// gb.hpp - v0.02 - public domain C++11 helper library - no warranty implied; use at your own risk // (Experimental) A C++11 helper library without STL geared towards game development // // Version History: // 0.02 - Hash Table // 0.01 - Initial Version // // LICENSE // // This software is in the public domain. Where that dedication is not // recognized, you are granted a perpetual, irrevocable license to copy, // distribute, and modify this file as you see fit. // // WARNING // // This library is highly experimental and features may not work as expected. // This also means that many functions are not documented. // #ifndef GB_INCLUDE_GB_HPP #define GB_INCLUDE_GB_HPP #if !defined(__cplusplus) && __cplusplus >= 201103L #error This library is only for C++11 and above #endif // NOTE(bill): Because static means three different things in C/C++ // Great Design(!) #define global static #define internal static #define local_persist static #if defined(_MSC_VER) #define _ALLOW_KEYWORD_MACROS #if !defined(alignof) // Needed for MSVC 2013 #define alignof(x) __alignof(x) #endif #endif //////////////////////////////// /// System OS /// //////////////////////////////// #define WIN32_LEAN_AND_MEAN 1 #if defined(_WIN32) || defined(_WIN64) #define GB_SYSTEM_WINDOWS #define NOMINMAX #elif defined(__APPLE__) && defined(__MACH__) #define GB_SYSTEM_OSX #elif defined(__unix__) #define GB_SYSTEM_UNIX #if defined(__linux__) #define GB_SYSTEM_LINUX #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) #define GB_SYSTEM_FREEBSD #else #error This UNIX operating system is not supported by gb.hpp #endif #else #error This operating system is not supported by gb.hpp #endif //////////////////////////////// /// Environment Bit Size /// //////////////////////////////// #if defined(_WIN32) || defined(_WIN64) #if defined(_WIN64) #define GB_ARCH_64_BIT #else #define GB_ARCH_32_BIT #endif #endif // TODO(bill): Check if this KEPLER_ENVIRONMENT works on clang #if defined(__GNUC__) #if defined(__x86_64__) || defined(__ppc64__) #define GB_ARCH_64_BIT #else #define GB_ARCH_32_BIT #endif #endif #define GB_IS_POWER_OF_TWO(x) ((x) != 0) && !((x) & ((x) - 1)) #ifndef NDEBUG #define GB_ASSERT(x, ...) ((void)(gb__assert_handler((x), #x, __FILE__, __LINE__, ##__VA_ARGS__))) #else #define GB_ASSERT(x, ...) ((void)sizeof(x)) #endif extern "C" void gb__assert_handler(bool condition, const char* condition_str, const char* filename, size_t line, const char* error_text = nullptr, ...); #include #include #include #include #ifdef GB_SYSTEM_WINDOWS #include #else #include #endif namespace gb { //////////////////////////////// /// Types /// //////////////////////////////// using u8 = uint8_t; using s8 = int8_t; using u16 = uint16_t; using s16 = int16_t; using u32 = uint32_t; using s32 = int32_t; #if defined(_MSC_VER) using s64 = signed __int64; using u64 = unsigned __int64; #else using s64 = int64_t; using u64 = uint64_t; #endif using f32 = float; using f64 = double; #ifdef GB_B8_AS_BOOL using b8 = bool; #else using b8 = s8; #endif using b32 = s32; // NOTE(bill): (std::)size_t is not used not because it's a bad concept but on // the platforms that I will be using: // sizeof(size_t) == sizeof(usize) == sizeof(s64) // NOTE(bill): This also allows for a signed version of size_t which is similar // to ptrdiff_t // NOTE(bill): If (u)intptr is a better fit, please use that. // NOTE(bill): Also, I hate the `_t` suffix #if defined(GB_ARCH_64_BIT) using ssize = s64; using usize = u64; #elif defined(GB_ARCH_32_BIT) using usize = s32; using usize = u32; #else #error Unknown architecture bit size #endif static_assert(sizeof(usize) == sizeof(size_t), "`usize` is not the same size as `size_t`"); static_assert(sizeof(ssize) == sizeof(usize), "`ssize` is not the same size as `usize`"); using intptr = intptr_t; using uintptr = uintptr_t; using ptrdiff = ptrdiff_t; //////////////////////////////// /// C++11 Move Semantics /// //////////////////////////////// template struct Remove_Reference { using Type = T; }; template struct Remove_Reference { using Type = T; }; template struct Remove_Reference { using Type = T; }; template inline T&& forward(typename Remove_Reference::Type& t) { return static_cast(t); } template inline T&& forward(typename Remove_Reference::Type&& t) { return static_cast(t); } template inline typename Remove_Reference::Type&& move(T&& t) { return static_cast::Type&&>(t); } //////////////////////////////// /// Defer /// //////////////////////////////// namespace impl { template struct Defer { Fn fn; Defer(Fn&& fn) : fn{forward(fn)} {} ~Defer() { fn(); }; }; template Defer defer_fn(Fn&& fn) { return Defer(forward(fn)); } } // namespace impl } // namespace gb #define GB_DEFER_1(x, y) x##y #define GB_DEFER_2(x, y) GB_DEFER_1(x, y) #define GB_DEFER_3(x) GB_DEFER_2(GB_DEFER_2(x, __COUNTER__), __LINE__) #define defer(code) auto GB_DEFER_3(_defer_) = gb::impl::defer_fn([&](){code;}) namespace gb { //////////////////////////////// /// Memory /// //////////////////////////////// struct Mutex { #ifdef GB_SYSTEM_WINDOWS HANDLE win32_mutex; #else pthread_mutex_t posix_mutex; #endif Mutex(); ~Mutex(); }; void lock_mutex(Mutex& mutex); bool try_lock_mutex(Mutex& mutex); void unlock_mutex(Mutex& mutex); #define GB_DEFAULT_ALIGNMENT 4 inline void* align_forward(void* ptr, usize align) { GB_ASSERT(GB_IS_POWER_OF_TWO(align)); uintptr p = (uintptr)ptr; const usize modulo = p % align; if (modulo) p += (uintptr)(align - modulo); return (void*)p; } struct Allocator { Allocator() {} virtual ~Allocator() {} virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT) = 0; virtual void dealloc(void* ptr) = 0; virtual s64 allocated_size(const void* ptr) = 0; virtual s64 total_allocated() = 0; private: // Delete copying Allocator(const Allocator&) = delete; Allocator& operator=(const Allocator&) = delete; }; inline void* alloc(Allocator& a, usize size, usize align = GB_DEFAULT_ALIGNMENT) { return a.alloc(size, align); } inline void dealloc(Allocator& a, void* ptr) { return a.dealloc(ptr); } template inline T* alloc_struct(Allocator& a) { return static_casta.alloc(sizeof(T), alignof(T)); } template inline T* alloc_array(Allocator& a, usize count) { return static_cast(alloc(a, count * sizeof(T), alignof(T))); } #define GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE (usize)(-1) struct Heap_Allocator : Allocator { struct Header { s64 size; }; Mutex mutex = Mutex{}; s64 total_allocated_count = 0; s64 allocation_count = 0; Heap_Allocator() = default; virtual ~Heap_Allocator(); virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT); virtual void dealloc(void* ptr); virtual s64 allocated_size(const void* ptr); virtual s64 total_allocated(); Header* get_header_ptr(const void* ptr); }; struct Arena_Allocator : Allocator { s64 