb_string_append_string_length(gb_String str, const void *other, gb_String_Size other_len) { gb_String_Size curr_len = gb_string_length(str); str = gb_string_make_space_for(str, other_len); if (str == NULL) return NULL; memcpy(str + curr_len, other, other_len); str[curr_len + other_len] = '\0'; gb__string_set_length(str, curr_len + other_len); return str; } gb_String gb_string_append_cstring(gb_String str, const char *other) { return gb_string_append_string_length(str, other, cast(gb_String_Size, strlen(other))); } gb_String gb_string_set(gb_String str, const char *cstr) { gb_String_Size len = cast(gb_String_Size, strlen(cstr)); if (gb_string_capacity(str) < len) { str = gb_string_make_space_for(str, len - gb_string_length(str)); if (str == NULL) return NULL; } memcpy(str, cstr, len); str[len] = '\0'; gb__string_set_length(str, len); return str; } internal_linkage void * gb__string_realloc(gb_Allocator *a, void *ptr, gb_String_Size old_size, gb_String_Size new_size) { if (!ptr) return gb_alloc(a, new_size); if (new_size < old_size) new_size = old_size; if (old_size == new_size) return ptr; void* new_ptr = gb_alloc(a, new_size); if (!new_ptr) return NULL; memcpy(new_ptr, ptr, old_size); gb_free(a, ptr); return new_ptr; } gb_String gb_string_make_space_for(gb_String str, gb_String_Size add_len) { gb_String_Size len = gb_string_length(str); gb_String_Size new_len = len + add_len; gb_String_Size available = gb_string_available_space(str); if (available >= add_len) /* Return if there is enough space left */ return str; void *ptr = GB_STRING_HEADER(str); gb_String_Size old_size = sizeof(struct gb_String_Header) + gb_string_length(str) + 1; gb_String_Size new_size = sizeof(struct gb_String_Header) + new_len + 1; void *new_ptr = gb__string_realloc(GB_STRING_HEADER(str)->allocator, ptr, old_size, new_size); if (new_ptr == NULL) return NULL; str = cast(char *, GB_STRING_HEADER(new_ptr) + 1); gb__string_set_capacity(str, new_len); return str; } gb_String_Size gb_string_allocation_size(const gb_String str) { gb_String_Size cap = gb_string_capacity(str); return sizeof(gb_String_Header) + cap; } bool32 gb_strings_are_equal(const gb_String lhs, const gb_String rhs) { gb_String_Size lhs_len = gb_string_length(lhs); gb_String_Size rhs_len = gb_string_length(rhs); if (lhs_len != rhs_len) return false; for (gb_String_Size i = 0; i < lhs_len; i++) { if (lhs[i] != rhs[i]) return false; } return true; } gb_String gb_string_trim(gb_String str, const char *cut_set) { char *start; char *end; char *start_pos; char *end_pos; start_pos = start = str; end_pos = end = str + gb_string_length(str) - 1; while (start_pos <= end && strchr(cut_set, *start_pos)) start_pos++; while (end_pos > start_pos && strchr(cut_set, *end_pos)) end_pos--; gb_String_Size len = cast(gb_String_Size, (start_pos > end_pos) ? 