gb/gb.hpp

3947 lines
93 KiB
C++

// gb.hpp - v0.07 - public domain C++11 helper library - no warranty implied; use at your own risk
// (Experimental) A C++11 helper library without STL geared towards game development
//
// Version History:
// 0.07 - Bug Fixes
// 0.06 - Os spec ideas
// 0.05 - Transform Type and Quaternion Functions
// 0.04 - String
// 0.03 - Hash Functions
// 0.02 - Hash Table
// 0.01 - Initial Version
//
// LICENSE
//
// This software is in the public domain. Where that dedication is not
// recognized, you are granted a perpetual, irrevocable license to copy,
// distribute, and modify this file as you see fit.
//
// WARNING
//
// This library is highly experimental and features may not work as expected.
// This also means that many functions are not documented.
//
// CONTENT
//
// - Common Macros
// - Assert
// - Types
// - C++11 Move Semantics
// - Defer
// - Memory
// - Functions
// - Allocator
// - Heap_Allocator
// - Arena_Allocator
// - Temporary_Arena_Memory
// - String
// - Array
// - Hash_Table
// - Hash Functions
// [- Os] (Not Yet Implemented)
// - Math Types
// - Vector(2,3,4)
// - Quaternion
// - Matrix4
// - Math Operations
// - Math Functions & Constants
// - Math Type Functions
//
//
//
#ifndef GB_INCLUDE_GB_HPP
#define GB_INCLUDE_GB_HPP
#if !defined(__cplusplus) && __cplusplus >= 201103L
#error This library is only for C++11 and above
#endif
// NOTE(bill): Because static means three different things in C/C++
// Great Design(!)
#define global static
#define internal static
#define local_persist static
#if defined(_MSC_VER)
#define _ALLOW_KEYWORD_MACROS
#if !defined(alignof) // Needed for MSVC 2013
#define alignof(x) __alignof(x)
#endif
#endif
////////////////////////////////
/// System OS ///
////////////////////////////////
#if defined(_WIN32) || defined(_WIN64)
#define GB_SYSTEM_WINDOWS
#define NOMINMAX
#define VC_EXTRALEAN
#define WIN32_EXTRA_LEAN
#elif defined(__APPLE__) && defined(__MACH__)
#define GB_SYSTEM_OSX
#elif defined(__unix__)
#define GB_SYSTEM_UNIX
#if defined(__linux__)
#define GB_SYSTEM_LINUX
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#define GB_SYSTEM_FREEBSD
#else
#error This UNIX operating system is not supported by gb.hpp
#endif
#else
#error This operating system is not supported by gb.hpp
#endif
////////////////////////////////
/// Environment Bit Size ///
////////////////////////////////
#if defined(_WIN32) || defined(_WIN64)
#if defined(_WIN64)
#define GB_ARCH_64_BIT
#else
#define GB_ARCH_32_BIT
#endif
#endif
// TODO(bill): Check if this KEPLER_ENVIRONMENT works on clang
#if defined(__GNUC__)
#if defined(__x86_64__) || defined(__ppc64__)
#define GB_ARCH_64_BIT
#else
#define GB_ARCH_32_BIT
#endif
#endif
#define GB_IS_POWER_OF_TWO(x) ((x) != 0) && !((x) & ((x) - 1))
#include <float.h>
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef GB_SYSTEM_WINDOWS
#include <windows.h>
#else
#include <pthread.h>
#endif
#ifndef NDEBUG
#define GB_ASSERT(x, ...) ((void)(::gb__assert_handler((x), #x, __FILE__, __LINE__, ##__VA_ARGS__)))
#else
#define GB_ASSERT(x, ...) ((void)sizeof(x))
#endif
extern "C" inline void
gb__assert_handler(bool condition, const char* condition_str,
const char* filename, size_t line,
const char* error_text = nullptr, ...)
{
if (condition)
return;
fprintf(stderr, "ASSERT! %s(%d): %s", filename, line, condition_str);
if (error_text)
{
fprintf(stderr, " - ");
va_list args;
va_start(args, error_text);
vfprintf(stderr, error_text, args);
va_end(args);
}
fprintf(stderr, "\n");
abort();
}
namespace gb
{
////////////////////////////////
/// Types ///
////////////////////////////////
using u8 = uint8_t;
using s8 = int8_t;
using u16 = uint16_t;
using s16 = int16_t;
using u32 = uint32_t;
using s32 = int32_t;
#if defined(_MSC_VER)
using s64 = signed __int64;
using u64 = unsigned __int64;
#else
using s64 = int64_t;
using u64 = uint64_t;
#endif
using f32 = float;
using f64 = double;
#ifdef GB_B8_AS_BOOL
using b8 = bool;
#else
using b8 = s8;
#endif
using b32 = s32;
// NOTE(bill): (std::)size_t is not used not because it's a bad concept but on
// the platforms that I will be using:
// sizeof(size_t) == sizeof(usize) == sizeof(s64)
// NOTE(bill): This also allows for a signed version of size_t which is similar
// to ptrdiff_t
// NOTE(bill): If (u)intptr is a better fit, please use that.
// NOTE(bill): Also, I hate the `_t` suffix
#if defined(GB_ARCH_64_BIT)
using ssize = s64;
using usize = u64;
#elif defined(GB_ARCH_32_BIT)
using usize = s32;
using usize = u32;
#else
#error Unknown architecture bit size
#endif
static_assert(sizeof(usize) == sizeof(size_t),
"`usize` is not the same size as `size_t`");
static_assert(sizeof(ssize) == sizeof(usize),
"`ssize` is not the same size as `usize`");
using intptr = intptr_t;
using uintptr = uintptr_t;
using ptrdiff = ptrdiff_t;
////////////////////////////////
/// C++11 Move Semantics ///
////////////////////////////////
template <typename T> struct Remove_Reference { using Type = T; };
template <typename T> struct Remove_Reference<T&> { using Type = T; };
template <typename T> struct Remove_Reference<T&&> { using Type = T; };
template <typename T>
inline T&&
forward(typename Remove_Reference<T>::Type& t)
{
return static_cast<T&&>(t);
}
template <typename T>
inline T&&
forward(typename Remove_Reference<T>::Type&& t)
{
return static_cast<T&&>(t);
}
template <typename T>
inline typename Remove_Reference<T>::Type&&
move(T&& t)
{
return static_cast<typename Remove_Reference<T>::Type&&>(t);
}
////////////////////////////////
/// Defer ///
////////////////////////////////
namespace impl
{
template <typename Fn>
struct Defer
{
Fn fn;
Defer(Fn&& fn) : fn{forward<Fn>(fn)} {}
~Defer() { fn(); };
};
template <typename Fn>
Defer<Fn>
defer_fn(Fn&& fn) { return Defer<Fn>(forward<Fn>(fn)); }
} // namespace impl
} // namespace gb
// NOTE(bill): These macros are in the global namespace thus, defer can be treated without a gb:: prefix
#define GB_DEFER_1(x, y) x##y
#define GB_DEFER_2(x, y) GB_DEFER_1(x, y)
#define GB_DEFER_3(x) GB_DEFER_2(GB_DEFER_2(GB_DEFER_2(x, __COUNTER__), _), __LINE__)
#define defer(code) auto GB_DEFER_3(_defer_) = gb::impl::defer_fn([&](){code;})
namespace gb
{
////////////////////////////////
/// Memory ///
////////////////////////////////
struct Mutex
{
#ifdef GB_SYSTEM_WINDOWS
HANDLE win32_mutex;
#else
pthread_mutex_t posix_mutex;
#endif
Mutex();
~Mutex();
};
void lock_mutex(Mutex& mutex);
bool try_lock_mutex(Mutex& mutex);
void unlock_mutex(Mutex& mutex);
#ifndef GB_DEFAULT_ALIGNMENT
#define GB_DEFAULT_ALIGNMENT 4
#endif
inline void*
align_forward(void* ptr, usize align)
{
GB_ASSERT(GB_IS_POWER_OF_TWO(align));
uintptr p = (uintptr)ptr;
const usize modulo = p % align;
if (modulo)
p += (uintptr)(align - modulo);
return (void*)p;
}
struct Allocator
{
Allocator() {}
virtual ~Allocator() {}
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT) = 0;
virtual void dealloc(void* ptr) = 0;
virtual s64 allocated_size(const void* ptr) = 0;
virtual s64 total_allocated() = 0;
private:
// Delete copying
Allocator(const Allocator&) = delete;
Allocator& operator=(const Allocator&) = delete;
};
inline void* alloc(Allocator& a, usize size, usize align = GB_DEFAULT_ALIGNMENT) { return a.alloc(size, align); }
inline void dealloc(Allocator& a, void* ptr) { return a.dealloc(ptr); }
template <typename T>
inline T* alloc_struct(Allocator& a) { return static_cast<T*>a.alloc(sizeof(T), alignof(T)); }
template <typename T>
inline T* alloc_array(Allocator& a, usize count) { return static_cast<T*>(alloc(a, count * sizeof(T), alignof(T))); }
template <typename T, usize count>
inline T* alloc_array(Allocator& a) { return static_cast<T*>(alloc(a, count * sizeof(T), alignof(T))); }
#define GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE (usize)(-1)
struct Heap_Allocator : Allocator
{
struct Header
{
s64 size;
};
Mutex mutex = Mutex{};
s64 total_allocated_count = 0;
s64 allocation_count = 0;
Heap_Allocator() = default;
virtual ~Heap_Allocator();
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
virtual void dealloc(void* ptr);
virtual s64 allocated_size(const void* ptr);
virtual s64 total_allocated();
Header* get_header_ptr(const void* ptr);
};
struct Arena_Allocator : Allocator
{
u8* base = nullptr;
s64 base_size = 0;
s64 total_allocated_count = 0;
s64 temp_count = 0;
Arena_Allocator() = default;
explicit Arena_Allocator(void* base, usize base_size);
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
virtual void dealloc(void* ptr);
virtual s64 allocated_size(const void* ptr);
virtual s64 total_allocated();
virtual usize get_alignment_offset(usize align = GB_DEFAULT_ALIGNMENT);
virtual usize get_remaining_space(usize align = GB_DEFAULT_ALIGNMENT);
void check();
};
struct Temporary_Arena_Memory
{
Arena_Allocator* arena;
s64 original_count;
explicit Temporary_Arena_Memory(Arena_Allocator& arena_)
: arena(&arena_)
, original_count(arena_.total_allocated_count)
{
}
~Temporary_Arena_Memory()
{
GB_ASSERT(arena->total_allocated() >= original_count);
arena->total_allocated_count = original_count;
GB_ASSERT(arena->temp_count > 0);
arena->temp_count--;
}
};
inline Temporary_Arena_Memory
make_temporary_arena_memory(Arena_Allocator& arena)
{
return Temporary_Arena_Memory{arena};
}
////////////////////////////////
/// String ///
////////////////////////////////
using String = char*;
using String_Size = u32;
struct String_Header
{
Allocator* allocator;
String_Size len;
String_Size cap;
};
inline String_Header* string_header(String str) { return (String_Header*)str - 1; }
String make_string(Allocator& a, const char* str = "");
String make_string(Allocator& a, const void* str, String_Size len);
void free_string(String& str);
String duplicate_string(Allocator& a, const String str);
String_Size string_length(const String str);
String_Size string_capacity(const String str);
String_Size string_available_space(const String str);
void clear_string(String str);
void append_string(String& str, const String other);
void append_cstring(String& str, const char* other);
void append_string(String& str, const void* other, String_Size len);
void string_make_space_for(String& str, String_Size add_len);
usize string_allocation_size(const String str);
bool strings_are_equal(const String lhs, const String rhs);
void trim_string(String& str, const char* cut_set);
////////////////////////////////
/// Array ///
////////////////////////////////
template <typename T>
struct Array
{
Allocator* allocator;
s64 count;
s64 allocation;
T* data;
Array() = default;
explicit Array(Allocator& a, usize count = 0);
virtual ~Array() { if (allocator) dealloc(*allocator, data); }
const T& operator[](usize index) const { return data[index]; }
T& operator[](usize index) { return data[index]; }
};
template <typename T> Array<T> make_array(Allocator& allocator, usize count = 0);
template <typename T> void free_array(Array<T>& array);
template <typename T> void append_array(Array<T>& a, const T& item);
template <typename T> void append_array(Array<T>& a, const T* items, usize count);
template <typename T> void pop_back_array(Array<T>& a);
template <typename T> inline T* begin(Array<T>& a) { return a.data; }
template <typename T> inline const T* begin(const Array<T>& a) { return a.data; }
template <typename T> inline T* end(Array<T>& a) { return a.data + a.count; }
template <typename T> inline const T* end(const Array<T>& a) { return a.data + a.count; }
template <typename T> void clear_array(Array<T>& a);
template <typename T> void resize_array(Array<T>& a, usize count);
template <typename T> void reserve_array(Array<T>& a, usize allocation);
template <typename T> void set_array_allocation(Array<T>& a, usize allocation);
template <typename T> void grow_array(Array<T>& a, usize min_allocation = 0);
////////////////////////////////
/// Hash Table ///
////////////////////////////////
template <typename T>
struct Hash_Table
{
struct Entry