base_size = 0; u8* base = nullptr; s64 total_allocated_count = 0; s64 temp_count = 0; virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT); virtual void dealloc(void* ptr); virtual s64 allocated_size(const void* ptr); virtual s64 total_allocated(); virtual usize get_alignment_offset(usize align = GB_DEFAULT_ALIGNMENT); virtual usize get_remaining_space(usize align = GB_DEFAULT_ALIGNMENT); void check(); }; inline void init_arena_allocator(Arena_Allocator& arena, void* base, usize base_size) { arena.base_size = base_size; arena.base = (u8*)base; arena.temp_count = 0; arena.total_allocated_count = 0; } struct Temporary_Arena_Memory { Arena_Allocator* arena; s64 original_count; explicit Temporary_Arena_Memory(Arena_Allocator& arena_) : arena(&arena_) , original_count(arena_.total_allocated_count) { } ~Temporary_Arena_Memory() { GB_ASSERT(arena->total_allocated() >= original_count); arena->total_allocated_count = original_count; GB_ASSERT(arena->temp_count > 0); arena->temp_count--; } }; inline Temporary_Arena_Memory make_temporary_arena_memory(Arena_Allocator& arena) { return Temporary_Arena_Memory{arena}; } //////////////////////////////// /// Array /// //////////////////////////////// template struct Array { Allocator* allocator; s64 count; s64 allocation; T* data; Array() = default; explicit Array(Allocator& a, usize count = 0); virtual ~Array() { if (allocator) dealloc(*allocator, data); } const T& operator[](usize index) const { return data[index]; } T& operator[](usize index) { return data[index]; } }; template Array make_array(Allocator& allocator, usize count = 0); template void free_array(Array& array); template void append_array(Array& a, const T& item); template void append_array(Array& a, const T* items, usize count); template void pop_back_array(Array& a); template inline T* begin(Array& a) { return a.data; } template inline const T* begin(const Array& a) { return a.data; } template inline T* end(Array& a) { return a.data + a.count; } template inline const T* end(const Array& a) { return a.data + a.count; } template void clear_array(Array& a); template void resize_array(Array& a, usize count); template void reserve_array(Array& a, usize allocation); template void set_array_allocation(Array& a, usize allocation); template void grow_array(Array& a, usize min_allocation = 0); //////////////////////////////// /// Hash Table /// //////////////////////////////// template struct Hash_Table { struct Entry { u64 key; s64 next; T value; }; Array hashes; Array data; Hash_Table() = default; explicit Hash_Table(Allocator& a); ~Hash_Table() = default; }; template Hash_Table::Hash_Table(Allocator& a) { hashes = make_array(a); data = make_array::Entry>(a); } template inline Hash_Table make_hash_table(Allocator& a) { Hash_Table h = {}; h.hashes = make_array(a); h.data = make_array::Entry>(a); return h; } template bool hash_table_has(const Hash_Table& h, u64 key); template const T& hash_table_get(const Hash_Table& h, u64 key, const T& default_value); template void hash_table_set(Hash_Table& h, u64 key, const T& value); template void remove_from_hash_table(Hash_Table& h, u64 key); template void reserve_hash_table(Hash_Table& h, usize capacity); template void clear_hash_table(Hash_Table& h); // Iterators (in random order) template const typename Hash_Table::Entry* begin(const Hash_Table& h); template const typename Hash_Table::Entry* end(const Hash_Table& h); // Mutli_Hash_Table template void get_multiple_from_hash_table(const Hash_Table& h, u64 key, Array& items); template usize multiple_count_from_hash_table(const Hash_Table& h, u64 key); template const typename Hash_Table::Entry* find_first_in_hash_table(const Hash_Table& h, u64 key); template const typename Hash_Table::Entry* find_next_in_hash_table(const Hash_Table& h, const typename Hash_Table::Entry* e); template void insert_into_hash_table(Hash_Table& h, u64 key, const T& value); template void remove_entry_from_hash_table(Hash_Table& h, const typename Hash_Table::Entry* e); template void remove_all_from_hash_table(Hash_Table& h, u64 key); //////////////////////////////// /// Math Types /// //////////////////////////////// struct Vector2 { union { struct { f32 x, y; }; f32 data[2]; }; inline const f32& operator[](usize index) const { return data[index]; } inline f32& operator[](usize index) { return data[index]; } }; struct Vector3 { union { struct { f32 x, y, z; }; Vector2 xy; f32 data[3]; }; inline const f32& operator[](usize index) const { return data[index]; } inline f32& operator[](usize index) { return data[index]; } }; struct Vector4 { union { struct { f32 x, y, z, w; }; struct { Vector2 xy, zw; }; Vector3 xyz; f32 data[4]; }; inline const f32& operator[](usize index) const { return data[index]; } inline f32& operator[](usize index) { return data[index]; } }; struct Quaternion { union { struct { f32 x, y, z, w; }; Vector3 xyz; f32 data[4]; }; }; struct Matrix4 { union { struct { Vector4 x, y, z, w; }; Vector4 column[4]; f32 data[16]; }; inline const Vector4& operator[](usize index) const { return column[index]; } inline Vector4& operator[](usize index) { return column[index]; } }; struct Euler_Angles { // NOTE(bill): All angles in radians f32 pitch; f32 yaw; f32 roll; }; extern const Vector2 VECTOR2_ZERO; extern const Vector3 VECTOR3_ZERO; extern const Vector4 VECTOR4_ZERO; extern const Quaternion QUATERNION_IDENTITY; extern const Matrix4 MATRIX4_IDENTITY; //////////////////////////////// /// Math Type Op Overloads /// //////////////////////////////// // Vector2 Operators bool operator==(const Vector2& a, const Vector2& b); bool operator!=(const Vector2& a, const Vector2& b); Vector2 operator-(const Vector2& a); Vector2 operator+(const Vector2& a, const Vector2& b); Vector2 operator-(const Vector2& a, const Vector2& b); Vector2 operator*(const Vector2& a, f32 scalar); Vector2 operator*(f32 scalar, const Vector2& a); Vector2 operator/(const Vector2& a, f32 scalar); Vector2 operator*(const Vector2& a, const Vector2& b); // Hadamard Product Vector2 operator/(const Vector2& a, const Vector2& b); // Hadamard Product Vector2& operator+=(Vector2& a, const Vector2& b); Vector2& operator-=(Vector2& a, const Vector2& b); Vector2& operator*=(Vector2& a, f32 scalar); Vector2& operator/=(Vector2& a, f32 scalar); // Vector3 Operators bool operator==(const Vector3& a, const Vector3& b); bool operator!=(const Vector3& a, const Vector3& b); Vector3 operator-(const Vector3& a); Vector3 operator+(const Vector3& a, const Vector3& b); Vector3 operator-(const Vector3& a, const Vector3& b); Vector3 operator*(const Vector3& a, f32 scalar); Vector3 operator*(f32 scalar, const Vector3& a); Vector3 operator/(const Vector3& a, f32 scalar); Vector3 operator*(const Vector3& a, const Vector3& b); // Hadamard Product Vector3 operator/(const Vector3& a, const Vector3& b); // Hadamard Product Vector3& operator+=(Vector3& a, const Vector3& b); Vector3& operator-=(Vector3& a, const Vector3& b); Vector3& operator*=(Vector3& a, f32 scalar); Vector3& operator/=(Vector3& a, f32 scalar); // Vector4 Operators bool operator==(const Vector4& a, const Vector4& b); bool operator!