0 : ((end_pos - start_pos)+1)); if (str != start_pos) memmove(str, start_pos, len); str[len] = '\0'; gb__string_set_length(str, len); return str; } gb_String gb_string_trim_space(gb_String str) { return gb_string_trim(str, " \t\r\n\v\f"); } u32 gb_hash_adler32(const void *key, u32 num_bytes) { const u32 MOD_ADLER = 65521; u32 a = 1; u32 b = 0; const u8* bytes = cast(const u8 *, key); for (u32 i = 0; i < num_bytes; i++) { a = (a + bytes[i]) % MOD_ADLER; b = (b + a) % MOD_ADLER; } return (b << 16) | a; } global_variable const u32 GB_CRC32_TABLE[256] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d, }; global_variable const u64 GB_CRC64_TABLE[256] = { 0x0000000000000000ull, 0x42F0E1EBA9EA3693ull, 0x85E1C3D753D46D26ull, 0xC711223CFA3E5BB5ull, 0x493366450E42ECDFull, 0x0BC387AEA7A8DA4Cull, 0xCCD2A5925D9681F9ull, 0x8E224479F47CB76Aull, 0x9266CC8A1C85D9BEull, 0xD0962D61B56FEF2Dull, 0x17870F5D4F51B498ull, 0x5577EEB6E6BB820Bull, 0xDB55AACF12C73561ull, 0x99A54B24BB2D03F2ull, 0x5EB4691841135847ull, 0x1C4488F3E8F96ED4ull, 0x663D78FF90E185EFull, 0x24CD9914390BB37Cull, 0xE3DCBB28C335E8C9ull, 0xA12C5AC36ADFDE5Aull, 0x2F0E1EBA9EA36930ull, 0x6DFEFF5137495FA3ull, 0xAAEFDD6DCD770416ull, 0xE81F3C86649D3285ull, 0xF45BB4758C645C51ull, 0xB6AB559E258E6AC2ull, 0x71BA77A2DFB03177ull, 0x334A9649765A07E4ull, 0xBD68D2308226B08Eull, 0xFF9833DB2BCC861Dull, 0x388911E7D1F2DDA8ull, 0x7A79F00C7818EB3Bull, 0xCC7AF1FF21C30BDEull, 0x8E8A101488293D4Dull, 0x499B3228721766F8ull, 0x0B6BD3C3DBFD506Bull, 0x854997BA2F81E701ull, 0xC7B97651866BD192ull, 0x00A8546D7C558A27ull, 0x4258B586D5BFBCB4ull, 0x5E1C3D753D46D260ull, 0x1CECDC9E94ACE4F3ull, 0xDBFDFEA26E92BF46ull, 0x990D1F49C77889D5ull, 0x172F5B3033043EBFull, 0x55DFBADB9AEE082Cull, 0x92CE98E760D05399ull, 0xD03E790CC93A650Aull, 0xAA478900B1228E31ull, 0xE8B768EB18C8B8A2ull, 0x2FA64AD7E2F6E317ull, 0x6D56AB3C4B1CD584ull, 0xE374EF45BF6062EEull, 0xA1840EAE168A547Dull, 0x66952C92ECB40FC8ull, 0x2465CD79455E395Bull, 0x3821458AADA7578Full, 0x7AD1A461044D611Cull, 0xBDC0865DFE733AA9ull, 0xFF3067B657990C3Aull, 0x711223CFA3E5BB50ull, 0x33E2C2240A0F8DC3ull, 0xF4F3E018F031D676ull, 0xB60301F359DBE0E5ull, 0xDA050215EA6C212Full, 0x98F5E3FE438617BCull, 0x5FE4C1C2B9B84C09ull, 0x1D14202910527A9Aull, 0x93366450E42ECDF0ull, 0xD1C685BB4DC4FB63ull, 0x16D7A787B7FAA0D6ull, 0x5427466C1E109645ull, 0x4863CE9FF6E9F891ull, 0x0A932F745F03CE02ull, 0xCD820D48A53D95B7ull, 0x8F72ECA30CD7A324ull, 0x0150A8DAF8AB144Eull, 0x43A04931514122DDull, 0x84B16B0DAB7F7968ull, 0xC6418AE602954FFBull, 0xBC387AEA7A8DA4C0ull, 0xFEC89B01D3679253ull, 0x39D9B93D2959C9E6ull, 0x7B2958D680B3FF75ull, 0xF50B1CAF74CF481Full, 0xB7FBFD44DD257E8Cull, 0x70EADF78271B2539ull, 0x321A3E938EF113AAull, 0x2E5EB66066087D7Eull, 0x6CAE578BCFE24BEDull, 0xABBF75B735DC1058ull, 0xE94F945C9C3626CBull, 