{
u64 key;
s64 next;
T value;
};
Array<s64> hashes;
Array<Entry> data;
Hash_Table() = default;
explicit Hash_Table(Allocator& a);
~Hash_Table() = default;
};
template <typename T>
Hash_Table<T>::Hash_Table(Allocator& a)
{
hashes = make_array<s64>(a);
data = make_array<typename Hash_Table<T>::Entry>(a);
}
template <typename T>
inline Hash_Table<T>
make_hash_table(Allocator& a)
{
Hash_Table<T> h = {};
h.hashes = make_array<s64>(a);
h.data = make_array<typename Hash_Table<T>::Entry>(a);
return h;
}
template <typename T> bool hash_table_has(const Hash_Table<T>& h, u64 key);
template <typename T> const T& hash_table_get(const Hash_Table<T>& h, u64 key, const T& default_value);
template <typename T> void hash_table_set(Hash_Table<T>& h, u64 key, const T& value);
template <typename T> void remove_from_hash_table(Hash_Table<T>& h, u64 key);
template <typename T> void reserve_hash_table(Hash_Table<T>& h, usize capacity);
template <typename T> void clear_hash_table(Hash_Table<T>& h);
// Iterators (in random order)
template <typename T> const typename Hash_Table<T>::Entry* begin(const Hash_Table<T>& h);
template <typename T> const typename Hash_Table<T>::Entry* end(const Hash_Table<T>& h);
// Mutli_Hash_Table
template <typename T> void get_multiple_from_hash_table(const Hash_Table<T>& h, u64 key, Array<T>& items);
template <typename T> usize multiple_count_from_hash_table(const Hash_Table<T>& h, u64 key);
template <typename T> const typename Hash_Table<T>::Entry* find_first_in_hash_table(const Hash_Table<T>& h, u64 key);
template <typename T> const typename Hash_Table<T>::Entry* find_next_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e);
template <typename T> void insert_into_hash_table(Hash_Table<T>& h, u64 key, const T& value);
template <typename T> void remove_entry_from_hash_table(Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e);
template <typename T> void remove_all_from_hash_table(Hash_Table<T>& h, u64 key);
////////////////////////////////
/// Array ///
////////////////////////////////
template <typename T>
inline Array<T>::Array(Allocator& a, usize count_)
{
allocator = &a;
count = 0;
allocation = 0;
data = nullptr;
if (count > 0)
{
data = alloc_array<T>(a, count_);
if (data)
count = allocation = count_;
}
}
template <typename T>
inline Array<T>
make_array(Allocator& allocator, usize count)
{
Array<T> array = {};
array.allocator = &allocator;
array.count = 0;
array.allocation = 0;
array.data = nullptr;
if (count > 0)
{
array.data = alloc_array<T>(allocator, count);
if (array.data)
array.count = array.allocation = count;
}
return array;
}
template <typename T>
inline void
dealloc_array(Array<T>& array)
{
if (array.allocator)
dealloc(*array.allocator, array.data);
}
template <typename T>
inline void
append_array(Array<T>& a, const T& item)
{
if (a.allocation < a.count + 1)
grow_array(a);
a.data[a.count++] = item;
}
template <typename T>
inline void
append_array(Array<T>& a, const T* items, usize count)
{
if (a.allocation <= a.count + count)
grow_array(a, a.count + count);
memcpy(&a.data[a.count], items, count * sizeof(T));
a.count += count;
}
template <typename T>
inline void
pop_back_array(Array<T>& a)
{
GB_ASSERT(a.count > 0);
a.count--;
}
template <typename T>
inline void
clear_array(Array<T>& a)
{
resize_array(a, 0);
}
template <typename T>
inline void
resize_array(Array<T>& a, usize count)
{
if (a.allocation < (s64)count)
grow_array(a, count);
a.count = count;
}
template <typename T>
inline void
reserve_array(Array<T>& a, usize allocation)
{
if (a.allocation < (s64)allocation)
set_array_allocation(a, allocation);
}
template <typename T>
inline void
set_array_allocation(Array<T>& a, usize allocation)
{
if ((s64)allocation == a.allocation)
return;
if ((s64)allocation < a.count)
resize_array(a, allocation);
T* data = nullptr;
if (allocation > 0)
{
data = alloc_array<T>(*a.allocator, allocation);
memcpy(data, a.data, a.count * sizeof(T));
}
dealloc(*a.allocator, a.data);
a.data = data;
a.allocation = allocation;
}
template <typename T>
inline void
grow_array(Array<T>& a, usize min_allocation)
{
usize allocation = 2 * a.allocation + 2;
if (allocation < min_allocation)
allocation = min_allocation;
set_array_allocation(a, allocation);
}
////////////////////////////////
/// Hash Table ///
////////////////////////////////
namespace impl
{
struct Find_Result
{
s64 hash_index;
s64 data_prev;
s64 data_index;
};
template <typename T>
usize
add_hash_table_entry(Hash_Table<T>& h, u64 key)
{
typename Hash_Table<T>::Entry e;
e.key = key;
e.next = -1;
usize e_index = h.data.count;
append_array(h.data, e);
return e_index;
}
template <typename T>
void
erase_from_hash_table(Hash_Table<T>& h, const Find_Result& fr)
{
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = h.data[fr.data_index].next;
else
h.data[fr.data_prev].next = g.data[fr.data_index].next;
pop_back_array(h.data); // updated array count
if (fr.data_index == h.data.count)
return;
h.data[fr.data_index] = h.data[h.data.count];
auto last = find_result_in_hash_table(h, h.data[fr.data_index].key);
if (last.data_prev < 0)
h.hashes[last.hash_index] = fr.data_index;
else
h.data[last.data_index].next = fr.data_index;
}
template <typename T>
Find_Result
find_result_in_hash_table(const Hash_Table<T>& h, u64 key)
{
Find_Result fr;
fr.hash_index = -1;
fr.data_prev = -1;
fr.data_index = -1;
if (h.hashes.count == 0)
return fr;
fr.hash_index = key % h.hashes.count;
fr.data_index = h.hashes[fr.hash_index];
while (fr.data_index >= 0)
{
if (h.data[fr.data_index].key == key)
return fr;
fr.data_prev = fr.data_index;
fr.data_index = h.data[fr.data_index].next;
}
return fr;
}
template <typename T>
Find_Result
find_result_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
Find_Result fr;
fr.hash_index = -1;
fr.data_prev = -1;
fr.data_index = -1;
if (h.hashes.count == 0 || !e)
return fr;
fr.hash_index = key % h.hashes.count;
fr.data_index = h.hashes[fr.hash_index];
while (fr.data_index >= 0)
{
if (&h.data[fr.data_index] == e)
return fr;
fr.data_prev = fr.data_index;
fr.data_index = h.data[fr.data_index].next;
}
return fr;
}
template <typename T>
s64 make_entry_in_hash_table(Hash_Table<T>& h, u64 key)
{
const Find_Result fr = impl::find_result_in_hash_table(h, key);
const s64 index = impl::add_hash_table_entry(h, key);
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = index;
else
h.data[fr.data_prev].next = index;
h.data[index].next = fr.data_index;
return index;
}
template <typename T>
void
find_and_erase_entry_from_hash_table(Hash_Table<T>& h, u64 key)
{
const Find_Result fr = impl::find_result_in_hash_table(h, key);
if (fr.data_index >= 0)
erase_from_hash_table(h, fr);
}
template <typename T>
s64
find_entry_or_fail_in_hash_table(const Hash_Table<T>& h, u64 key)
{
return find_result_in_hash_table(h, key).data_index;
}
template <typename T>
s64
find_or_make_entry_in_hash_table(Hash_Table<T>& h, u64 key)
{
const auto fr = find_result_in_hash_table(h, key);
if (fr.data_index >= 0)
return fr.data_index;
s64 index = add_hash_table_entry(h, key);
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = index;
else
h.data[fr.data_prev].next = index;
return index;
}
template <typename T>
void
rehash_hash_table(Hash_Table<T>& h, usize new_capacity)
{
auto nh = make_hash_table<T>(*h.hashes.allocator);
resize_array(nh.hashes, new_capacity);
const usize old_count = h.data.count;
reserve_array(nh.data, old_count);
for (usize i = 0; i < new_capacity; i++)
nh.hashes[i] = -1;
for (usize i = 0; i < old_count; i++)
{
auto& e = h.data[i];
insert_into_hash_table(nh, e.key, e.value);
}
auto empty = make_hash_table<T>(*h.hashes.allocator);
h.~Hash_Table<T>();
memcpy(&h, &nh, sizeof(Hash_Table<T>));
memcpy(&nh, &empty, sizeof(Hash_Table<T>));
}
template <typename T>
void
grow_hash_table(Hash_Table<T>& h)
{
const usize new_capacity = 2 * h.data.count + 2;
rehash_hash_table(h, new_capacity);
}
template <typename T>
bool
is_hash_table_full(Hash_Table<T>& h)
{
// Make sure that there is enough space
const f32 maximum_load_coefficient = 0.75f;
return h.data.count >= maximum_load_coefficient * h.hashes.count;
}
} // namespace impl
template <typename T>
inline bool
hash_table_has(const Hash_Table<T>& h, u64 key)
{
return imple::find_entry_or_fail_in_hash_table(h, key) >= 0;
}
template <typename T>
inline const T&
hash_table_get(const Hash_Table<T>& h, u64 key, const T& default_value)
{
const s64 index = impl::find_entry_or_fail_in_hash_table(h, key);
if (index < 0)
return default_value;
return h.data[index].value;
}
template <typename T>
inline void
hash_table_set(Hash_Table<T>& h, u64 key, const T& value)
{
if (h.hashes.count == 0)
impl::grow_hash_table(h);
const s64 index = impl::find_or_make_entry_in_hash_table(h, key);
h.data[index].value = value;
if (impl::is_hash_table_full(h))
impl::grow_hash_table(h);
}
template <typename T>
inline void
remove_from_hash_table(Hash_Table<T>& h, u64 key)
{
impl::find_and_erase_entry_from_hash_table(h, key);
}
template <typename T>
inline void
reserve_hash_table(Hash_Table<T>& h, usize capacity)
{
impl:;rehash_hash_table(h, capacity);
}
template <typename T>
inline void
clear_hash_table(Hash_Table<T>& h)
{
clear_array(h.hashes);
clear_array(h.data);
}
template <typename T>
inline const typename Hash_Table<T>::Entry*
begin(const Hash_Table<T>& h)
{
return begin(h.data);
}
template <typename T>
inline const typename Hash_Table<T>::Entry*
end(const Hash_Table<T>& h)
{
return end(h.data);
}
// Mutli_Hash_Table
template <typename T>
inline void
get_multiple_from_hash_table(const Hash_Table<T>& h, u64 key, Array<T>& items)
{
auto e = find_first_in_hash_table(h, key);
while (e)
{
append_array(items, e->value);
e = find_next_in_hash_table(h, e);
}
}
template <typename T>
inline usize
multiple_count_from_hash_table(const Hash_Table<T>& h, u64 key)
{
usize count = 0;
auto e = find_first_in_hash_table(h, key);
while (e)
{
count++
e = find_next_in_hash_table(h, e);
}
return count;
}
template <typename T>
inline const typename Hash_Table<T>::Entry*
find_first_in_hash_table(const Hash_Table<T>& h, u64 key)
{
const s64 index = impl::find_first_in_hash_table(h, key);
if (index < 0)
return nullptr;
return &h.data[index];
}
template <typename T>
const typename Hash_Table<T>::Entry*
find_next_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
if (!e)
return nullptr;
auto index = e->next;
while (index >= 0)
{
if (h.data[index].ley == e->key)
return &h.data[index];
index = h.data[index].next;
}
return nullptr;
}
template <typename T>
inline void
insert_into_hash_table(Hash_Table<T>& h, u64 key, const T& value)
{
if (h.hashes.count == 0)
impl::grow_hash_table(h);
auto next = impl::make_entry_in_hash_table(h, key);
h.data[next].value = value;
if (impl::is_hash_table_full(h))
impl::grow_hash_table(h);
}
template <typename T>
inline void
remove_entry_from_hash_table(Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
const auto fr = impl:;find_result_in_hash_table(h, e);
if (fr.data_index >= 0)
impl::erase_from_hash_table(h, fr);
}
template <typename T>
inline void
remove_all_from_hash_table(Hash_Table<T>& h, u64 key)
{
while (hash_table_has(h, key))
remove(h, key);
}
////////////////////////////////
/// Hash ///
////////////////////////////////
namespace hash
{
u32 adler32(const void* key, u32 num_bytes);
u32 crc32(const void* key, u32 num_bytes);
u64 crc64(const void* key, usize num_bytes);
// TODO(bill): Complete hashing functions
// u32 fnv32(const void* key, usize num_bytes);
// u64 fnv64(const void* key, usize num_bytes);
// u32 fnv32a(const void* key, usize num_bytes);
// u64 fnv64a(const void* key, usize num_bytes);
u32 murmur32(const void* key, u32 num_bytes, u32 seed = 0x9747b28c);
u64 murmur64(const void* key, usize num_bytes, u64 seed = 0x9747b28c);
} // namespace hash
////////////////////////////////
/// Os ///
////////////////////////////////
namespace os
{
#if 0
// TODO(bill) NOTE(bill): How should I do error handling?