=(const Vector4& a, const Vector4& b); Vector4 operator-(const Vector4& a); Vector4 operator+(const Vector4& a, const Vector4& b); Vector4 operator-(const Vector4& a, const Vector4& b); Vector4 operator*(const Vector4& a, f32 scalar); Vector4 operator*(f32 scalar, const Vector4& a); Vector4 operator/(const Vector4& a, f32 scalar); Vector4 operator*(const Vector4& a, const Vector4& b); // Hadamard Product Vector4 operator/(const Vector4& a, const Vector4& b); // Hadamard Product Vector4& operator+=(Vector4& a, const Vector4& b); Vector4& operator-=(Vector4& a, const Vector4& b); Vector4& operator*=(Vector4& a, f32 scalar); Vector4& operator/=(Vector4& a, f32 scalar); // Quaternion Operators bool operator==(const Quaternion& a, const Quaternion& b); bool operator!=(const Quaternion& a, const Quaternion& b); Quaternion operator-(const Quaternion& a); Quaternion operator+(const Quaternion& a, const Quaternion& b); Quaternion operator-(const Quaternion& a, const Quaternion& b); Quaternion operator*(const Quaternion& a, const Quaternion& b); Quaternion operator*(const Quaternion& a, f32 s); Quaternion operator*(f32 s, const Quaternion& a); Quaternion operator/(const Quaternion& a, f32 s); // Matrix4 Operators bool operator==(const Matrix4& a, const Matrix4& b); bool operator!=(const Matrix4& a, const Matrix4& b); Matrix4 operator+(const Matrix4& a, const Matrix4& b); Matrix4 operator-(const Matrix4& a, const Matrix4& b); Matrix4 operator*(const Matrix4& a, const Matrix4& b); Vector4 operator*(const Matrix4& a, const Vector4& v); Matrix4 operator*(const Matrix4& a, f32 scalar); Matrix4 operator*(f32 scalar, const Matrix4& a); Matrix4 operator/(const Matrix4& a, f32 scalar); Matrix4& operator+=(Matrix4& a, const Matrix4& b); Matrix4& operator-=(Matrix4& a, const Matrix4& b); Matrix4& operator*=(Matrix4& a, const Matrix4& b); ////////////////////////////////// /// Math Functions & Constants /// ////////////////////////////////// namespace math { extern const f32 EPSILON; extern const f32 ZERO; extern const f32 ONE; extern const f32 THIRD; extern const f32 TWO_THIRDS; extern const f32 E; extern const f32 PI; extern const f32 TAU; extern const f32 SQRT_2; extern const f32 SQRT_3; // Power f32 sqrt(f32 x); f32 pow(f32 x, f32 y); f32 cbrt(f32 x); f32 fast_inv_sqrt(f32 x); // Trigonometric f32 sin(f32 radians); f32 cos(f32 radians); f32 tan(f32 radians); f32 asin(f32 x); f32 acos(f32 x); f32 atan(f32 x); f32 atan2(f32 y, f32 x); f32 radians(f32 degrees); f32 degrees(f32 radians); // Hyperbolic f32 sinh(f32 x); f32 cosh(f32 x); f32 tanh(f32 x); f32 asinh(f32 x); f32 acosh(f32 x); f32 atanh(f32 x); // Rounding f32 ceil(f32 x); f32 floor(f32 x); f32 mod(f32 x, f32 y); f32 truncate(f32 x); f32 round(f32 x); s32 sign(s32 x); s64 sign(s64 x); f32 sign(f32 x); // Other f32 abs(f32 x); s8 abs( s8 x); s16 abs(s16 x); s32 abs(s32 x); s64 abs(s64 x); s32 min(s32 a, s32 b); s64 min(s64 a, s64 b); f32 min(f32 a, f32 b); s32 max(s32 a, s32 b); s64 max(s64 a, s64 b); f32 max(f32 a, f32 b); s32 clamp(s32 x, s32 min, s32 max); s64 clamp(s64 x, s64 min, s64 max); f32 clamp(f32 x, f32 min, f32 max); // Vector2 functions f32 dot(const Vector2& a, const Vector2& b); f32 cross(const Vector2& a, const Vector2& b); f32 magnitude(const Vector2& a); Vector2 normalize(const Vector2& a); Vector2 hadamard_product(const Vector2& a, const Vector2& b); // Vector3 functions f32 dot(const Vector3& a, const Vector3& b); Vector3 cross(const Vector3& a, const Vector3& b); f32 magnitude(const Vector3& a); Vector3 normalize(const Vector3& a); Vector3 hadamard_product(const Vector3& a, const Vector3& b); // Vector4 functions f32 dot(const Vector4& a, const Vector4& b); f32 magnitude(const Vector4& a); Vector4 normalize(const Vector4& a); Vector4 hadamard_product(const Vector4& a, const Vector4& b); // Quaternion functions f32 dot(const Quaternion& a, const Quaternion& b); Quaternion cross(const Quaternion& a, const Quaternion& b); f32 magnitude(const Quaternion& a); Quaternion normalize(const Quaternion& a); Quaternion conjugate(const Quaternion& a); Quaternion inverse(const Quaternion& a); Vector3 operator*(const Quaternion& a, const Vector3& v); // Rotate v by a f32 quaternion_angle(const Quaternion& a); Vector3 quaternion_axis(const Quaternion& a); Quaternion axis_angle(const Vector3& axis, f32 radians); f32 quaternion_roll(const Quaternion& a); f32 quaternion_pitch(const Quaternion& a); f32 quaternion_yaw(const Quaternion& a); Euler_Angles quaternion_to_euler_angles(const Quaternion& a); Quaternion euler_angles_to_quaternion(const Euler_Angles& e, const Vector3& x_axis = {1, 0, 0}, const Vector3& y_axis = {0, 1, 0}, const Vector3& z_axis = {0, 0, 1}); // Matrix4 functions Matrix4 transpose(const Matrix4& m); f32 determinant(const Matrix4& m); Matrix4 inverse(const Matrix4& m); Matrix4 hadamard_product(const Matrix4& a, const Matrix4&b); Matrix4 quaternion_to_matrix4(const Quaternion& a); Quaternion matrix4_to_quaternion(const Matrix4& m); Matrix4 translate(const Vector3& v); Matrix4 rotate(const Vector3& v, f32 radians); Matrix4 scale(const Vector3& v); Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top); Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far); Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far); Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near); Matrix4 look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0}); Quaternion look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0}); } // namespace math } // namespace gb #endif // GB_INCLUDE_GB_HPP /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// It's a long way to Tipperary /// /// /// /// /// //////////////////////////////// /// Implemenation /// //////////////////////////////// #ifdef GB_IMPLEMENTATION #include #include #include inline void gb__assert_handler(bool condition, const char* condition_str, const char* filename, size_t line, const char* error_text, ...) { if (condition) return; fprintf(stderr, "ASSERT! %s(%d): %s", filename, line, condition_str); if (error_text) { fprintf(stderr, " - "); va_list args; va_start(args, error_text); vfprintf(stderr, error_text, args); va_end(args); } fprintf(stderr, "\n"); *(int*)0 = 0; // TODO(bill): Use a better way to assert } namespace gb { //////////////////////////////// /// Array /// //////////////////////////////// template inline Array::Array(Allocator& a, usize count_) { allocator = &a; count = 0; allocation = 0; data = nullptr; if (count > 0) { data = alloc_array(a, count_); if (data) count = allocation = count_; } } template inline Array make_array(Allocator& allocator, usize count) { Array array = {}; array.allocator = &allocator; array.count = 0; array.allocation = 0; array.data = nullptr; if (count > 0) { array.data = alloc_array(allocator, count); if (array.data) array.count = array.allocation = count; } return array; } template inline void dealloc_array(Array& array) { if (array.allocator) dealloc(*array.allocator, array.data); } template inline void append_array(Array& a, const T& item) { if (a.allocation < a.count + 1) grow_array(a); a.data[a.count++] = item; } template inline void append_array(Array& a, const T* items, usize count) { if (a.allocation <= a.count + count) grow_array(a, a.count + count); memcpy(&a.data[a.count], items, count * sizeof(T)); a.count += count; } template inline void pop_back_array(Array& a) { GB_ASSERT(a.count > 0); a.count--; } template inline void clear_array(Array& a) { resize_array(a, 0); } template inline void resize_array(Array& a, usize count) { if (a.allocation < (s64)count) grow_array(a, count); a.count = count; } template inline void reserve_array(Array& a, usize allocation) { if (a.allocation < (s64)allocation) set_array_allocation(a, allocation); } template inline void set_array_allocation(Array& a, usize allocation) { if ((s64)allocation == a.allocation) return; if ((s64)allocation < a.count) resize_array(a, allocation); T* data = nullptr; if (allocation > 0) { data = alloc_array(*a.allocator, allocation); memcpy(data, a.data, a.count * sizeof(T)); } dealloc(*a.allocator, a.data); a.data = data; a.allocation = allocation; } template inline void grow_array(Array& a, usize min_allocation) { usize allocation = 2 * a.allocation + 2; if (allocation < min_allocation) allocation = min_allocation; set_array_allocation(a, allocation); } //////////////////////////////// /// Hash Table /// //////////////////////////////// namespace impl { struct Find_Result { s64 hash_index; s64 data_prev; s64 data_index; }; template usize add_hash_table_entry(Hash_Table& h, u64 key) { typename Hash_Table::Entry e; e.key = key; e.next = -1; usize e_index = h.data.count; append_array(h.data, e); return e_index; } template void erase_from_hash_table(Hash_Table& h, const Find_Result& fr) { if (fr.data_prev < 0) h.hashes[fr.hash_index] = h.data[fr.data_index].next; else h.data[fr.data_prev].next = g.data[fr.data_index].next; pop_back_array(h.data); // updated array count if (fr.data_index == h.data.count) return; h.data[fr.data_index] = h.data[h.data.count]; auto last = find_result_in_hash_table(h, h.data[fr.data_index].key); if (last.data_prev < 0) h.hashes[last.hash_index] = fr.data_index; else h.data[last.data_index].next = fr.data_index; } template Find_Result find_result_in_hash_table(const Hash_Table& h, u64 key) { Find_Result fr; fr.hash_index = -1; fr.data_prev = -1; fr.data_index = -1; if (h.hashes.count == 0) return fr; fr.hash_index = key % h.hashes.count; fr.data_index = h.hashes[fr.hash_index]; while (fr.data_index >= 0) { if (h.data[fr.data_index].key == key) return fr; fr.data_prev = fr.data_index; fr.data_index = h.data[fr.data_index].next; } return fr; } template Find_Result find_result_in_hash_table(const Hash_Table& h, const typename Hash_Table::Entry* e) { Find_Result fr; fr.hash_index = -1; fr.data_prev = -1; fr.data_index = -1; if (h.hashes.count == 0 || !e) return fr; fr.hash_index = key % h.hashes.count; fr.data_index = h.hashes[fr.hash_index]; while (fr.data_index >= 0) { if (&h.data[fr.data_index] == e) return fr; fr.data_prev = fr.data_index; fr.data_index = h.data[fr.data_index].next; } return fr; } template s64 make_entry_in_hash_table(Hash_Table& h, u64 key) { const Find_Result fr = impl::find_result_in_hash_table(h, key); const s64 index = impl::add_hash_table_entry(h, key); if (fr.data_prev < 0) h.hashes[fr.hash_index] = index; else h.data[fr.data_prev].next = index; h.data[index].next = fr.data_index; return index; } template void find_and_erase_entry_from_hash_table(Hash_Table& h, u64 key) { const Find_Result fr = impl::find_result_in_hash_table(h, key); if (fr.data_index >= 0) erase_from_hash_table(h, fr); } template s64 find_entry_or_fail_in_hash_table(const Hash_Table& h, u64 key) { return find_result_in_hash_table(h, key).data_index; } template s64 find_or_make_entry_in_hash_table(Hash_Table& h, u64 key) { const auto fr = find_result_in_hash_table(h, key); if (fr.data_index >= 0) return fr.data_index; s64 index = add_hash_table_entry(h, key); if (fr.data_prev < 0) h.hashes[fr.hash_index] = index; else h.data[fr.data_prev].next = index; return index; } template void rehash_hash_table(Hash_Table& h, usize new_capacity) { auto nh = make_hash_table(*h.hashes.allocator); resize_array(nh.hashes, new_capacity); const usize old_count = h.data.count; reserve_array(nh.data, old_count); for (usize i = 0; i < new_capacity; i++) nh.hashes[i] = -1; for (usize i = 0; i < old_count; i++) { auto& e = h.data[i]; insert_into_hash_table(nh, e.key, e.value); } auto empty = make_hash_table(*h.hashes.allocator); h.~Hash_Table(); memcpy(&h, &nh, sizeof(Hash_Table)); memcpy(&nh, &empty, sizeof(Hash_Table)); } template void grow_hash_table(Hash_Table& h) { const usize new_capacity = 2 * h.data.count + 2; rehash_hash_table(h, new_capacity); } template bool is_hash_table_full(Hash_Table& h) { // Make sure that there is enough space const f32 maximum_load_coefficient = 0.75f; return h.data.count >= maximum_load_coefficient * h.hashes.count; } } // namespace impl template inline bool hash_table_has(const Hash_Table& h, u64 key) { return imple::find_entry_or_fail_in_hash_table(h, key) >= 0; } template inline const T& hash_table_get(const Hash_Table& h, u64 key, const T& default_value) { const s64 index = impl::find_entry_or_fail_in_hash_table(h, key); if (index < 0) return default_value; return h.data[index].value; } template inline void hash_table_set(Hash_Table& h, u64 key, const T& value) { if (h.hashes.count == 0) impl::grow_hash_table(h); const s64 index = impl::find_or_make_entry_in_hash_table(h, key); h.data[index].value = value; if (impl::is_hash_table_full(h)) impl::grow_hash_table(h); } template inline void remove_from_hash_table(Hash_Table& h, u64 key) { impl::find_and_erase_entry_from_hash_table(h, key); } template inline void reserve_hash_table(Hash_Table& h, usize capacity) { impl:;rehash_hash_table(h, capacity); } template inline void clear_hash_table(Hash_Table& h) { clear_array(h.hashes); clear_array(h.data); } template inline const typename Hash_Table::Entry* begin(const Hash_Table& h) { return begin(h.data); } template inline const typename Hash_Table::Entry* end(const Hash_Table& h) { return