0x676DD025684A91A1ull, 0x259D31CEC1A0A732ull, 0xE28C13F23B9EFC87ull, 0xA07CF2199274CA14ull, 0x167FF3EACBAF2AF1ull, 0x548F120162451C62ull, 0x939E303D987B47D7ull, 0xD16ED1D631917144ull, 0x5F4C95AFC5EDC62Eull, 0x1DBC74446C07F0BDull, 0xDAAD56789639AB08ull, 0x985DB7933FD39D9Bull, 0x84193F60D72AF34Full, 0xC6E9DE8B7EC0C5DCull, 0x01F8FCB784FE9E69ull, 0x43081D5C2D14A8FAull, 0xCD2A5925D9681F90ull, 0x8FDAB8CE70822903ull, 0x48CB9AF28ABC72B6ull, 0x0A3B7B1923564425ull, 0x70428B155B4EAF1Eull, 0x32B26AFEF2A4998Dull, 0xF5A348C2089AC238ull, 0xB753A929A170F4ABull, 0x3971ED50550C43C1ull, 0x7B810CBBFCE67552ull, 0xBC902E8706D82EE7ull, 0xFE60CF6CAF321874ull, 0xE224479F47CB76A0ull, 0xA0D4A674EE214033ull, 0x67C58448141F1B86ull, 0x253565A3BDF52D15ull, 0xAB1721DA49899A7Full, 0xE9E7C031E063ACECull, 0x2EF6E20D1A5DF759ull, 0x6C0603E6B3B7C1CAull, 0xF6FAE5C07D3274CDull, 0xB40A042BD4D8425Eull, 0x731B26172EE619EBull, 0x31EBC7FC870C2F78ull, 0xBFC9838573709812ull, 0xFD39626EDA9AAE81ull, 0x3A28405220A4F534ull, 0x78D8A1B9894EC3A7ull, 0x649C294A61B7AD73ull, 0x266CC8A1C85D9BE0ull, 0xE17DEA9D3263C055ull, 0xA38D0B769B89F6C6ull, 0x2DAF4F0F6FF541ACull, 0x6F5FAEE4C61F773Full, 0xA84E8CD83C212C8Aull, 0xEABE6D3395CB1A19ull, 0x90C79D3FEDD3F122ull, 0xD2377CD44439C7B1ull, 0x15265EE8BE079C04ull, 0x57D6BF0317EDAA97ull, 0xD9F4FB7AE3911DFDull, 0x9B041A914A7B2B6Eull, 0x5C1538ADB04570DBull, 0x1EE5D94619AF4648ull, 0x02A151B5F156289Cull, 0x4051B05E58BC1E0Full, 0x87409262A28245BAull, 0xC5B073890B687329ull, 0x4B9237F0FF14C443ull, 0x0962D61B56FEF2D0ull, 0xCE73F427ACC0A965ull, 0x8C8315CC052A9FF6ull, 0x3A80143F5CF17F13ull, 0x7870F5D4F51B4980ull, 0xBF61D7E80F251235ull, 0xFD913603A6CF24A6ull, 0x73B3727A52B393CCull, 0x31439391FB59A55Full, 0xF652B1AD0167FEEAull, 0xB4A25046A88DC879ull, 0xA8E6D8B54074A6ADull, 0xEA16395EE99E903Eull, 0x2D071B6213A0CB8Bull, 0x6FF7FA89BA4AFD18ull, 0xE1D5BEF04E364A72ull, 0xA3255F1BE7DC7CE1ull, 0x64347D271DE22754ull, 0x26C49CCCB40811C7ull, 0x5CBD6CC0CC10FAFCull, 0x1E4D8D2B65FACC6Full, 0xD95CAF179FC497DAull, 0x9BAC4EFC362EA149ull, 0x158E0A85C2521623ull, 0x577EEB6E6BB820B0ull, 0x906FC95291867B05ull, 0xD29F28B9386C4D96ull, 0xCEDBA04AD0952342ull, 0x8C2B41A1797F15D1ull, 0x4B3A639D83414E64ull, 0x09CA82762AAB78F7ull, 0x87E8C60FDED7CF9Dull, 0xC51827E4773DF90Eull, 0x020905D88D03A2BBull, 0x40F9E43324E99428ull, 0x2CFFE7D5975E55E2ull, 0x6E0F063E3EB46371ull, 0xA91E2402C48A38C4ull, 0xEBEEC5E96D600E57ull, 0x65CC8190991CB93Dull, 0x273C607B30F68FAEull, 0xE02D4247CAC8D41Bull, 0xA2DDA3AC6322E288ull, 0xBE992B5F8BDB8C5Cull, 0xFC69CAB42231BACFull, 0x3B78E888D80FE17Aull, 0x7988096371E5D7E9ull, 0xF7AA4D1A85996083ull, 0xB55AACF12C735610ull, 0x724B8ECDD64D0DA5ull, 0x30BB6F267FA73B36ull, 0x4AC29F2A07BFD00Dull, 0x08327EC1AE55E69Eull, 0xCF235CFD546BBD2Bull, 0x8DD3BD16FD818BB8ull, 0x03F1F96F09FD3CD2ull, 