// Because C++ cannot return multiple variables (ignoring tuples),
// the Golang way is not possible
// e.g. auto file, err = os::open_file("whatever.ext");
// Also this is ugly :
// File* file; Error* err;
// tie(file, err) = os::open_file("whatever.ext");
// TODO(bill): Move to gb:: ? e.g. make error handling type?
struct Error
{
const char* text;
};
struct File
{
// TODO(bill): Implement File type
// Os Specific Crap Here
};
const Error ERR_INVALID = Error{"invalid argument"};
const Error ERR_PERMISSION = Error{"permission denied"};
const Error ERR_EXIST = Error{"file already exists"};
const Error ERR_NOT_EXIST = Error{"file already exists"};
// Os Functions
Error* chdir(const char* dir);
Error* chmod(const char* name, u32 mode);
Error* mkdir(const char* name, u32 perm);
Error* mkdir_all(const char* name, u32 perm);
Error* remove(const char* name);
Error* remove_all(const char* name);
Error* rename(const char* old_path, const char* new_path);
void clear_env();
void exit(int code);
int get_egid();
int get_euid();
int get_gid();
int get_page_size();
int get_ppid();
int get_uid();
Error* get_wd(const char* buffer, usize buffer_len);
Error* hostname(const char* buffer, usize buffer_len);
bool is_path_separator(char c);
Error* lchown(const char* name, int uid, int gid);
Error* link(const char* old_name, const char* new_name);
Error* read_link(const char* name, const char* buffer, usize buffer_len);
Error* symlink(const char* old_name, const char* new_name);
void temp_dir(const char* buffer, usize buffer_len);
Error* truncate(const char* name, s64 size);
// File functions
// TODO(bill): Create enums?
#define O_RDONLY 00
#define O_WRONLY 01
#define O_RDWR 02
File new_file(uintptr fd, const char* name);
Error* create_file(File& file, const char* name);
Error* open_file(File& file, const char* filename, int flag = O_RDONLY, u32 perm = 0);
Error* close_file(File& file);
bool is_file_open(File& file);
bool get_line(File& file, const char* buffer, usize buffer_len);
Error* read_file(File& file, const void* buffer, usize num_bytes);
Error* read_file_at(File& file, const void* buffer, usize num_bytes, s64 offset);
Error* write_to_file(File& file, const void* buffer, usize num_bytes);
Error* write_to_file_at(File& file, const void* buffer, usize num_bytes, s64 offset);
Error* seek_file(File& file, s64 offset, s64 whence);
Error* sync_file(File& file);
Error* truncate_file(File& file);
Error* chdir_of_file(File& file);
Error* chmod_of_file(File& file, u32 mode);
Error* chown_of_file(File& file, int uid, int gid);
void name_of_file(File& file, const char* buffer, usize buffer_len);
#endif
} // namespace os
////////////////////////////////
/// Time ///
////////////////////////////////
struct Time
{
s64 microseconds;
};
Time time_now();
void time_sleep(Time time);
Time seconds(f32 s);
Time milliseconds(s32 ms);
Time microseconds(s64 us);
f32 time_as_seconds(Time t);
s32 time_as_milliseconds(Time t);
s64 time_as_microseconds(Time t);
bool operator==(Time left, Time right);
bool operator!=(Time left, Time right);
bool operator<(Time left, Time right);
bool operator>(Time left, Time right);
bool operator<=(Time left, Time right);
bool operator>=(Time left, Time right);
Time operator-(Time right);
Time operator+(Time left, Time right);
Time operator-(Time left, Time right);
Time& operator+=(Time& left, Time right);
Time& operator-=(Time& left, Time right);
Time operator*(Time left, f32 right);
Time operator*(Time left, s64 right);
Time operator*(f32 left, Time right);
Time operator*(s64 left, Time right);
Time& operator*=(Time& left, f32 right);
Time& operator*=(Time& left, s64 right);
Time operator/(Time left, f32 right);
Time operator/(Time left, s64 right);
Time& operator/=(Time& left, f32 right);
Time& operator/=(Time& left, s64 right);
f32 operator/(Time left, Time right);
Time operator%(Time left, Time right);
Time& operator%=(Time& left, Time right);
////////////////////////////////
/// Math Types ///
////////////////////////////////
struct Vector2
{
union
{
struct { f32 x, y; };
f32 data[2];
};
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
struct Vector3
{
union
{
struct { f32 x, y, z; };
Vector2 xy;
f32 data[3];
};
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
struct Vector4
{
union
{
struct { f32 x, y, z, w; };
struct { Vector2 xy, zw; };
Vector3 xyz;
f32 data[4];
};
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
struct Quaternion
{
union
{
struct { f32 x, y, z, w; };
Vector3 xyz;
f32 data[4];
};
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
struct Matrix2
{
union
{
struct { Vector2 x, y; };
Vector2 columns[2];
f32 data[4];
};
inline const Vector2& operator[](usize index) const { return columns[index]; }
inline Vector2& operator[](usize index) { return columns[index]; }
};
struct Matrix3
{
union
{
struct { Vector3 x, y, z; };
Vector3 columns[3];
f32 data[9];
};
inline const Vector3& operator[](usize index) const { return columns[index]; }
inline Vector3& operator[](usize index) { return columns[index]; }
};
struct Matrix4
{
union
{
struct { Vector4 x, y, z, w; };
Vector4 columns[4];
f32 data[16];
};
inline const Vector4& operator[](usize index) const { return columns[index]; }
inline Vector4& operator[](usize index) { return columns[index]; }
};
struct Euler_Angles
{
// NOTE(bill): All angles in radians
f32 pitch;
f32 yaw;
f32 roll;
};
struct Transform
{
Vector3 position = Vector3{0, 0, 0};
Quaternion orientation = Quaternion{0, 0, 0, 1};
Vector3 scale = Vector3{0, 0, 0};
};
////////////////////////////////
/// Math Type Op Overloads ///
////////////////////////////////
// Vector2 Operators
bool operator==(const Vector2& a, const Vector2& b);
bool operator!=(const Vector2& a, const Vector2& b);
Vector2 operator-(const Vector2& a);
Vector2 operator+(const Vector2& a, const Vector2& b);
Vector2 operator-(const Vector2& a, const Vector2& b);
Vector2 operator*(const Vector2& a, f32 scalar);
Vector2 operator*(f32 scalar, const Vector2& a);
Vector2 operator/(const Vector2& a, f32 scalar);
Vector2 operator*(const Vector2& a, const Vector2& b); // Hadamard Product
Vector2 operator/(const Vector2& a, const Vector2& b); // Hadamard Product
Vector2& operator+=(Vector2& a, const Vector2& b);
Vector2& operator-=(Vector2& a, const Vector2& b);
Vector2& operator*=(Vector2& a, f32 scalar);
Vector2& operator/=(Vector2& a, f32 scalar);
// Vector3 Operators
bool operator==(const Vector3& a, const Vector3& b);
bool operator!=(const Vector3& a, const Vector3& b);
Vector3 operator-(const Vector3& a);
Vector3 operator+(const Vector3& a, const Vector3& b);
Vector3 operator-(const Vector3& a, const Vector3& b);
Vector3 operator*(const Vector3& a, f32 scalar);
Vector3 operator*(f32 scalar, const Vector3& a);
Vector3 operator/(const Vector3& a, f32 scalar);
Vector3 operator*(const Vector3& a, const Vector3& b); // Hadamard Product
Vector3 operator/(const Vector3& a, const Vector3& b); // Hadamard Product
Vector3& operator+=(Vector3& a, const Vector3& b);
Vector3& operator-=(Vector3& a, const Vector3& b);
Vector3& operator*=(Vector3& a, f32 scalar);
Vector3& operator/=(Vector3& a, f32 scalar);
// Vector4 Operators
bool operator==(const Vector4& a, const Vector4& b);
bool operator!=(const Vector4& a, const Vector4& b);
Vector4 operator-(const Vector4& a);
Vector4 operator+(const Vector4& a, const Vector4& b);
Vector4 operator-(const Vector4& a, const Vector4& b);
Vector4 operator*(const Vector4& a, f32 scalar);
Vector4 operator*(f32 scalar, const Vector4& a);
Vector4 operator/(const Vector4& a, f32 scalar);
Vector4 operator*(const Vector4& a, const Vector4& b); // Hadamard Product
Vector4 operator/(const Vector4& a, const Vector4& b); // Hadamard Product
Vector4& operator+=(Vector4& a, const Vector4& b);
Vector4& operator-=(Vector4& a, const Vector4& b);
Vector4& operator*=(Vector4& a, f32 scalar);
Vector4& operator/=(Vector4& a, f32 scalar);
// Quaternion Operators
bool operator==(const Quaternion& a, const Quaternion& b);
bool operator!=(const Quaternion& a, const Quaternion& b);
Quaternion operator-(const Quaternion& a);
Quaternion operator+(const Quaternion& a, const Quaternion& b);
Quaternion operator-(const Quaternion& a, const Quaternion& b);
Quaternion operator*(const Quaternion& a, const Quaternion& b);
Quaternion operator*(const Quaternion& a, f32 s);
Quaternion operator*(f32 s, const Quaternion& a);
Quaternion operator/(const Quaternion& a, f32 s);
Vector3 operator*(const Quaternion& a, const Vector3& v); // Rotate v by a
// Matrix4 Operators
bool operator==(const Matrix4& a, const Matrix4& b);
bool operator!=(const Matrix4& a, const Matrix4& b);
Matrix4 operator+(const Matrix4& a, const Matrix4& b);
Matrix4 operator-(const Matrix4& a, const Matrix4& b);
Matrix4 operator*(const Matrix4& a, const Matrix4& b);
Vector4 operator*(const Matrix4& a, const Vector4& v);
Matrix4 operator*(const Matrix4& a, f32 scalar);
Matrix4 operator*(f32 scalar, const Matrix4& a);
Matrix4 operator/(const Matrix4& a, f32 scalar);
Matrix4& operator+=(Matrix4& a, const Matrix4& b);
Matrix4& operator-=(Matrix4& a, const Matrix4& b);
Matrix4& operator*=(Matrix4& a, const Matrix4& b);
// Transform Operators
// World = Parent * Local
Transform operator*(const Transform& ps, const Transform& ls);
Transform& operator*=(Transform& ps, const Transform& ls);
// Local = World / Parent
Transform operator/(const Transform& ws, const Transform& ps);
Transform& operator/=(Transform& ws, const Transform& ps);
//////////////////////////////////
/// Math Functions & Constants ///
//////////////////////////////////
extern const Vector2 VECTOR2_ZERO;
extern const Vector3 VECTOR3_ZERO;
extern const Vector4 VECTOR4_ZERO;
extern const Quaternion QUATERNION_IDENTITY;
extern const Matrix4 MATRIX4_IDENTITY;
namespace math
{
extern const f32 EPSILON;
extern const f32 ZERO;
extern const f32 ONE;
extern const f32 THIRD;
extern const f32 TWO_THIRDS;
extern const f32 E;
extern const f32 PI;
extern const f32 TAU;
extern const f32 SQRT_2;
extern const f32 SQRT_3;
// Power
f32 sqrt(f32 x);
f32 pow(f32 x, f32 y);