end(h.data); } // Mutli_Hash_Table template inline void get_multiple_from_hash_table(const Hash_Table& h, u64 key, Array& items) { auto e = find_first_in_hash_table(h, key); while (e) { append_array(items, e->value); e = find_next_in_hash_table(h, e); } } template inline usize multiple_count_from_hash_table(const Hash_Table& h, u64 key) { usize count = 0; auto e = find_first_in_hash_table(h, key); while (e) { count++ e + find_next_in_hash_table(h, e); } return count; } template inline const typename Hash_Table::Entry* find_first_in_hash_table(const Hash_Table& h, u64 key) { const s64 index = impl::find_first_in_hash_table(h, key); if (index < 0) return nullptr; return &h.data[index]; } template const typename Hash_Table::Entry* find_next_in_hash_table(const Hash_Table& h, const typename Hash_Table::Entry* e) { if (!e) return nullptr; auto index = e->next; while (index >= 0) { if (h.data[index].ley == e->key) return &h.data[index]; index = h.data[index].next; } return nullptr; } template inline void insert_into_hash_table(Hash_Table& h, u64 key, const T& value) { if (h.hashes.count == 0) impl::grow_hash_table(h); auto next = impl::make_entry_in_hash_table(h, key); h.data[next].value = value; if (impl::is_hash_table_full(h)) impl::grow_hash_table(h); } template inline void remove_entry_from_hash_table(Hash_Table& h, const typename Hash_Table::Entry* e) { const auto fr = impl:;find_result_in_hash_table(h, e); if (fr.data_index >= 0) impl::erase_from_hash_table(h, fr); } template inline void remove_all_from_hash_table(Hash_Table& h, u64 key) { while (hash_table_has(h, key)) remove(h, key); } //////////////////////////////// /// Memory /// //////////////////////////////// Mutex::Mutex() { #ifdef GB_SYSTEM_WINDOWS win32_mutex = CreateMutex(0, 0, 0); #else pthread_mutex_init(&posix_mutex, nullptr); #endif } Mutex::~Mutex() { #ifdef GB_SYSTEM_WINDOWS CloseHandle(win32_mutex); #else pthread_mutex_destroy(&posix_mutex); #endif } void lock_mutex(Mutex& mutex) { #ifdef GB_SYSTEM_WINDOWS WaitForSingleObject(mutex.win32_mutex, INFINITE); #else pthread_mutex_lock(&mutex.posix_mutex); #endif } bool try_lock_mutex(Mutex& mutex) { #ifdef GB_SYSTEM_WINDOWS return WaitForSingleObject(mutex.win32_mutex, 0) == WAIT_OBJECT_0; #else return pthread_mutex_trylock(&mutex.posix_mutex) == 0; #endif } void unlock_mutex(Mutex& mutex) { #ifdef GB_SYSTEM_WINDOWS ReleaseMutex(mutex.win32_mutex); #else pthread_mutex_unlock(&mutex.posix_mutex); #endif } Heap_Allocator::~Heap_Allocator() { GB_ASSERT(allocation_count == 0 && total_allocated() == 0, "Heap Allocator: allocation count = %lld; total allocated = %lld", allocation_count, total_allocated()); } void* Heap_Allocator::alloc(usize size, usize align) { lock_mutex(mutex); defer(unlock_mutex(mutex)); const usize total = size + align + sizeof(Header); Header* h = (Header*)::malloc(total); h->size = total; void* data = align_forward(h + 1, align); { // Pad header usize* ptr = (usize*)(h+1); while (ptr != data) *ptr++ = GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE; } total_allocated_count += total; allocation_count++; return data; } void Heap_Allocator::dealloc(void* ptr) { if (!ptr) return; lock_mutex(mutex); defer(unlock_mutex(mutex)); Header* h = get_header_ptr(ptr); total_allocated_count -= h->size; allocation_count--; ::free(h); } s64 Heap_Allocator::allocated_size(const void* ptr) { lock_mutex(mutex); defer(unlock_mutex(mutex)); return get_header_ptr(ptr)->size; } s64 Heap_Allocator::total_allocated() { return total_allocated_count; } Heap_Allocator::Header* Heap_Allocator::get_header_ptr(const void* ptr) { const usize* data = (usize*)ptr; data--; while (*data == GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE) data--; return (Heap_Allocator::Header*)data; } void* Arena_Allocator::alloc(usize size_init, usize align) { usize size = size_init; usize alignment_offset = get_alignment_offset(align); size += alignment_offset; GB_ASSERT(size >= size_init); GB_ASSERT(total_allocated_count + size <= (usize)base_size); void* ptr = base + total_allocated_count + alignment_offset; total_allocated_count += size; return ptr; } s64 Arena_Allocator::allocated_size(const void* ptr) { return -1; } s64 Arena_Allocator::total_allocated() { return total_allocated_count; } usize Arena_Allocator::get_alignment_offset(usize align) { usize offset = 0; usize result_pointer = (usize)((uintptr)base + total_allocated_count); usize alignment_mask = align - 1; if (result_pointer & alignment_mask) offset = align - (result_pointer & alignment_mask); return offset; } usize Arena_Allocator::get_remaining_space(usize align) { return base_size - (total_allocated_count + get_alignment_offset(align)); } void Arena_Allocator::check() { GB_ASSERT(temp_count == 0); } //////////////////////////////// /// Math /// //////////////////////////////// const Vector2 VECTOR2_ZERO = {0, 0}; const Vector3 VECTOR3_ZERO = {0, 0, 0}; const Vector4 VECTOR4_ZERO = {0, 0, 0, 0}; const Quaternion QUATERNION_IDENTITY = {0, 0, 0, 1}; const Matrix4 MATRIX4_IDENTITY = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}; //////////////////////////////// /// Math Type Op Overloads /// //////////////////////////////// // Vector2 Operators bool operator==(const Vector2& a, const Vector2& b) { return (a.x == b.x) && (a.y == b.y); } bool operator!=(const Vector2& a, const Vector2& b) { return !operator==(a, b); } Vector2 operator-(const Vector2& a) { return {-a.x, -a.y}; } Vector2 operator+(const Vector2& a, const Vector2& b) { return {a.x + b.x, a.y + b.y}; } Vector2 operator-(const Vector2& a, const Vector2& b) { return {a.x - b.x, a.y - b.y}; } Vector2 operator*(const Vector2& a, f32 scalar) { return {a.x * scalar, a.y * scalar}; } Vector2 operator*(f32 scalar, const Vector2& a) { return {a.x * scalar, a.y * scalar}; } Vector2 operator/(const Vector2& a, f32 scalar) { return {a.x / scalar, a.y / scalar}; } Vector2 operator*(const Vector2& a, const Vector2& b) // Hadamard Product { return {a.x * b.x, a.y * b.y}; } Vector2 operator/(const Vector2& a, const Vector2& b) // Hadamard Product { return {a.x / b.x, a.y / b.y}; } Vector2& operator+=(Vector2& a, const Vector2& b) { a.x += b.x; a.y += b.y; return a; } Vector2& operator-=(Vector2& a, const Vector2& b) { a.x -= b.x; a.y -= b.y; return a; } Vector2& operator*=(Vector2& a, f32 scalar) { a.x *= scalar; a.y *= scalar; return a; } Vector2& operator/=(Vector2& a, f32 scalar) { a.x /= scalar; a.y /= scalar; return a; } // Vector3 Operators bool operator==(const Vector3& a, const Vector3& b) { return (a.x == b.x) && (a.y == b.y) && (a.z == b.z); } bool operator!