0x41011884A0170A41ull, 0x86103AB85A2951F4ull, 0xC4E0DB53F3C36767ull, 0xD8A453A01B3A09B3ull, 0x9A54B24BB2D03F20ull, 0x5D45907748EE6495ull, 0x1FB5719CE1045206ull, 0x919735E51578E56Cull, 0xD367D40EBC92D3FFull, 0x1476F63246AC884Aull, 0x568617D9EF46BED9ull, 0xE085162AB69D5E3Cull, 0xA275F7C11F7768AFull, 0x6564D5FDE549331Aull, 0x279434164CA30589ull, 0xA9B6706FB8DFB2E3ull, 0xEB46918411358470ull, 0x2C57B3B8EB0BDFC5ull, 0x6EA7525342E1E956ull, 0x72E3DAA0AA188782ull, 0x30133B4B03F2B111ull, 0xF7021977F9CCEAA4ull, 0xB5F2F89C5026DC37ull, 0x3BD0BCE5A45A6B5Dull, 0x79205D0E0DB05DCEull, 0xBE317F32F78E067Bull, 0xFCC19ED95E6430E8ull, 0x86B86ED5267CDBD3ull, 0xC4488F3E8F96ED40ull, 0x0359AD0275A8B6F5ull, 0x41A94CE9DC428066ull, 0xCF8B0890283E370Cull, 0x8D7BE97B81D4019Full, 0x4A6ACB477BEA5A2Aull, 0x089A2AACD2006CB9ull, 0x14DEA25F3AF9026Dull, 0x562E43B4931334FEull, 0x913F6188692D6F4Bull, 0xD3CF8063C0C759D8ull, 0x5DEDC41A34BBEEB2ull, 0x1F1D25F19D51D821ull, 0xD80C07CD676F8394ull, 0x9AFCE626CE85B507ull, }; u32 gb_hash_crc32(const void* key, u32 num_bytes) { u32 result = cast(u32, ~0); const u8 *c = cast(const u8 *, key); for (u32 remaining = num_bytes; remaining--; c++) result = (result >> 8) ^ (GB_CRC32_TABLE[(result ^ *c) & 0xff]); return ~result; } u64 gb_hash_crc64(const void* key, usize num_bytes) { u64 result = cast(u64, ~0); const u8 *c = cast(const u8 *, key); for (usize remaining = num_bytes; remaining--; c++) result = (result >> 8) ^ (GB_CRC64_TABLE[(result ^ *c) & 0xff]); return ~result; } u32 gb_hash_fnv32(const void* key, usize num_bytes) { u32 h = 0x811c9dc5; const u8 *buffer = cast(const u8 *, key); for (usize i = 0; i < num_bytes; i++) { h = (h * 0x01000193) ^ buffer[i]; } return h; } u64 gb_hash_fnv64(const void* key, usize num_bytes) { u64 h = 0xcbf29ce484222325ull; const u8 *buffer = cast(const u8 *, key); for (usize i = 0; i < num_bytes; i++) { h = (h * 0x100000001b3ll) ^ buffer[i]; } return h; } u32 gb_hash_fnv32a(const void* key, usize num_bytes) { u32 h = 0x811c9dc5; const u8 * buffer = cast(const u8 *, key); for (usize i = 0; i < num_bytes; i++) { h = (h ^ buffer[i]) * 0x01000193; } return h; } u64 gb_hash_fnv64a(const void* key, usize num_bytes) { u64 h = 0xcbf29ce484222325ull; const u8 * buffer = cast(const u8 *, key); for (usize i = 0; i < num_bytes; i++) { h = (h ^ buffer[i]) * 0x100000001b3ll; } return h; } u32 gb_hash_murmur32(const void* key, u32 num_bytes, u32 seed) { const u32 c1 = 0xcc9e2d51; const u32 c2 = 0x1b873593; const u32 r1 = 15; const u32 r2 = 13; const u32 m = 5; const u32 n = 0xe6546b64; u32 hash = seed; const usize nblocks = num_bytes / 4; const u32 *blocks = cast(const u32 *, key); for (usize i = 0; i < nblocks; i++) { u32 k = blocks[i]; k *= c1; k = (k << r1) | (k >> (32 - r1)); k *= c2; hash ^= k; hash = ((hash << r2) | (hash >> (32 - r2))) * m + n; } const u8 *tail = (cast(const u8 *, key)) + nblocks * 4; u32 k1 = 0; switch (num_bytes & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = (k1 << r1) | (k1 >> (32 - r1)); k1 *= c2; hash ^= k1; } hash ^= num_bytes; hash ^= (hash >> 16); hash *= 0x85ebca6b; hash ^= (hash >> 13); hash *= 0xc2b2ae35; hash ^= (hash >> 16); return hash; } #if defined(GB_ARCH_64_BIT) u64 gb_hash_murmur64(const void* key, usize num_bytes, u64 seed) { const u64 m = 0xc6a4a7935bd1e995ULL; const s32 r = 47; u64 h = seed ^ (num_bytes * m); const u64 *data = cast(const u64 *, key); const u64 *end = data + (num_bytes / 8); while (data != end) { u64 k = *data++; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } const u8* data2 = cast(const u8*, data); switch (num_bytes & 7) { case 7: h ^= cast(u64, data2[6]) << 48; case 6: h ^= cast(u64, data2[5]) << 40; case 5: h ^= cast(u64, data2[4]) << 32; case 4: h ^= cast(u64, data2[3]) << 24; case 3: h ^= cast(u64, data2[2]) << 16; case 2: h ^= cast(u64, data2[1]) << 8; case 1: h ^= cast(u64, data2[0]); h *= m; }; h ^= h >> r; h *= m; h ^= h >> r; return h; } #elif GB_ARCH_32_BIT u64 gb_hash_murmur64(const void* key, usize num_bytes, u64 seed) { const u32 m = 0x5bd1e995; const s32 r = 24; u32 h1 = cast(u32, seed) ^ cast(u32, num_bytes); u32 h2 = cast(u32, seed >> 32); const u32 *data = cast(const u32 *, key); while (num_bytes >= 8) { u32 k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; num_bytes -= 4; u32 k2 = *data++; k2 *= m; k2 ^= k2 >> r; k2 *= m; h2 *= m; h2 ^= k2; num_bytes -= 4; } if (num_bytes >= 4) { u32 k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; num_bytes -= 4; } switch (num_bytes) { case 3: h2 ^= cast(const u8 *, data)[2] << 16; case 2: h2 ^= cast(const u8 *, data)[1] << 8; case 1: h2 ^= cast(const u8 *, data)[0] << 0; h2 *= m; }; h1 ^= h2 >> 18; h1 *= m; h2 ^= h1 >> 22; h2 *= m; h1 ^= h2 >> 17; h1 *= m; h2 ^= h1 >> 19; h2 *= m; u64 h = h1; h = (h << 32) | h2; return h; } #else #error gb_hash_murmur64 function not supported on this architecture #endif /**********************************/ /* */ /* Hash */ /* */ /**********************************/ #if defined(GB_SYSTEM_WINDOWS) gb_Time gb_time_now() { /* NOTE(bill): std::chrono does not have a good enough precision in MSVC12 * and below. This may have been fixed in MSVC14 but unsure as of yet. */ /* Force the following code to run on first core */ /* NOTE(bill, 2015): See * http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx */ HANDLE currentThread = GetCurrentThread(); DWORD_PTR previousMask = SetThreadAffinityMask(currentThread, 1); /* Get the frequency of the performance counter */ /* It is constant across the program's lifetime */ local_persist LARGE_INTEGER s_frequency; QueryPerformanceFrequency(&s_frequency); /* Is