f32 cbrt(f32 x);
f32 fast_inv_sqrt(f32 x);
// Trigonometric
f32 sin(f32 radians);
f32 cos(f32 radians);
f32 tan(f32 radians);
f32 asin(f32 x);
f32 acos(f32 x);
f32 atan(f32 x);
f32 atan2(f32 y, f32 x);
f32 radians(f32 degrees);
f32 degrees(f32 radians);
// Hyperbolic
f32 sinh(f32 x);
f32 cosh(f32 x);
f32 tanh(f32 x);
f32 asinh(f32 x);
f32 acosh(f32 x);
f32 atanh(f32 x);
// Rounding
f32 ceil(f32 x);
f32 floor(f32 x);
f32 mod(f32 x, f32 y);
f32 truncate(f32 x);
f32 round(f32 x);
s32 sign(s32 x);
s64 sign(s64 x);
f32 sign(f32 x);
// Other
f32 abs(f32 x);
s8 abs( s8 x);
s16 abs(s16 x);
s32 abs(s32 x);
s64 abs(s64 x);
s32 min(s32 a, s32 b);
s64 min(s64 a, s64 b);
f32 min(f32 a, f32 b);
s32 max(s32 a, s32 b);
s64 max(s64 a, s64 b);
f32 max(f32 a, f32 b);
s32 clamp(s32 x, s32 min, s32 max);
s64 clamp(s64 x, s64 min, s64 max);
f32 clamp(f32 x, f32 min, f32 max);
f32 lerp(f32 x, f32 y, f32 t);
// Vector2 functions
f32 dot(const Vector2& a, const Vector2& b);
f32 cross(const Vector2& a, const Vector2& b);
f32 magnitude(const Vector2& a);
Vector2 normalize(const Vector2& a);
Vector2 hadamard_product(const Vector2& a, const Vector2& b);
// Vector3 functions
f32 dot(const Vector3& a, const Vector3& b);
Vector3 cross(const Vector3& a, const Vector3& b);
f32 magnitude(const Vector3& a);
Vector3 normalize(const Vector3& a);
Vector3 hadamard_product(const Vector3& a, const Vector3& b);
// Vector4 functions
f32 dot(const Vector4& a, const Vector4& b);
f32 magnitude(const Vector4& a);
Vector4 normalize(const Vector4& a);
Vector4 hadamard_product(const Vector4& a, const Vector4& b);
// Quaternion functions
f32 dot(const Quaternion& a, const Quaternion& b);
Quaternion cross(const Quaternion& a, const Quaternion& b);
f32 magnitude(const Quaternion& a);
Quaternion normalize(const Quaternion& a);
Quaternion conjugate(const Quaternion& a);
Quaternion inverse(const Quaternion& a);
f32 quaternion_angle(const Quaternion& a);
Vector3 quaternion_axis(const Quaternion& a);
Quaternion axis_angle(const Vector3& axis, f32 radians);
f32 quaternion_roll(const Quaternion& a);
f32 quaternion_pitch(const Quaternion& a);
f32 quaternion_yaw(const Quaternion& a);
Euler_Angles quaternion_to_euler_angles(const Quaternion& a);
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
const Vector3& x_axis = {1, 0, 0},
const Vector3& y_axis = {0, 1, 0},
const Vector3& z_axis = {0, 0, 1});
// Spherical Linear Interpolation
Quaternion slerp(const Quaternion& x, const Quaternion& y, f32 t);
// Shoemake's Quaternion Curves
// Sqherical Cubic Interpolation
inline Quaternion squad(const Quaternion& p,
const Quaternion& a,
const Quaternion& b,
const Quaternion& q,
f32 t);
// Matrix4 functions
Matrix4 transpose(const Matrix4& m);
f32 determinant(const Matrix4& m);
Matrix4 inverse(const Matrix4& m);
Matrix4 hadamard_product(const Matrix4& a, const Matrix4&b);
Matrix4 quaternion_to_matrix4(const Quaternion& a);
Quaternion matrix4_to_quaternion(const Matrix4& m);
Matrix4 translate(const Vector3& v);
Matrix4 rotate(const Vector3& v, f32 radians);
Matrix4 scale(const Vector3& v);
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top);
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far);
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far);
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near);
Matrix4
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
Quaternion
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
// Transform Functions
Vector3 transform_point(const Transform& transform, const Vector3& point);
Transform inverse(const Transform& t);
Matrix4 transform_to_matrix4(const Transform& t);
} // namespace math
#if 0
#ifdef GB_OPENGL_TOOLS
enum class Shader_Type
{
VERTEX,
FRAGMENT,
};
struct Shader_Program
{
#define GB_MAX_UNIFORM_COUNT 32
u32 handle;
b32 is_linked;
Allocator* allocator;
const char* base_directory;
u32 uniform_count;
const char* uniform_names[GB_MAX_UNIFORM_COUNT];
s32 uniform_locations[GB_MAX_UNIFORM_COUNT];
};
Shader_Program make_shader_program(gb::Allocator& allocator);
void destroy_shader_program(Shader_Program* program);
b32 attach_shader_from_file(Shader_Program* program, Shader_Type type, const char* filename);
b32 attach_shader_from_memory(Shader_Program* program, Shader_Type type, const char* source, usize len);
void use_shader_program(const Shader_Program* program);
b32 is_shader_program_in_use(const Shader_Program* program);
void stop_using_shader_program(const Shader_Program* program);
b32 link_shader_program(Shader_Program* program);
void bind_attrib_location(Shader_Program* program, const char* name);
s32 get_uniform_location(Shader_Program* program, const char* name);
#endif // GB_OPENGL_TOOLS
#endif
} // namespace gb
#endif // GB_INCLUDE_GB_HPP
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
/// It's a long way to Tipperary
///
///
///
///
///
////////////////////////////////
/// Implemenation ///
////////////////////////////////
#ifdef GB_IMPLEMENTATION
namespace gb
{
////////////////////////////////
/// Memory ///
////////////////////////////////
Mutex::Mutex()
{
#ifdef GB_SYSTEM_WINDOWS
win32_mutex = CreateMutex(0, 0, 0);
#else
pthread_mutex_init(&posix_mutex, nullptr);
#endif
}
Mutex::~Mutex()
{
#ifdef GB_SYSTEM_WINDOWS
CloseHandle(win32_mutex);
#else
pthread_mutex_destroy(&posix_mutex);
#endif
}
void lock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
WaitForSingleObject(mutex.win32_mutex, INFINITE);
#else
pthread_mutex_lock(&mutex.posix_mutex);
#endif
}
bool try_lock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
return WaitForSingleObject(mutex.win32_mutex, 0) == WAIT_OBJECT_0;
#else
return pthread_mutex_trylock(&mutex.posix_mutex) == 0;
#endif
}
void unlock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
ReleaseMutex(mutex.win32_mutex);
#else
pthread_mutex_unlock(&mutex.posix_mutex);
#endif
}
Heap_Allocator::~Heap_Allocator()
{
GB_ASSERT(allocation_count == 0 && total_allocated() == 0,
"Heap Allocator: allocation count = %lld; total allocated = %lld",
allocation_count, total_allocated());
}
void*
Heap_Allocator::alloc(usize size, usize align)
{
lock_mutex(mutex);
defer(unlock_mutex(mutex));
const usize total = size + align + sizeof(Header);
Header* h = (Header*)::malloc(total);
h->size = total;
void* data = align_forward(h + 1, align);
{ // Pad header
usize* ptr = (usize*)(h+1);
while (ptr != data)
*ptr++ = GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE;
}
total_allocated_count += total;
allocation_count++;
return data;
}
void
Heap_Allocator::dealloc(void* ptr)
{
if (!ptr)
return;
lock_mutex(mutex);
defer(unlock_mutex(mutex));
Header* h = get_header_ptr(ptr);
total_allocated_count -= h->size;
allocation_count--;
::free(h);
}
s64
Heap_Allocator::allocated_size(const void* ptr)
{
lock_mutex(mutex);
defer(unlock_mutex(mutex));
return get_header_ptr(ptr)->size;
}
s64
Heap_Allocator::total_allocated()
{
return total_allocated_count;
}
Heap_Allocator::Header*
Heap_Allocator::get_header_ptr(const void* ptr)
{
const usize* data = (usize*)ptr;
data--;
while (*data == GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE)
data--;
return (Heap_Allocator::Header*)data;
}
Arena_Allocator::Arena_Allocator(void* base, usize base_size)
: base((u8*)base)
, base_size((s64)base_size)
, temp_count(0)
, total_allocated_count(0)
{
}
void* Arena_Allocator::alloc(usize size_init, usize align)
{
usize size = size_init;
usize alignment_offset = get_alignment_offset(align);
size += alignment_offset;
GB_ASSERT(size >= size_init);
GB_ASSERT(total_allocated_count + size <= (usize)base_size);
void* ptr = base + total_allocated_count + alignment_offset;
total_allocated_count += size;
return ptr;
}
void Arena_Allocator::dealloc(void*) {}
s64 Arena_Allocator::allocated_size(const void*)
{
return -1;
}
s64 Arena_Allocator::total_allocated()
{
return total_allocated_count;
}
usize Arena_Allocator::get_alignment_offset(usize align)
{
usize offset = 0;
usize result_pointer = (usize)((uintptr)base + total_allocated_count);
usize alignment_mask = align - 1;
if (result_pointer & alignment_mask)
offset = align - (result_pointer & alignment_mask);
return offset;
}
usize Arena_Allocator::get_remaining_space(usize align)
{
return base_size - (total_allocated_count + get_alignment_offset(align));
}
void Arena_Allocator::check()
{
GB_ASSERT(temp_count == 0);
}
////////////////////////////////
/// String ///
////////////////////////////////
String make_string(Allocator& a, const char* str)
{
return make_string(a, str, (String_Size)strlen(str));
}
String make_string(Allocator& a, const void* init_str, String_Size len)
{
usize header_size = sizeof(String_Header);
void* ptr = alloc(a, header_size + len + 1);
if (!init_str)
memset(ptr, 0, header_size + len + 1);
if (ptr == nullptr)
return nullptr;
String str = (char*)ptr + header_size;
String_Header* header = string_header(str);
header->allocator = &a;
header->len = len;
header->cap = len;
if (len && init_str)
memcpy(str, init_str, len);
str[len] = '\0';
return str;
}
void free_string(String& str)
{
if (str == nullptr)
return;
String_Header* h = string_header(str);
Allocator* a = h->allocator;
if (a) dealloc(*a, h);
str = nullptr;
}
String duplicate_string(Allocator& a, const String str)
{
return make_string(a, str, string_length(str));
}
String_Size string_length(const String str)
{
return string_header(str)->len;
}
String_Size string_capacity(const String str)
{
return string_header(str)->cap;
}
String_Size string_available_space(const String str)
{
String_Header* h = string_header(str);
if (h->cap > h->len)
return h->cap - h->len;
return 0;
}
void clear_string(String str)
{
string_header(str)->len = 0;
str[0] = '\0';
}
void append_string(String& str, const String other)
{
append_string(str, (const void*)other, string_length(other));
}
void append_cstring(String& str, const char* other)
{
append_string(str, (const void*)other, (String_Size)strlen(other));
}
void append_string(String& str, const void* other, String_Size other_len)
{
String_Size curr_len = string_length(str);
string_make_space_for(str, other_len);