=(const Vector3& a, const Vector3& b) { return !operator==(a, b); } Vector3 operator-(const Vector3& a) { return {-a.x, -a.y, -a.z}; } Vector3 operator+(const Vector3& a, const Vector3& b) { return {a.x + b.x, a.y + b.y, a.z + b.z}; } Vector3 operator-(const Vector3& a, const Vector3& b) { return {a.x - b.x, a.y - b.y, a.z - b.z}; } Vector3 operator*(const Vector3& a, f32 scalar) { return {a.x * scalar, a.y * scalar, a.z * scalar}; } Vector3 operator*(f32 scalar, const Vector3& a) { return {a.x * scalar, a.y * scalar, a.z * scalar}; } Vector3 operator/(const Vector3& a, f32 scalar) { return {a.x / scalar, a.y / scalar, a.z / scalar}; } Vector3 operator*(const Vector3& a, const Vector3& b) // Hadamard Product { return {a.x * b.x, a.y * b.y, a.z * b.z}; } Vector3 operator/(const Vector3& a, const Vector3& b) // Hadamard Product { return {a.x / b.x, a.y / b.y, a.z / b.z}; } Vector3& operator+=(Vector3& a, const Vector3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; } Vector3& operator-=(Vector3& a, const Vector3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; } Vector3& operator*=(Vector3& a, f32 scalar) { a.x *= scalar; a.y *= scalar; a.z *= scalar; return a; } Vector3& operator/=(Vector3& a, f32 scalar) { a.x /= scalar; a.y /= scalar; a.z /= scalar; return a; } // Vector4 Operators bool operator==(const Vector4& a, const Vector4& b) { return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w); } bool operator!=(const Vector4& a, const Vector4& b) { return !operator==(a, b); } Vector4 operator-(const Vector4& a) { return {-a.x, -a.y, -a.z, -a.w}; } Vector4 operator+(const Vector4& a, const Vector4& b) { return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w}; } Vector4 operator-(const Vector4& a, const Vector4& b) { return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w}; } Vector4 operator*(const Vector4& a, f32 scalar) { return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar}; } Vector4 operator*(f32 scalar, const Vector4& a) { return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar}; } Vector4 operator/(const Vector4& a, f32 scalar) { return {a.x / scalar, a.y / scalar, a.z / scalar, a.w / scalar}; } Vector4 operator*(const Vector4& a, const Vector4& b) // Hadamard Product { return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w}; } Vector4 operator/(const Vector4& a, const Vector4& b) // Hadamard Product { return {a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w}; } Vector4& operator+=(Vector4& a, const Vector4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; } Vector4& operator-=(Vector4& a, const Vector4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; } Vector4& operator*=(Vector4& a, f32 scalar) { a.x *= scalar; a.y *= scalar; a.z *= scalar; a.w *= scalar; return a; } Vector4& operator/=(Vector4& a, f32 scalar) { a.x /= scalar; a.y /= scalar; a.z /= scalar; a.w /= scalar; return a; } // Quaternion Operators bool operator==(const Quaternion& a, const Quaternion& b) { return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w); } bool operator!=(const Quaternion& a, const Quaternion& b) { return !operator==(a, b); } Quaternion operator-(const Quaternion& a) { return {-a.x, -a.y, -a.z, -a.w}; return {-a.x, -a.y, -a.z, -a.w}; } Quaternion operator+(const Quaternion& a, const Quaternion& b) { return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w}; } Quaternion operator-(const Quaternion& a, const Quaternion& b) { return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w}; } Quaternion operator*(const Quaternion& a, const Quaternion& b) { Quaternion q = {}; q.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y; q.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x; q.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w; q.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z; return q; } Quaternion operator*(const Quaternion& a, f32 s) { return {a.x * s, a.y * s, a.z * s, a.w * s}; } Quaternion operator*(f32 s, const Quaternion& a) { return {a.x * s, a.y * s, a.z * s, a.w * s}; } Quaternion operator/(const Quaternion& a, f32 s) { return {a.x / s, a.y / s, a.z / s, a.w / s}; } // Matrix4 Operators bool operator==(const Matrix4& a, const Matrix4& b) { for (usize i = 0; i < 4; i++) { if (a[i] != b[i]) return false; } return true; } bool operator!=(const Matrix4& a, const Matrix4& b) { return !operator==(a, b); } Matrix4 operator+(const Matrix4& a, const Matrix4& b) { Matrix4 mat; for (usize i = 0; i < 4; i++) mat[i] = a[i] + b[i]; return mat; } Matrix4 operator-(const Matrix4& a, const Matrix4& b) { Matrix4 mat; for (usize i = 0; i < 4; i++) mat[i] = a[i] - b[i]; return mat; } Matrix4 operator*(const Matrix4& a, const Matrix4& b) { Matrix4 result; result[0] = a[0] * b[0][0] + a[1] * b[0][1] + a[2] * b[0][2] + a[3] * b[0][3]; result[1] = a[0] * b[1][0] + a[1] * b[1][1] + a[2] * b[1][2] + a[3] * b[1][3]; result[2] = a[0] * b[2][0] + a[1] * b[2][1] + a[2] * b[2][2] + a[3] * b[2][3]; result[3] = a[0] * b[3][0] + a[1] * b[3][1] + a[2] * b[3][2] + a[3] * b[3][3]; return result; } Vector4 operator*(const Matrix4& a, const Vector4& v) { Vector4 mul0 = a[0] * v[0]; Vector4 mul1 = a[1] * v[1]; Vector4 mul2 = a[2] * v[2]; Vector4 mul3 = a[3] * v[3]; Vector4 add0 = mul0 + mul1; Vector4 add1 = mul2 + mul3; return add0 + add1; } Matrix4 operator*(const Matrix4& a, f32 scalar) { Matrix4 mat; for (usize i = 0; i < 4; i++) mat[i] = a[i] * scalar; return mat; } Matrix4 operator*(f32 scalar, const Matrix4& a) { Matrix4 mat; for (usize i = 0; i < 4; i++) mat[i] = a[i] * scalar; return mat; } Matrix4 operator/(const Matrix4& a, f32 scalar) { Matrix4 mat; for (usize i = 0; i < 4; i++) mat[i] = a[i] / scalar; return mat; } Matrix4& operator+=(Matrix4& a, const Matrix4& b) { return (a = a + b); } Matrix4& operator-=(Matrix4& a, const Matrix4& b) { return (a = a - b); } Matrix4& operator*=(Matrix4& a, const Matrix4& b) { return (a = a * b); } //////////////////////////////// /// Math Functions /// //////////////////////////////// namespace math { const f32 EPSILON = FLT_EPSILON; const f32 ZERO = 0.0f; const f32 ONE = 1.0f; const f32 THIRD = 0.33333333f; const f32 TWO_THIRDS = 0.66666667f; const f32 E = 2.718281828f; const f32 PI = 3.141592654f; const f32 TAU = 6.283185307f; const f32 SQRT_2 = 1.414213562f; const f32 SQRT_3 = 1.732050808f; // Power inline f32 sqrt(f32 x) { return ::sqrtf(x); } inline f32 pow(f32 x, f32 y) { return (f32)::powf(x, y); } inline f32 cbrt(f32 x) { return (f32)::cbrtf(x); } inline f32 fast_inv_sqrt(f32 x) { const f32 three_halfs = 1.5f; f32 x2 = x * 0.5f; f32 y = x; u32 i = *(u32*)&y; // Evil floating point bit level hacking // i = 0x5f3759df - (i >> 1); // What the fuck? Old i = 0x5f375a86 - (i >> 1); // What the fuck? Improved! y = *(f32*)&i; y = y * (three_halfs - (x2 * y * y)); // 1st iteration // y = y * (three_halfs - (x2 * y * y)); // 2nd iteration, this can be removed return y; } // Trigonometric inline