this fast enough? */ /* Get the current time */ LARGE_INTEGER t; QueryPerformanceCounter(&t); /* Restore the thread affinity */ SetThreadAffinityMask(currentThread, previousMask); return gb_time_microseconds(1000000ll * t.QuadPart / s_frequency.QuadPart); } void gb_time_sleep(gb_Time t) { if (t.microseconds <= 0) return; /* Get the supported timer resolutions on this system */ TIMECAPS tc; timeGetDevCaps(&tc, sizeof(TIMECAPS)); /* Set the timer resolution to the minimum for the Sleep call */ timeBeginPeriod(tc.wPeriodMin); /* Wait... */ Sleep(gb_time_as_milliseconds(t)); /* Reset the timer resolution back to the system default */ timeBeginPeriod(tc.wPeriodMin); } #else gb_Time gb_time_now() { #if defined(GB_SYSTEM_OSX) s64 t = cast(s64, mach_absolute_time()); return gb_time_microseconds(t); #else struct timeval t; gettimeofday(&t, nullptr); return gb_time_microseconds((t.tv_sec * 1000000ll) + (t.tv_usec * 1ll)); #endif } void gb_time_sleep(gb_Time t) { if (t.microseconds <= 0) return; struct timespec spec = {}; spec.tv_sec = cast(s64, gb_time_as_seconds(t)); spec.tv_nsec = 1000ll * (gb_time_as_microseconds(t) % 1000000ll); nanosleep(&spec, nullptr); } #endif gb_Time gb_time_seconds(f32 s) { gb_Time result; result.microseconds = cast(s64, s * 1000000ll); return result; } gb_Time gb_time_milliseconsd(s32 ms) { gb_Time result; result.microseconds = cast(s64, ms * 1000ll); return result; } gb_Time gb_time_microseconds(s64 us) { gb_Time result; result.microseconds = us; return result; } f32 gb_time_as_seconds(gb_Time t) { return cast(f32, t.microseconds / 1000000.0f); } s32 gb_time_as_milliseconds(gb_Time t) { return cast(s32, t.microseconds / 1000l); } s64 gb_time_as_microseconds(gb_Time t) { return t.microseconds; } /**********************************/ /* */ /* Time */ /* */ /**********************************/ /* * lhs < rhs -1 * lhs == rhs 0 * lhs > rhs +1 */ s32 gb_time_cmp(gb_Time lhs, gb_Time rhs) { if (lhs.microseconds < rhs.microseconds) return -1; if (lhs.microseconds == rhs.microseconds) return 0; return +1; } gb_Time gb_time_add(gb_Time lhs, gb_Time rhs) { lhs.microseconds += rhs.microseconds; return lhs; } gb_Time gb_time_sub(gb_Time lhs, gb_Time rhs) { lhs.microseconds -= rhs.microseconds; return lhs; } gb_Time gb_time_mod(gb_Time lhs, gb_Time rhs) { lhs.microseconds %= rhs.microseconds; return lhs; } gb_Time gb_time_mul(gb_Time t, f32 s) { gb_Time result = gb_time_seconds(gb_time_as_seconds(t) * s); return result; } gb_Time gb_time_div(gb_Time t, f32 s) { gb_Time result = gb_time_seconds(gb_time_as_seconds(t) / s); return result; } f32 gb_time_div_time(gb_Time num, gb_Time dom) { f32 result = num.microseconds / cast(f32, dom.microseconds); return result; } #if defined(__cplusplus) } #endif /* extern "C" */ #endif /* GB_IMPLEMENTATION */