if (str == nullptr)
return;
memcpy(str + curr_len, other, other_len);
str[curr_len + other_len] = '\0';
string_header(str)->len = curr_len + other_len;
}
namespace impl
{
// NOTE(bill): ptr _must_ be allocated with Allocator& a
internal inline void*
string_realloc(Allocator& a, void* ptr, usize old_size, usize new_size)
{
if (!ptr)
return alloc(a, new_size);
if (new_size < old_size)
new_size = old_size;
if (old_size == new_size)
return ptr;
void* new_ptr = alloc(a, new_size);
if (!new_ptr)
return nullptr;
memcpy(new_ptr, ptr, old_size);
dealloc(a, ptr);
return new_ptr;
}
} // namespace impl
void string_make_space_for(String& str, String_Size add_len)
{
String_Size len = string_length(str);
String_Size new_len = len + add_len;
String_Size available = string_available_space(str);
if (available >= add_len) // Return if there is enough space left
return;
void* ptr = (String_Header*)str - 1;
usize old_size = sizeof(String_Header) + string_length(str) + 1;
usize new_size = sizeof(String_Header) + new_len + 1;
Allocator* a = string_header(str)->allocator;
void* new_ptr = impl::string_realloc(*a, ptr, old_size, new_size);
if (new_ptr == nullptr)
return;
str = (char*)new_ptr + sizeof(String_Header);
string_header(str)->cap = new_len;
}
usize string_allocation_size(const String str)
{
String_Size cap = string_capacity(str);
return sizeof(String_Header) + cap;
}
bool strings_are_equal(const String lhs, const String rhs)
{
String_Size lhs_len = string_length(lhs);
String_Size rhs_len = string_length(rhs);
if (lhs_len != rhs_len)
return false;
for (String_Size i = 0; i < lhs_len; i++)
{
if (lhs[i] != rhs[i])
return false;
}
return true;
}
void trim_string(String& str, const char* cut_set)
{
char* start;
char* end;
char* start_pos;
char* end_pos;
start_pos = start = str;
end_pos = end = str + string_length(str) - 1;
while (start_pos <= end && strchr(cut_set, *start_pos))
start_pos++;
while (end_pos > start_pos && strchr(cut_set, *end_pos))
end_pos--;
String_Size len = (String_Size)((start_pos > end_pos) ? 0 : ((end_pos - start_pos)+1));
if (str != start_pos)
memmove(str, start_pos, len);
str[len] = '\0';
string_header(str)->len = len;
}
////////////////////////////////
/// Hash ///
////////////////////////////////
namespace hash
{
u32 adler32(const void* key, u32 num_bytes)
{
const u32 MOD_ADLER = 65521;
u32 a = 1;
u32 b = 0;
const u8* bytes = (const u8*)key;
for (u32 i = 0; i < num_bytes; i++)
{
a = (a + bytes[i]) % MOD_ADLER;
b = (b + a) % MOD_ADLER;
}
return (b << 16) | a;
}
global const u32 GB_CRC32_TABLE[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
global const u64 GB_CRC64_TABLE[256] = {
0x0000000000000000ull, 0x42F0E1EBA9EA3693ull, 0x85E1C3D753D46D26ull, 0xC711223CFA3E5BB5ull,
0x493366450E42ECDFull, 0x0BC387AEA7A8DA4Cull, 0xCCD2A5925D9681F9ull, 0x8E224479F47CB76Aull,
0x9266CC8A1C85D9BEull, 0xD0962D61B56FEF2Dull, 0x17870F5D4F51B498ull, 0x5577EEB6E6BB820Bull,
0xDB55AACF12C73561ull, 0x99A54B24BB2D03F2ull, 0x5EB4691841135847ull, 0x1C4488F3E8F96ED4ull,
0x663D78FF90E185EFull, 0x24CD9914390BB37Cull, 0xE3DCBB28C335E8C9ull, 0xA12C5AC36ADFDE5Aull,
0x2F0E1EBA9EA36930ull, 0x6DFEFF5137495FA3ull, 0xAAEFDD6DCD770416ull, 0xE81F3C86649D3285ull,
0xF45BB4758C645C51ull, 0xB6AB559E258E6AC2ull, 0x71BA77A2DFB03177ull, 0x334A9649765A07E4ull,
0xBD68D2308226B08Eull, 0xFF9833DB2BCC861Dull, 0x388911E7D1F2DDA8ull, 0x7A79F00C7818EB3Bull,
0xCC7AF1FF21C30BDEull, 0x8E8A101488293D4Dull, 0x499B3228721766F8ull, 0x0B6BD3C3DBFD506Bull,
0x854997BA2F81E701ull, 0xC7B97651866BD192ull, 0x00A8546D7C558A27ull, 0x4258B586D5BFBCB4ull,
0x5E1C3D753D46D260ull, 0x1CECDC9E94ACE4F3ull, 0xDBFDFEA26E92BF46ull, 0x990D1F49C77889D5ull,
0x172F5B3033043EBFull, 0x55DFBADB9AEE082Cull, 0x92CE98E760D05399ull, 0xD03E790CC93A650Aull,
0xAA478900B1228E31ull, 0xE8B768EB18C8B8A2ull, 0x2FA64AD7E2F6E317ull, 0x6D56AB3C4B1CD584ull,
0xE374EF45BF6062EEull, 0xA1840EAE168A547Dull, 0x66952C92ECB40FC8ull, 0x2465CD79455E395Bull,
0x3821458AADA7578Full, 0x7AD1A461044D611Cull, 0xBDC0865DFE733AA9ull, 0xFF3067B657990C3Aull,
0x711223CFA3E5BB50ull, 0x33E2C2240A0F8DC3ull, 0xF4F3E018F031D676ull, 0xB60301F359DBE0E5ull,
0xDA050215EA6C212Full, 0x98F5E3FE438617BCull, 0x5FE4C1C2B9B84C09ull, 0x1D14202910527A9Aull,
0x93366450E42ECDF0ull, 0xD1C685BB4DC4FB63ull, 0x16D7A787B7FAA0D6ull, 0x5427466C1E109645ull,
0x4863CE9FF6E9F891ull, 0x0A932F745F03CE02ull, 0xCD820D48A53D95B7ull, 0x8F72ECA30CD7A324ull,
0x0150A8DAF8AB144Eull, 0x43A04931514122DDull, 0x84B16B0DAB7F7968ull, 0xC6418AE602954FFBull,
0xBC387AEA7A8DA4C0ull, 0xFEC89B01D3679253ull, 0x39D9B93D2959C9E6ull, 0x7B2958D680B3FF75ull,
0xF50B1CAF74CF481Full, 0xB7FBFD44DD257E8Cull, 0x70EADF78271B2539ull, 0x321A3E938EF113AAull,
0x2E5EB66066087D7Eull, 0x6CAE578BCFE24BEDull, 0xABBF75B735DC1058ull, 0xE94F945C9C3626CBull,
0x676DD025684A91A1ull, 0x259D31CEC1A0A732ull, 0xE28C13F23B9EFC87ull, 0xA07CF2199274CA14ull,
0x167FF3EACBAF2AF1ull, 0x548F120162451C62ull, 0x939E303D987B47D7ull, 0xD16ED1D631917144ull,
0x5F4C95AFC5EDC62Eull, 0x1DBC74446C07F0BDull, 0xDAAD56789639AB08ull, 0x985DB7933FD39D9Bull,
0x84193F60D72AF34Full, 0xC6E9DE8B7EC0C5DCull, 0x01F8FCB784FE9E69ull, 0x43081D5C2D14A8FAull,
0xCD2A5925D9681F90ull, 0x8FDAB8CE70822903ull, 0x48CB9AF28ABC72B6ull, 0x0A3B7B1923564425ull,
0x70428B155B4EAF1Eull, 0x32B26AFEF2A4998Dull, 0xF5A348C2089AC238ull, 0xB753A929A170F4ABull,
0x3971ED50550C43C1ull, 0x7B810CBBFCE67552ull, 0xBC902E8706D82EE7ull, 0xFE60CF6CAF321874ull,
0xE224479F47CB76A0ull, 0xA0D4A674EE214033ull, 0x67C58448141F1B86ull, 0x253565A3BDF52D15ull,
0xAB1721DA49899A7Full, 0xE9E7C031E063ACECull, 0x2EF6E20D1A5DF759ull, 0x6C0603E6B3B7C1CAull,
0xF6FAE5C07D3274CDull, 0xB40A042BD4D8425Eull, 0x731B26172EE619EBull, 0x31EBC7FC870C2F78ull,
0xBFC9838573709812ull, 0xFD39626EDA9AAE81ull, 0x3A28405220A4F534ull, 0x78D8A1B9894EC3A7ull,
0x649C294A61B7AD73ull, 0x266CC8A1C85D9BE0ull, 0xE17DEA9D3263C055ull, 0xA38D0B769B89F6C6ull,
0x2DAF4F0F6FF541ACull, 0x6F5FAEE4C61F773Full, 0xA84E8CD83C212C8Aull, 0xEABE6D3395CB1A19ull,
0x90C79D3FEDD3F122ull, 0xD2377CD44439C7B1ull, 0x15265EE8BE079C04ull, 0x57D6BF0317EDAA97ull,
0xD9F4FB7AE3911DFDull, 0x9B041A914A7B2B6Eull, 0x5C1538ADB04570DBull, 0x1EE5D94619AF4648ull,
0x02A151B5F156289Cull, 0x4051B05E58BC1E0Full, 0x87409262A28245BAull, 0xC5B073890B687329ull,
0x4B9237F0FF14C443ull, 0x0962D61B56FEF2D0ull, 0xCE73F427ACC0A965ull, 0x8C8315CC052A9FF6ull,
0x3A80143F5CF17F13ull, 0x7870F5D4F51B4980ull, 0xBF61D7E80F251235ull, 0xFD913603A6CF24A6ull,
0x73B3727A52B393CCull, 0x31439391FB59A55Full, 0xF652B1AD0167FEEAull, 0xB4A25046A88DC879ull,
0xA8E6D8B54074A6ADull, 0xEA16395EE99E903Eull, 0x2D071B6213A0CB8Bull, 0x6FF7FA89BA4AFD18ull,
0xE1D5BEF04E364A72ull, 0xA3255F1BE7DC7CE1ull, 0x64347D271DE22754ull, 0x26C49CCCB40811C7ull,
0x5CBD6CC0CC10FAFCull, 0x1E4D8D2B65FACC6Full, 0xD95CAF179FC497DAull, 0x9BAC4EFC362EA149ull,
0x158E0A85C2521623ull, 0x577EEB6E6BB820B0ull, 0x906FC95291867B05ull, 0xD29F28B9386C4D96ull,
0xCEDBA04AD0952342ull, 0x8C2B41A1797F15D1ull, 0x4B3A639D83414E64ull, 0x09CA82762AAB78F7ull,
0x87E8C60FDED7CF9Dull, 0xC51827E4773DF90Eull, 0x020905D88D03A2BBull, 0x40F9E43324E99428ull,
0x2CFFE7D5975E55E2ull, 0x6E0F063E3EB46371ull, 0xA91E2402C48A38C4ull, 0xEBEEC5E96D600E57ull,
0x65CC8190991CB93Dull, 0x273C607B30F68FAEull, 0xE02D4247CAC8D41Bull, 0xA2DDA3AC6322E288ull,
0xBE992B5F8BDB8C5Cull, 0xFC69CAB42231BACFull, 0x3B78E888D80FE17Aull, 0x7988096371E5D7E9ull,
0xF7AA4D1A85996083ull, 0xB55AACF12C735610ull, 0x724B8ECDD64D0DA5ull, 0x30BB6F267FA73B36ull,
0x4AC29F2A07BFD00Dull, 0x08327EC1AE55E69Eull, 0xCF235CFD546BBD2Bull, 0x8DD3BD16FD818BB8ull,
0x03F1F96F09FD3CD2ull, 0x41011884A0170A41ull, 0x86103AB85A2951F4ull, 0xC4E0DB53F3C36767ull,
0xD8A453A01B3A09B3ull, 0x9A54B24BB2D03F20ull, 0x5D45907748EE6495ull, 0x1FB5719CE1045206ull,
0x919735E51578E56Cull, 0xD367D40EBC92D3FFull, 0x1476F63246AC884Aull, 0x568617D9EF46BED9ull,
0xE085162AB69D5E3Cull, 0xA275F7C11F7768AFull, 0x6564D5FDE549331Aull, 0x279434164CA30589ull,
0xA9B6706FB8DFB2E3ull, 0xEB46918411358470ull, 0x2C57B3B8EB0BDFC5ull, 0x6EA7525342E1E956ull,
0x72E3DAA0AA188782ull, 0x30133B4B03F2B111ull, 0xF7021977F9CCEAA4ull, 0xB5F2F89C5026DC37ull,
0x3BD0BCE5A45A6B5Dull, 0x79205D0E0DB05DCEull, 0xBE317F32F78E067Bull, 0xFCC19ED95E6430E8ull,
0x86B86ED5267CDBD3ull, 0xC4488F3E8F96ED40ull, 0x0359AD0275A8B6F5ull, 0x41A94CE9DC428066ull,
0xCF8B0890283E370Cull, 0x8D7BE97B81D4019Full, 0x4A6ACB477BEA5A2Aull, 0x089A2AACD2006CB9ull,
0x14DEA25F3AF9026Dull, 0x562E43B4931334FEull, 0x913F6188692D6F4Bull, 0xD3CF8063C0C759D8ull,
0x5DEDC41A34BBEEB2ull, 0x1F1D25F19D51D821ull, 0xD80C07CD676F8394ull, 0x9AFCE626CE85B507ull,
};
u32 crc32(const void* key, u32 num_bytes)
{
u32 result = (u32)~0;
u8* c = (u8*)key;
for (u32 remaining = num_bytes; remaining--; c++)
result = (result >> 8) ^ (GB_CRC32_TABLE[(result ^ *c) & 0xff]);
return ~result;
}
u64 crc64(const void* key, usize num_bytes)
{
u64 result = (u64)~0;
u8* c = (u8*)key;
for (usize remaining = num_bytes; remaining--; c++)
result = (result >> 8) ^ (GB_CRC64_TABLE[(result ^ *c) & 0xff]);
return ~result;
}
// u32 fnv32(const void* key, usize num_bytes)
// {
// }
// u64 fnv64(const void* key, usize num_bytes)
// {
// }
// u32 fnv32a(const void* key, usize num_bytes)
// {
// }
// u64 fnv64a(const void* key, usize num_bytes)
// {
// }
u32 murmur32(const void* key, u32 num_bytes, u32 seed)
{
local_persist const u32 c1 = 0xcc9e2d51;
local_persist const u32 c2 = 0x1b873593;
local_persist const u32 r1 = 15;
local_persist const u32 r2 = 13;
local_persist const u32 m = 5;
local_persist const u32 n = 0xe6546b64;
u32 hash = seed;
const usize nblocks = num_bytes / 4;
const u32* blocks = (const u32*)key;
for (usize i = 0; i < nblocks; i++) {
u32 k = blocks[i];
k *= c1;
k = (k << r1) | (k >> (32 - r1));
k *= c2;
hash ^= k;
hash = ((hash << r2) | (hash >> (32 - r2))) * m + n;
}
const u8* tail = ((const u8*)key) + nblocks * 4;
u32 k1 = 0;
switch (num_bytes & 3) {
case 3:
k1 ^= tail[2] << 16;
case 2:
k1 ^= tail[1] << 8;
case 1:
k1 ^= tail[0];
k1 *= c1;
k1 = (k1 << r1) | (k1 >> (32 - r1));
k1 *= c2;
hash ^= k1;
}
hash ^= num_bytes;
hash ^= (hash >> 16);
hash *= 0x85ebca6b;