f32 sin(f32 radians) { return ::sinf(radians); } inline f32 cos(f32 radians) { return ::cosf(radians); } inline f32 tan(f32 radians) { return ::tanf(radians); } inline f32 asin(f32 x) { return ::asinf(x); } inline f32 acos(f32 x) { return ::acosf(x); } inline f32 atan(f32 x) { return ::atanf(x); } inline f32 atan2(f32 y, f32 x) { return ::atan2f(y, x); } inline f32 radians(f32 degrees) { return TAU * degrees / 360.0f; } inline f32 degrees(f32 radians) { return 360.0f * radians / TAU; } // Hyperbolic inline f32 sinh(f32 x) { return ::sinhf(x); } inline f32 cosh(f32 x) { return ::coshf(x); } inline f32 tanh(f32 x) { return ::tanhf(x); } inline f32 asinh(f32 x) { return ::asinhf(x); } inline f32 acosh(f32 x) { return ::acoshf(x); } inline f32 atanh(f32 x) { return ::atanhf(x); } // Rounding inline f32 ceil(f32 x) { return ::ceilf(x); } inline f32 floor(f32 x) { return ::floorf(x); } inline f32 mod(f32 x, f32 y) { return ::fmodf(x, y); } inline f32 truncate(f32 x) { return ::truncf(x); } inline f32 round(f32 x) { return ::roundf(x); } inline s32 sign(s32 x) { return x >= 0 ? +1 : -1; } inline s64 sign(s64 x) { return x >= 0 ? +1 : -1; } inline f32 sign(f32 x) { return x >= 0 ? +1 : -1; } // Other inline f32 abs(f32 x) { u32 i = reinterpret_cast(x); i &= 0x7FFFFFFFul; return reinterpret_cast(i); } inline s8 abs(s8 x) { u8 i = reinterpret_cast(x); i &= 0x7Fu; return reinterpret_cast(i); } inline s16 abs(s16 x) { u16 i = reinterpret_cast(x); i &= 0x7FFFu; return reinterpret_cast(i); } inline s32 abs(s32 x) { u32 i = reinterpret_cast(x); i &= 0x7FFFFFFFul; return reinterpret_cast(i); } inline s64 abs(s64 x) { u64 i = reinterpret_cast(x); i &= 0x7FFFFFFFFFFFFFFFull; return reinterpret_cast(i); } // Vector2 functions f32 dot(const Vector2& a, const Vector2& b) { return a.x * b.x + a.y * b.y; } f32 cross(const Vector2& a, const Vector2& b) { return a.x * b.y - a.y * b.x; } f32 magnitude(const Vector2& a) { return math::sqrt(math::dot(a, a)); } Vector2 normalize(const Vector2& a) { f32 m = 1.0f / magnitude(a); return a * m; } Vector2 hadamard_product(const Vector2& a, const Vector2& b) { return {a.x * b.x, a.y * b.y}; } // Vector3 functions f32 dot(const Vector3& a, const Vector3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } Vector3 cross(const Vector3& a, const Vector3& b) { return { a.y * b.z - b.y * a.z, // x a.z * b.x - b.z * a.x, // y a.x * b.y - b.x * a.y // z }; } f32 magnitude(const Vector3& a) { return math::sqrt(math::dot(a, a)); } Vector3 normalize(const Vector3& a) { f32 m = 1.0f / magnitude(a); return a * m; } Vector3 hadamard_product(const Vector3& a, const Vector3& b) { return {a.x * b.x, a.y * b.y, a.z * b.z}; } // Vector4 functions f32 dot(const Vector4& a, const Vector4& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } f32 magnitude(const Vector4& a) { return math::sqrt(math::dot(a, a)); } Vector4 normalize(const Vector4& a) { f32 m = 1.0f / magnitude(a); return a * m; } Vector4 hadamard_product(const Vector4& a, const Vector4& b) { return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w}; } // Quaternion functions f32 dot(const Quaternion& a, const Quaternion& b) { return math::dot(a.xyz, b.xyz) + a.w*b.w; } Quaternion cross(const Quaternion& a, const Quaternion& b) { return {a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y, a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z, a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x, a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z}; } f32 magnitude(const Quaternion& a) { return math::sqrt(math::dot(a, a)); } Quaternion normalize(const Quaternion& a) { f32 m = 1.0f / magnitude(a); return a * m; } Quaternion conjugate(const Quaternion& a) { return {-a.x, -a.y, -a.z, a.w}; } Quaternion inverse(const Quaternion& a) { f32 m = 1.0f / dot(a, a); return math::conjugate(a) * m; } Vector3 operator*(const Quaternion& a, const Vector3& v) // Rotate v by q { // return (q * Quaternion(v, 0) * conjugate(q)).xyz; // More Expensive const Vector3 t = 2.0f * cross(a.xyz, v); return (v + a.w * t + cross(a.xyz, t)); } f32 quaternion_angle(const Quaternion& a) { return 2.0f * math::acos(a.w); } Vector3 quaternion_axis(const Quaternion& a) { f32 s2 = 1.0f - a.w * a.w; if (s2 <= 0.0f) return {0, 0, 1}; f32 invs2 = 1.0f / math::sqrt(s2); return a.xyz * invs2; } Quaternion axis_angle(const Vector3& axis, f32 radians) { Vector3 a = math::normalize(axis); f32 s = math::sin(0.5f * radians); Quaternion q; q.xyz = a * s; q.w = math::cos(0.5f * radians); return q; } f32 quaternion_roll(const Quaternion& a) { return math::atan2(2.0f * a.x * a.y + a.z * a.w, a.x * a.x + a.w * a.w - a.y * a.y - a.z * a.z); } f32 quaternion_pitch(const Quaternion& a) { return math::atan2(2.0f * a.y * a.z + a.w * a.x, a.w * a.w - a.x * a.x - a.y * a.y + a.z * a.z); } f32 quaternion_yaw(const Quaternion& a) { return math::asin(-2.0f * (a.x * a.z - a.w * a.y)); } Euler_Angles quaternion_to_euler_angles(const Quaternion& a) { return {quaternion_pitch(a), quaternion_yaw(a), quaternion_roll(a)}; } Quaternion euler_angles_to_quaternion(const Euler_Angles& e, const Vector3& x_axis, const Vector3& y_axis, const Vector3& z_axis) { Quaternion p = axis_angle(x_axis, e.pitch); Quaternion y = axis_angle(y_axis, e.yaw); Quaternion r = axis_angle(z_axis, e.roll); return y * p * r; } // Matrix4 functions Matrix4 transpose(const Matrix4& m) { Matrix4 result; for (usize i = 0; i < 4; i++) { for (usize j = 0; j < 4; j++) result[i][j] = m[j][i]; } return result; } f32 determinant(const Matrix4& m) { f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; Vector4 fac0 = {coef00, coef00, coef02, coef03}; Vector4 fac1 = {coef04, coef04, coef06, coef07}; Vector4 fac2 = {coef08, coef08, coef10, coef11}; Vector4 fac3 = {coef12, coef12, coef14, coef15}; Vector4 fac4 = {coef16, coef16, coef18, coef19}; Vector4 fac5 = {coef20, coef20, coef22, coef23}; Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]}; Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]}; Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]}; Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]}; Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2; Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4; Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5; Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5; Vector4 signA = {+1, -1, +1, -1}; Vector4 signB = {-1, +1, -1, +1}; Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB}; Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]}; Vector4 dot0 = m[0] * row0; f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]); return dot1; } Matrix4 inverse(const Matrix4& m) { f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; Vector4 fac0 = {coef00, coef00, coef02, coef03}; Vector4 fac1 = {coef04, coef04, coef06, coef07}; Vector4 fac2 = {coef08, coef08, coef10, coef11}; Vector4 fac3 = {coef12, coef12, coef14, coef15}; Vector4 fac4 = {coef16, coef16, coef18, coef19}; Vector4 fac5 = {coef20, coef20, coef22, coef23}; Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]}; Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]}; Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]}; Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]}; Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2; Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4; Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5; Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5; Vector4 signA = {+1, -1, +1, -1}; Vector4 signB = {-1, +1, -1, +1}; Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB}; Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]}; Vector4 dot0 = m[0] * row0; f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]); f32 oneOverDeterminant = 1.0f / dot1; return inverse * oneOverDeterminant; } Matrix4 hadamard_product(const Matrix4& a, const Matrix4& b) { Matrix4 result; for (usize i = 0; i < 4; i++) result[i] = a[i] * b[i]; return result; } Matrix4 quaternion_to_matrix4(const Quaternion& q) { Matrix4 mat = MATRIX4_IDENTITY; Quaternion a = math::normalize(q); f32 xx = a.x * a.x; f32 yy = a.y * a.y; f32 zz = a.z * a.z; f32 xy = a.x * a.y; f32 xz = a.x * a.z; f32 yz = a.y * a.z; f32 wx = a.w * a.x; f32 wy = a.w * a.y; f32 wz = a.w * a.z; mat[0][0] = 1.0f - 2.0f * (yy + zz); mat[0][1] = 2.0f * (xy + wz); mat[0][2] = 2.0f * (xz - wy); mat[1][0] = 2.0f * (xy - wz); mat[1][1] = 1.0f - 2.0f * (xx + zz); mat[1][2] = 2.0f * (yz + wx); mat[2][0] = 2.0f * (xz + wy); mat[2][1] = 2.0f * (yz - wx); mat[2][2] = 1.0f - 2.0f * (xx + yy); return mat; } Quaternion matrix4_to_quaternion(const Matrix4& m) { f32 four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2]; f32 four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2]; f32 four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1]; f32 four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2]; s32 biggestIndex = 0; f32 four_biggest_squared_minus_1 = four_w_squared_minus_1; if (four_x_squared_minus_1 > four_biggest_squared_minus_1) { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggestIndex = 1; } if (four_y_squared_minus_1 > four_biggest_squared_minus_1) { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggestIndex = 2; } if (four_z_squared_minus_1 > four_biggest_squared_minus_1) { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggestIndex = 3; } f32 biggestVal = math::sqrt(four_biggest_squared_minus_1 + 1.0f) * 0.5f; f32 mult = 0.25f / biggestVal; Quaternion q = QUATERNION_IDENTITY; switch (biggestIndex) { case 0: { q.w = biggestVal; q.x = (m[1][2] - m[2][1]) * mult; q.y = (m[2][0] - m[0][2]) * mult; q.z = (m[0][1] - m[1][0]) * mult; } break; case 1: { q.w = (m[1][2] - m[2][1]) * mult; q.x = biggestVal; q.y = (m[0][1] + m[1][0]) * mult; q.z = (m[2][0] + m[0][2]) * mult; } break; case 2: { q.w = (m[2][0] - m[0][2]) * mult; q.x = (m[0][1] + m[1][0]) * mult; q.y = biggestVal; q.z = (m[1][2] + m[2][1]) * mult; } break; case 3: { q.w = (m[0][1] - m[1][0]) * mult; q.x = (m[2][0] + m[0][2]) * mult; q.y = (m[1][2] + m[2][1]) * mult; q.z = biggestVal; } break; default: // Should never actually get here. Just for sanities sake. { GB_ASSERT(false, "How did you get here?!"); } break; } return q; } Matrix4 translate(const Vector3& v) { Matrix4 result = MATRIX4_IDENTITY; result[3].xyz = v; result[3].w = 1; return result; } Matrix4 rotate(const Vector3& v, f32 radians) { const f32 c = math::cos(radians); const f32 s = math::sin(radians); const Vector3 axis = math::normalize(v); const Vector3 t = (1.0f - c) * axis; Matrix4 rot = MATRIX4_IDENTITY; rot[0][0] = c + t.x * axis.x; rot[0][1] = 0 + t.x * axis.y + s * axis.z; rot[0][2] = 0 + t.x * axis.z - s * axis.y; rot[0][3] = 0; rot[1][0] = 0 + t.y * axis.x - s * axis.z; rot[1][1] = c + t.y * axis.y; rot[1][2] = 0 + t.y * axis.z + s * axis.x; rot[1][3] = 0; rot[2][0] = 0 + t.z * axis.x + s * axis.y; rot[2][1] = 0 + t.z * axis.y - s * axis.x; rot[2][2] = c + t.z * axis.z; rot[2][3] = 0; return rot; } Matrix4 scale(const Vector3& v) { return { v.x, 0, 0, 0, 0, v.y, 0, 0, 0, 0, v.z, 0, 0, 0, 0, 1 }; } Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top) { Matrix4 result = MATRIX4_IDENTITY; result[0][0] = 2.0f / (right - left); result[1][1] = 2.0f / (top - bottom); result[2][2] = -1.0f; result[3][1] = -(right + left) / (right - left); result[3][1] = -(top + bottom) / (top - bottom); return result; } Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far) { Matrix4 result = MATRIX4_IDENTITY; result[0][0] = 2.0f / (right - left); result[1][1] = 2.0f / (top - bottom); result[2][2] = -2.0f / (z_far - z_near); result[3][0] = -(right + left) / (right - left); result[3][1] = -(top + bottom) / (top - bottom); result[3][2] = -(z_far + z_near) / (z_far - z_near); return result; } Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far) { GB_ASSERT(math::abs(aspect) > 0.0f, "math::perspective `fovy_radians` is %f", fovy_radians); f32 tan_half_fovy = math::tan(0.5f * fovy_radians); Matrix4 result = {}; result[0][0] = 1.0f / (aspect * tan_half_fovy); result[1][1] = 1.0f / (tan_half_fovy); result[2][2] = -(z_far + z_near) / (z_far - z_near); result[2][3] = -1.0f; result[3][2] = -2.0f * z_far * z_near / (z_far - z_near); return result; } Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near) { f32 range = math::tan(0.5f * fovy_radians) * z_near; f32 left = -range * aspect; f32 right = range * aspect; f32 bottom = -range; f32 top = range; Matrix4 result = {}; result[0][0] = (2.0f * z_near) / (right - left); result[1][1] = (2.0f * z_near) / (top - bottom); result[2][2] = -1.0f; result[2][3] = -1.0f; result[3][2] = -2.0f * z_near; return result; } Matrix4 look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up) { const Vector3 f = math::normalize(center - eye); const Vector3 s = math::normalize(math::cross(f, up)); const Vector3 u = math::cross(s, f); Matrix4 result = MATRIX4_IDENTITY; result[0][0] = +s.x; result[1][0] = +s.y; result[2][0] = +s.z; result[0][1] = +u.x; result[1][1] = +u.y; result[2][1] = +u.z; result[0][2] = -f.x; result[1][2] = -f.y; result[2][2] = -f.z; result[3][0] = -math::dot(s, eye); result[3][1] = -math::dot(u, eye); result[3][2] = +math::dot(f, eye); return result; } Quaternion look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up) { const f32 similar = 0.001f; if (magnitude(center - eye) < similar) return QUATERNION_IDENTITY; // You cannot look at where you are! // TODO(bill): Implement using just quaternions return matrix4_to_quaternion(look_at_matrix4(eye, center, up)); } } // namespace math } // namespace gb #endif // GB_IMPLEMENTATION