hash ^= (hash >> 13);
hash *= 0xc2b2ae35;
hash ^= (hash >> 16);
return hash;
}
#ifdef GB_ARCH_64_BIT
u64 murmur64(const void* key, usize num_bytes, u64 seed)
{
local_persist const u64 m = 0xc6a4a7935bd1e995ULL;
local_persist const s32 r = 47;
u64 h = seed ^ (num_bytes * m);
const u64* data = (const u64*)key;
const u64* end = data + (num_bytes / 8);
while (data != end)
{
u64 k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
const u8* data2 = (const u8*)data;
switch (num_bytes & 7)
{
case 7: h ^= u64{data2[6]} << 48;
case 6: h ^= u64{data2[5]} << 40;
case 5: h ^= u64{data2[4]} << 32;
case 4: h ^= u64{data2[3]} << 24;
case 3: h ^= u64{data2[2]} << 16;
case 2: h ^= u64{data2[1]} << 8;
case 1: h ^= u64{data2[0]};
h *= m;
};
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
#elif GB_ARCH_32_BIT
u64 murmur64(const void* key, usize num_bytes, u64 seed)
{
local_persist const u32 m = 0x5bd1e995;
local_persist const s32 r = 24;
u32 h1 = u32(seed) ^ num_bytes;
u32 h2 = u32(seed >> 32);
const u32* data = (const u32*)key;
while (num_bytes >= 8)
{
u32 k1 = *data++;
k1 *= m;
k1 ^= k1 >> r;
k1 *= m;
h1 *= m;
h1 ^= k1;
num_bytes -= 4;
u32 k2 = *data++;
k2 *= m;
k2 ^= k2 >> r;
k2 *= m;
h2 *= m;
h2 ^= k2;
num_bytes -= 4;
}
if (num_bytes >= 4)
{
u32 k1 = *data++;
k1 *= m;
k1 ^= k1 >> r;
k1 *= m;
h1 *= m;
h1 ^= k1;
num_bytes -= 4;
}
switch (num_bytes)
{
case 3: h2 ^= ((u8*)data)[2] << 16;
case 2: h2 ^= ((u8*)data)[1] << 8;
case 1: h2 ^= ((u8*)data)[0];
h2 *= m;
};
h1 ^= h2 >> 18;
h1 *= m;
h2 ^= h1 >> 22;
h2 *= m;
h1 ^= h2 >> 17;
h1 *= m;
h2 ^= h1 >> 19;
h2 *= m;
u64 h = h1;
h = (h << 32) | h2;
return h;
}
#else
#error murmur64 function not supported on this architecture
#endif
} // namespace hash
////////////////////////////////
/// Time ///
////////////////////////////////
#ifdef GB_SYSTEM_WINDOWS
internal LARGE_INTEGER
win32_get_frequency()
{
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
return f;
}
Time time_now()
{
// NOTE(bill): std::chrono does not have a good enough precision in MSVC12
// and below. This may have been fixed in MSVC14 but unsure as of yet.
// Force the following code to run on first core
// NOTE(bill): See
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
HANDLE currentThread = GetCurrentThread();
DWORD_PTR previousMask = SetThreadAffinityMask(currentThread, 1);
// Get the frequency of the performance counter
// It is constant across the program's lifetime
internal LARGE_INTEGER s_frequency = win32_get_frequency();
// Get the current time
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
// Restore the thread affinity
SetThreadAffinityMask(currentThread, previousMask);
return microseconds(1000000ll * t.QuadPart / s_frequency.QuadPart);
}
void time_sleep(Time t)
{
if (t.microseconds <= 0)
return;
// Get the supported timer resolutions on this system
TIMECAPS tc;
timeGetDevCaps(&tc, sizeof(TIMECAPS));
// Set the timer resolution to the minimum for the Sleep call
timeBeginPeriod(tc.wPeriodMin);
// Wait...
::Sleep(time_as_milliseconds(t));
// Reset the timer resolution back to the system default
timeBeginPeriod(tc.wPeriodMin);
}
#else
Time time_now()
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
return milliseconds((spec.tv_sec * 1000000ll) + (spec.tv_nsec * 1000ll));
}
void time_sleep(Time t)
{
if (t.microseconds <= 0)
return;
struct timespec spec = {};
spec.tv_sec = static_cast<s64>(time_as_seconds(t));
spec.tv_nsec = 1000ll * (time_as_microseconds(t) % 1000000ll);
nanosleep(&spec, nullptr);
}
#endif
Time seconds(f32 s) { return {(s64)(s * 1000000ll)}; }
Time milliseconds(s32 ms) { return {(s64)(ms * 1000l)}; }
Time microseconds(s64 us) { return {us}; }
f32 time_as_seconds(Time t) { return (f32)(t.microseconds / 1000000.0f); }
s32 time_as_milliseconds(Time t) { return (s32)(t.microseconds / 1000l); }
s64 time_as_microseconds(Time t) { return t.microseconds; }
bool operator==(Time left, Time right)
{
return left.microseconds == right.microseconds;
}
bool operator!=(Time left, Time right)
{
return !operator==(left, right);
}
bool operator<(Time left, Time right)
{
return left.microseconds < right.microseconds;
}
bool operator>(Time left, Time right)
{
return left.microseconds > right.microseconds;
}
bool operator<=(Time left, Time right)
{
return left.microseconds <= right.microseconds;
}
bool operator>=(Time left, Time right)
{
return left.microseconds >= right.microseconds;
}
Time operator-(Time right)
{
return {-right.microseconds};
}
Time operator+(Time left, Time right)
{
return {left.microseconds + right.microseconds};
}
Time operator-(Time left, Time right)
{
return {left.microseconds - right.microseconds};
}
Time& operator+=(Time& left, Time right)
{
return (left = left + right);
}
Time& operator-=(Time& left, Time right)
{
return (left = left - right);
}
Time operator*(Time left, f32 right)
{
return seconds(time_as_seconds(left) * right);
}
Time operator*(Time left, s64 right)
{
return microseconds(time_as_microseconds(left) * right);
}
Time operator*(f32 left, Time right)
{
return seconds(time_as_seconds(right) * left);
}
Time operator*(s64 left, Time right)
{
return microseconds(time_as_microseconds(right) * left);
}
Time& operator*=(Time& left, f32 right)
{
return (left = left * right);
}
Time& operator*=(Time& left, s64 right)
{
return (left = left * right);
}
Time operator/(Time left, f32 right)
{
return seconds(time_as_seconds(left) / right);
}
Time operator/(Time left, s64 right)
{
return microseconds(time_as_microseconds(left) / right);
}
Time& operator/=(Time& left, f32 right)
{
return (left = left / right);
}
Time& operator/=(Time& left, s64 right)
{
return (left = left / right);
}
f32 operator/(Time left, Time right)
{
return time_as_seconds(left) / time_as_seconds(right);
}
Time operator%(Time left, Time right)
{
return microseconds(time_as_microseconds(left) % time_as_microseconds(right));
}
Time& operator%=(Time& left, Time right)
{
return (left = left % right);
}
////////////////////////////////
/// Math ///
////////////////////////////////
const Vector2 VECTOR2_ZERO = {0, 0};
const Vector3 VECTOR3_ZERO = {0, 0, 0};
const Vector4 VECTOR4_ZERO = {0, 0, 0, 0};
const Quaternion QUATERNION_IDENTITY = {0, 0, 0, 1};
const Matrix4 MATRIX4_IDENTITY = {1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1};
////////////////////////////////
/// Math Type Op Overloads ///
////////////////////////////////
// Vector2 Operators
bool operator==(const Vector2& a, const Vector2& b)
{
return (a.x == b.x) && (a.y == b.y);
}
bool operator!=(const Vector2& a, const Vector2& b)
{
return !operator==(a, b);
}
Vector2 operator-(const Vector2& a)
{
return {-a.x, -a.y};
}
Vector2 operator+(const Vector2& a, const Vector2& b)
{
return {a.x + b.x, a.y + b.y};
}
Vector2 operator-(const Vector2& a, const Vector2& b)
{
return {a.x - b.x, a.y - b.y};
}
Vector2 operator*(const Vector2& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar};
}
Vector2 operator*(f32 scalar, const Vector2& a)
{
return {a.x * scalar, a.y * scalar};
}
Vector2 operator/(const Vector2& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar};
}
Vector2 operator*(const Vector2& a, const Vector2& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y};
}
Vector2 operator/(const Vector2& a, const Vector2& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y};
}
Vector2& operator+=(Vector2& a, const Vector2& b)
{
a.x += b.x;
a.y += b.y;
return a;
}
Vector2& operator-=(Vector2& a, const Vector2& b)
{
a.x -= b.x;
a.y -= b.y;
return a;
}
Vector2& operator*=(Vector2& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
return a;
}
Vector2& operator/=(Vector2& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
return a;
}
// Vector3 Operators
bool operator==(const Vector3& a, const Vector3& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z);
}
bool operator!=(const Vector3& a, const Vector3& b)
{
return !operator==(a, b);
}
Vector3 operator-(const Vector3& a)
{
return {-a.x, -a.y, -a.z};
}
Vector3 operator+(const Vector3& a, const Vector3& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z};
}
Vector3 operator-(const Vector3& a, const Vector3& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z};
}
Vector3 operator*(const Vector3& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar, a.z * scalar};
}
Vector3 operator*(f32 scalar, const Vector3& a)
{
return {a.x * scalar, a.y * scalar, a.z * scalar};
}
Vector3 operator/(const Vector3& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar, a.z / scalar};
}
Vector3 operator*(const Vector3& a, const Vector3& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
Vector3 operator/(const Vector3& a, const Vector3& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y, a.z / b.z};
}
Vector3& operator+=(Vector3& a, const Vector3& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
return a;
}
Vector3& operator-=(Vector3& a, const Vector3& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
return a;
}
Vector3& operator*=(Vector3& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
a.z *= scalar;
return a;
}
Vector3& operator/=(Vector3& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
a.z /= scalar;
return a;
}
// Vector4 Operators
bool operator==(const Vector4& a, const Vector4& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
}
bool operator!=(const Vector4& a, const Vector4& b)
{
return !operator==(a, b);
}
Vector4 operator-(const Vector4& a)
{
return {-a.x, -a.y, -a.z, -a.w};
}
Vector4 operator+(const Vector4& a, const Vector4& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}
Vector4 operator-(const Vector4& a, const Vector4& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
}
Vector4 operator*(const Vector4& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
}
Vector4 operator*(f32 scalar, const Vector4& a)
{
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
}
Vector4 operator/(const Vector4& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar, a.z / scalar, a.w / scalar};
}
Vector4 operator*(const Vector4& a, const Vector4& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
}
Vector4 operator/(const Vector4& a, const Vector4& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w};
}
Vector4& operator+=(Vector4& a, const Vector4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
Vector4& operator-=(Vector4& a, const Vector4& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
a.w -= b.w;
return a;
}
Vector4& operator*=(Vector4& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
a.z *= scalar;
a.w *= scalar;
return a;
}
Vector4& operator/=(Vector4& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
a.z /= scalar;
a.w /= scalar;
return a;
}
// Quaternion Operators
bool operator==(const Quaternion& a, const Quaternion& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
}
bool operator!=(const Quaternion& a, const Quaternion& b)
{
return !operator==(a, b);
}
Quaternion operator-(const Quaternion& a)
{
return {-a.x, -a.y, -a.z, -a.w};
}
Quaternion operator+(const Quaternion& a, const Quaternion& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}
Quaternion operator-(const Quaternion& a, const Quaternion& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
}
Quaternion operator*(const Quaternion& a, const Quaternion& b)
{
Quaternion q = {};
q.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
q.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x;
q.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w;
q.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
return q;
}
Quaternion operator*(const Quaternion& a, f32 s)
{
return {a.x * s, a.y * s, a.z * s, a.w * s};
}
Quaternion operator*(f32 s, const Quaternion& a)
{
return {a.x * s, a.y * s, a.z * s, a.w * s};
}
Quaternion operator/(const Quaternion& a, f32 s)
{
return {a.x / s, a.y / s, a.z / s, a.w / s};
}
Vector3 operator*(const Quaternion& a, const Vector3& v) // Rotate v by q
{
// return (q * Quaternion{v.x, v.y, v.z, 0} * math::conjugate(q)).xyz; // More Expensive
const Vector3 t = 2.0f * math::cross(a.xyz, v);
return (v + a.w * t + math::cross(a.xyz, t));
}
// Matrix4 Operators
bool operator==(const Matrix4& a, const Matrix4& b)
{
for (usize i = 0; i < 4; i++)
{
if (a[i] != b[i])
return false;
}
return true;
}
bool operator!=(const Matrix4& a, const Matrix4& b)
{
return !operator==(a, b);
}
Matrix4 operator+(const Matrix4& a, const Matrix4& b)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] + b[i];
return mat;
}
Matrix4 operator-(const Matrix4& a, const Matrix4& b)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] - b[i];
return mat;
}
Matrix4 operator*(const Matrix4& a, const Matrix4& b)
{
Matrix4 result;
result[0] = a[0] * b[0][0] + a[1] * b[0][1] + a[2] * b[0][2] + a[3] * b[0][3];
result[1] = a[0] * b[1][0] + a[1] * b[1][1] + a[2] * b[1][2] + a[3] * b[1][3];
result[2] = a[0] * b[2][0] + a[1] * b[2][1] + a[2] * b[2][2] + a[3] * b[2][3];
result[3] = a[0] * b[3][0] + a[1] * b[3][1] + a[2] * b[3][2] + a[3] * b[3][3];
return result;
}
Vector4 operator*(const Matrix4& a, const Vector4& v)
{
Vector4 mul0 = a[0] * v[0];
Vector4 mul1 = a[1] * v[1];
Vector4 mul2 = a[2] * v[2];
Vector4 mul3 = a[3] * v[3];
Vector4 add0 = mul0 + mul1;
Vector4 add1 = mul2 + mul3;
return add0 + add1;
}
Matrix4 operator*(const Matrix4& a, f32 scalar)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] * scalar;
return mat;
}
Matrix4 operator*(f32 scalar, const Matrix4& a)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] * scalar;
return mat;
}
Matrix4 operator/(const Matrix4& a, f32 scalar)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] / scalar;
return mat;
}
Matrix4& operator+=(Matrix4& a, const Matrix4& b)
{
return (a = a + b);
}
Matrix4& operator-=(Matrix4& a, const Matrix4& b)
{
return (a = a - b);
}
Matrix4& operator*=(Matrix4& a, const Matrix4& b)
{
return (a = a * b);
}
// Transform Operators
// World = Parent * Local
Transform operator*(const Transform& ps, const Transform& ls)
{
Transform ws;
ws.position = ps.position + ps.orientation * (ps.scale * ls.position);
ws.orientation = ps.orientation * ls.orientation;
ws.scale = ps.scale * (ps.orientation * ls.scale);
return ws;
}
Transform& operator*=(Transform& ps, const Transform& ls)
{
return (ps = ps * ls);
}
// Local = World / Parent
Transform operator/(const Transform& ws, const Transform& ps)
{
Transform ls;
const Quaternion ps_conjugate = math::conjugate(ps.orientation);
ls.position = (ps_conjugate * (ws.position - ps.position)) / ps.scale;
ls.orientation = ps_conjugate * ws.orientation;
ls.scale = ps_conjugate * (ws.scale / ps.scale);
return ls;
}
Transform& operator/=(Transform& ws, const Transform& ps)
{
return (ws = ws / ps);
}
////////////////////////////////
/// Math Functions ///
////////////////////////////////
namespace math
{
const f32 EPSILON = FLT_EPSILON;
const f32 ZERO = 0.0f;
const f32 ONE = 1.0f;
const f32 THIRD = 0.33333333f;
const f32 TWO_THIRDS = 0.66666667f;
const f32 E = 2.718281828f;
const f32 PI = 3.141592654f;
const f32 TAU = 6.283185307f;
const f32 SQRT_2 = 1.414213562f;
const f32 SQRT_3 = 1.732050808f;
// Power
inline f32 sqrt(f32 x) { return ::sqrtf(x); }
inline f32 pow(f32 x, f32 y) { return (f32)::powf(x, y); }
inline f32 cbrt(f32 x) { return (f32)::cbrtf(x); }
inline f32 fast_inv_sqrt(f32 x)
{
const f32 three_halfs = 1.5f;
f32 x2 = x * 0.5f;
f32 y = x;
u32 i = *(u32*)&y; // Evil floating point bit level hacking
// i = 0x5f3759df - (i >> 1); // What the fuck? Old
i = 0x5f375a86 - (i >> 1); // What the fuck? Improved!
y = *(f32*)&i;
y = y * (three_halfs - (x2 * y * y)); // 1st iteration
// y = y * (three_halfs - (x2 * y * y)); // 2nd iteration, this can be removed
return y;
}
// Trigonometric
inline f32 sin(f32 radians) { return ::sinf(radians); }
inline f32 cos(f32 radians) { return ::cosf(radians); }
inline f32 tan(f32 radians) { return ::tanf(radians); }
inline f32 asin(f32 x) { return ::asinf(x); }
inline f32 acos(f32 x) { return ::acosf(x); }
inline f32 atan(f32 x) { return ::atanf(x); }
inline f32 atan2(f32 y, f32 x) { return ::atan2f(y, x); }
inline f32 radians(f32 degrees) { return TAU * degrees / 360.0f; }
inline f32 degrees(f32 radians) { return 360.0f * radians / TAU; }
// Hyperbolic
inline f32 sinh(f32 x) { return ::sinhf(x); }
inline f32 cosh(f32 x) { return ::coshf(x); }
inline f32 tanh(f32 x) { return ::tanhf(x); }
inline f32 asinh(f32 x) { return ::asinhf(x); }
inline f32 acosh(f32 x) { return ::acoshf(x); }
inline f32 atanh(f32 x) { return ::atanhf(x); }
// Rounding
inline f32 ceil(f32 x) { return ::ceilf(x); }
inline f32 floor(f32 x) { return ::floorf(x); }
inline f32 mod(f32 x, f32 y) { return ::fmodf(x, y); }
inline f32 truncate(f32 x) { return ::truncf(x); }
inline f32 round(f32 x) { return ::roundf(x); }
inline s32 sign(s32 x) { return x >= 0 ? +1 : -1; }
inline s64 sign(s64 x) { return x >= 0 ? +1 : -1; }
inline f32 sign(f32 x) { return x >= 0.0f ? +1.0f : -1.0f; }
// Other
inline f32 abs(f32 x)
{
u32 i = reinterpret_cast<const u32&>(x);
i &= 0x7FFFFFFFul;
return reinterpret_cast<const f32&>(i);
}
inline s8 abs(s8 x)
{
u8 i = reinterpret_cast<const u8&>(x);
i &= 0x7Fu;
return reinterpret_cast<const s8&>(i);
}
inline s16 abs(s16 x)
{
u16 i = reinterpret_cast<const u16&>(x);
i &= 0x7FFFu;
return reinterpret_cast<const s16&>(i);
}
inline s32 abs(s32 x)
{
u32 i = reinterpret_cast<const u32&>(x);
i &= 0x7FFFFFFFul;
return reinterpret_cast<const s32&>(i);
}
inline s64 abs(s64 x)
{
u64 i = reinterpret_cast<const u64&>(x);
i &= 0x7FFFFFFFFFFFFFFFull;
return reinterpret_cast<const s64&>(i);
}
inline s32 min(s32 a, s32 b) { return a < b ? a : b; }
inline s64 min(s64 a, s64 b) { return a < b ? a : b; }
inline f32 min(f32 a, f32 b) { return a < b ? a : b; }
inline s32 max(s32 a, s32 b) { return a > b ? a : b; }
inline s64 max(s64 a, s64 b) { return a > b ? a : b; }
inline f32 max(f32 a, f32 b) { return a > b ? a : b; }
inline s32 clamp(s32 x, s32 min, s32 max)
{
if (x < min)
return min;
if (x > max)
return max;
return x;
}
inline s64 clamp(s64 x, s64 min, s64 max)
{
if (x < min)
return min;
if (x > max)
return max;
return x;
}
inline f32 clamp(f32 x, f32 min, f32 max)
{
if (x < min)
return min;
if (x > max)
return max;
return x;
}
inline f32 lerp(f32 x, f32 y, f32 t)
{
return x + (y-x)*t;
}
// Vector2 functions
f32 dot(const Vector2& a, const Vector2& b)
{
return a.x * b.x + a.y * b.y;
}
f32 cross(const Vector2& a, const Vector2& b)
{
return a.x * b.y - a.y * b.x;
}
f32 magnitude(const Vector2& a)
{
return math::sqrt(math::dot(a, a));
}
Vector2 normalize(const Vector2& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector2 hadamard_product(const Vector2& a, const Vector2& b)
{
return {a.x * b.x, a.y * b.y};
}
// Vector3 functions
f32 dot(const Vector3& a, const Vector3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
Vector3 cross(const Vector3& a, const Vector3& b)
{
return {
a.y * b.z - b.y * a.z, // x
a.z * b.x - b.z * a.x, // y
a.x * b.y - b.x * a.y // z
};
}
f32 magnitude(const Vector3& a)
{
return math::sqrt(math::dot(a, a));
}
Vector3 normalize(const Vector3& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector3 hadamard_product(const Vector3& a, const Vector3& b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
// Vector4 functions
f32 dot(const Vector4& a, const Vector4& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
f32 magnitude(const Vector4& a)
{
return math::sqrt(math::dot(a, a));
}
Vector4 normalize(const Vector4& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector4 hadamard_product(const Vector4& a, const Vector4& b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
}
// Quaternion functions
f32 dot(const Quaternion& a, const Quaternion& b)
{
return math::dot(a.xyz, b.xyz) + a.w*b.w;
}
Quaternion cross(const Quaternion& a, const Quaternion& b)
{
return {a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z,
a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x,
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z};
}
f32 magnitude(const Quaternion& a)
{
return math::sqrt(math::dot(a, a));
}
Quaternion normalize(const Quaternion& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Quaternion conjugate(const Quaternion& a)
{
return {-a.x, -a.y, -a.z, a.w};
}
Quaternion inverse(const Quaternion& a)
{
f32 m = 1.0f / dot(a, a);
return math::conjugate(a) * m;
}
f32 quaternion_angle(const Quaternion& a)
{
return 2.0f * math::acos(a.w);
}
Vector3 quaternion_axis(const Quaternion& a)
{
f32 s2 = 1.0f - a.w * a.w;
if (s2 <= 0.0f)
return {0, 0, 1};
f32 invs2 = 1.0f / math::sqrt(s2);
return a.xyz * invs2;
}
Quaternion axis_angle(const Vector3& axis, f32 radians)
{
Vector3 a = math::normalize(axis);
f32 s = math::sin(0.5f * radians);
Quaternion q;
q.xyz = a * s;
q.w = math::cos(0.5f * radians);
return q;
}
f32 quaternion_roll(const Quaternion& a)
{
return math::atan2(2.0f * a.x * a.y + a.z * a.w,
a.x * a.x + a.w * a.w - a.y * a.y - a.z * a.z);
}
f32 quaternion_pitch(const Quaternion& a)
{
return math::atan2(2.0f * a.y * a.z + a.w * a.x,
a.w * a.w - a.x * a.x - a.y * a.y + a.z * a.z);
}
f32 quaternion_yaw(const Quaternion& a)
{
return math::asin(-2.0f * (a.x * a.z - a.w * a.y));
}
Euler_Angles quaternion_to_euler_angles(const Quaternion& a)
{
return {quaternion_pitch(a), quaternion_yaw(a), quaternion_roll(a)};
}
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
const Vector3& x_axis,
const Vector3& y_axis,
const Vector3& z_axis)
{
Quaternion p = axis_angle(x_axis, e.pitch);
Quaternion y = axis_angle(y_axis, e.yaw);
Quaternion r = axis_angle(z_axis, e.roll);
return y * p * r;
}
// Spherical Linear Interpolation
Quaternion slerp(const Quaternion& x, const Quaternion& y, f32 t)
{
Quaternion z = y;
f32 cos_theta = dot(x, y);
if (cos_theta < 0.0f)
{
z = -y;
cos_theta = -cos_theta;
}
if (cos_theta > 1.0f)
{
return Quaternion{lerp(x.x, y.x, t),
lerp(x.y, y.y, t),
lerp(x.z, y.z, t),
lerp(x.w, y.w, t)};
}
f32 angle = math::acos(cos_theta);
Quaternion result = math::sin(1.0f - (t * angle)) * x + math::sin(t * angle) * z;
return result * (1.0f / math::sin(angle));
}
// Shoemake's Quaternion Curves
// Sqherical Cubic Interpolation
inline Quaternion squad(const Quaternion& p,
const Quaternion& a,
const Quaternion& b,
const Quaternion& q,
f32 t)
{
return slerp(slerp(p, q, t), slerp(a, b, t), 2.0f * t * (1.0f - t));
}
// Matrix4 functions
Matrix4 transpose(const Matrix4& m)
{
Matrix4 result;
for (usize i = 0; i < 4; i++)
{
for (usize j = 0; j < 4; j++)
result[i][j] = m[j][i];
}
return result;
}
f32 determinant(const Matrix4& m)
{
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = {coef00, coef00, coef02, coef03};
Vector4 fac1 = {coef04, coef04, coef06, coef07};
Vector4 fac2 = {coef08, coef08, coef10, coef11};
Vector4 fac3 = {coef12, coef12, coef14, coef15};
Vector4 fac4 = {coef16, coef16, coef18, coef19};
Vector4 fac5 = {coef20, coef20, coef22, coef23};
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
Vector4 signA = {+1, -1, +1, -1};
Vector4 signB = {-1, +1, -1, +1};
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
Vector4 dot0 = m[0] * row0;
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
return dot1;
}
Matrix4 inverse(const Matrix4& m)
{
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = {coef00, coef00, coef02, coef03};
Vector4 fac1 = {coef04, coef04, coef06, coef07};
Vector4 fac2 = {coef08, coef08, coef10, coef11};
Vector4 fac3 = {coef12, coef12, coef14, coef15};
Vector4 fac4 = {coef16, coef16, coef18, coef19};
Vector4 fac5 = {coef20, coef20, coef22, coef23};
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
Vector4 signA = {+1, -1, +1, -1};
Vector4 signB = {-1, +1, -1, +1};
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
Vector4 dot0 = m[0] * row0;
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
f32 oneOverDeterminant = 1.0f / dot1;
return inverse * oneOverDeterminant;
}
Matrix4 hadamard_product(const Matrix4& a, const Matrix4& b)
{
Matrix4 result;
for (usize i = 0; i < 4; i++)
result[i] = a[i] * b[i];
return result;
}
Matrix4 quaternion_to_matrix4(const Quaternion& q)
{
Matrix4 mat = MATRIX4_IDENTITY;
Quaternion a = math::normalize(q);
f32 xx = a.x * a.x;
f32 yy = a.y * a.y;
f32 zz = a.z * a.z;
f32 xy = a.x * a.y;
f32 xz = a.x * a.z;
f32 yz = a.y * a.z;
f32 wx = a.w * a.x;
f32 wy = a.w * a.y;
f32 wz = a.w * a.z;
mat[0][0] = 1.0f - 2.0f * (yy + zz);
mat[0][1] = 2.0f * (xy + wz);
mat[0][2] = 2.0f * (xz - wy);
mat[1][0] = 2.0f * (xy - wz);
mat[1][1] = 1.0f - 2.0f * (xx + zz);
mat[1][2] = 2.0f * (yz + wx);
mat[2][0] = 2.0f * (xz + wy);
mat[2][1] = 2.0f * (yz - wx);
mat[2][2] = 1.0f - 2.0f * (xx + yy);
return mat;
}
Quaternion matrix4_to_quaternion(const Matrix4& m)
{
f32 four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
f32 four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
f32 four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
f32 four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
s32 biggestIndex = 0;
f32 four_biggest_squared_minus_1 = four_w_squared_minus_1;
if (four_x_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_x_squared_minus_1;
biggestIndex = 1;
}
if (four_y_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_y_squared_minus_1;
biggestIndex = 2;
}
if (four_z_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_z_squared_minus_1;
biggestIndex = 3;
}
f32 biggestVal = math::sqrt(four_biggest_squared_minus_1 + 1.0f) * 0.5f;
f32 mult = 0.25f / biggestVal;
Quaternion q = QUATERNION_IDENTITY;
switch (biggestIndex)
{
case 0:
{
q.w = biggestVal;
q.x = (m[1][2] - m[2][1]) * mult;
q.y = (m[2][0] - m[0][2]) * mult;
q.z = (m[0][1] - m[1][0]) * mult;
}
break;
case 1:
{
q.w = (m[1][2] - m[2][1]) * mult;
q.x = biggestVal;
q.y = (m[0][1] + m[1][0]) * mult;
q.z = (m[2][0] + m[0][2]) * mult;
}
break;
case 2:
{
q.w = (m[2][0] - m[0][2]) * mult;
q.x = (m[0][1] + m[1][0]) * mult;
q.y = biggestVal;
q.z = (m[1][2] + m[2][1]) * mult;
}
break;
case 3:
{
q.w = (m[0][1] - m[1][0]) * mult;
q.x = (m[2][0] + m[0][2]) * mult;
q.y = (m[1][2] + m[2][1]) * mult;
q.z = biggestVal;
}
break;
default: // Should never actually get here. Just for sanities sake.
{
GB_ASSERT(false, "How did you get here?!");
}
break;
}
return q;
}
Matrix4 translate(const Vector3& v)
{
Matrix4 result = MATRIX4_IDENTITY;
result[3].xyz = v;
result[3].w = 1;
return result;
}
Matrix4 rotate(const Vector3& v, f32 radians)
{
const f32 c = math::cos(radians);
const f32 s = math::sin(radians);
const Vector3 axis = math::normalize(v);
const Vector3 t = (1.0f - c) * axis;
Matrix4 rot = MATRIX4_IDENTITY;
rot[0][0] = c + t.x * axis.x;
rot[0][1] = 0 + t.x * axis.y + s * axis.z;
rot[0][2] = 0 + t.x * axis.z - s * axis.y;
rot[0][3] = 0;
rot[1][0] = 0 + t.y * axis.x - s * axis.z;
rot[1][1] = c + t.y * axis.y;
rot[1][2] = 0 + t.y * axis.z + s * axis.x;
rot[1][3] = 0;
rot[2][0] = 0 + t.z * axis.x + s * axis.y;
rot[2][1] = 0 + t.z * axis.y - s * axis.x;
rot[2][2] = c + t.z * axis.z;
rot[2][3] = 0;
return rot;
}
Matrix4 scale(const Vector3& v)
{
return { v.x, 0, 0, 0,
0, v.y, 0, 0,
0, 0, v.z, 0,
0, 0, 0, 1 };
}
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top)
{
Matrix4 result = MATRIX4_IDENTITY;
result[0][0] = 2.0f / (right - left);
result[1][1] = 2.0f / (top - bottom);
result[2][2] = -1.0f;
result[3][1] = -(right + left) / (right - left);
result[3][1] = -(top + bottom) / (top - bottom);
return result;
}
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far)
{
Matrix4 result = MATRIX4_IDENTITY;
result[0][0] = 2.0f / (right - left);
result[1][1] = 2.0f / (top - bottom);
result[2][2] = -2.0f / (z_far - z_near);
result[3][0] = -(right + left) / (right - left);
result[3][1] = -(top + bottom) / (top - bottom);
result[3][2] = -(z_far + z_near) / (z_far - z_near);
return result;
}
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far)
{
GB_ASSERT(math::abs(aspect) > 0.0f,
"math::perspective `fovy_radians` is %f", fovy_radians);
f32 tan_half_fovy = math::tan(0.5f * fovy_radians);
Matrix4 result = {};
result[0][0] = 1.0f / (aspect * tan_half_fovy);
result[1][1] = 1.0f / (tan_half_fovy);
result[2][2] = -(z_far + z_near) / (z_far - z_near);
result[2][3] = -1.0f;
result[3][2] = -2.0f * z_far * z_near / (z_far - z_near);
return result;
}
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near)
{
f32 range = math::tan(0.5f * fovy_radians) * z_near;
f32 left = -range * aspect;
f32 right = range * aspect;
f32 bottom = -range;
f32 top = range;
Matrix4 result = {};
result[0][0] = (2.0f * z_near) / (right - left);
result[1][1] = (2.0f * z_near) / (top - bottom);
result[2][2] = -1.0f;
result[2][3] = -1.0f;
result[3][2] = -2.0f * z_near;
return result;
}
Matrix4
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up)
{
const Vector3 f = math::normalize(center - eye);
const Vector3 s = math::normalize(math::cross(f, up));
const Vector3 u = math::cross(s, f);
Matrix4 result = MATRIX4_IDENTITY;
result[0][0] = +s.x;
result[1][0] = +s.y;
result[2][0] = +s.z;
result[0][1] = +u.x;
result[1][1] = +u.y;
result[2][1] = +u.z;
result[0][2] = -f.x;
result[1][2] = -f.y;
result[2][2] = -f.z;
result[3][0] = -math::dot(s, eye);
result[3][1] = -math::dot(u, eye);
result[3][2] = +math::dot(f, eye);
return result;
}
Quaternion
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up)
{
const f32 similar = 0.001f;
if (math::magnitude(center - eye) < similar)
return QUATERNION_IDENTITY; // You cannot look at where you are!
// TODO(bill): Implement using just quaternions
return matrix4_to_quaternion(look_at_matrix4(eye, center, up));
}
// Transform Functions
Vector3 transform_point(const Transform& transform, const Vector3& point)
{
return (math::conjugate(transform.orientation) * (transform.position - point)) / transform.scale;
}
Transform inverse(const Transform& t)
{
const Quaternion inv_orientation = math::conjugate(t.orientation);
Transform inv_transform;
inv_transform.position = (inv_orientation * -t.position) / t.scale;
inv_transform.orientation = inv_orientation;
inv_transform.scale = inv_orientation * (Vector3{1, 1, 1} / t.scale);
return inv_transform;
}
Matrix4 transform_to_matrix4(const Transform& t)
{
return math::translate(t.position) * //
math::quaternion_to_matrix4(t.orientation) * //
math::scale(t.scale); //
}
} // namespace math
} // namespace gb
#endif // GB_IMPLEMENTATION