srfi-194-egg/sphere.scm
2025-01-10 16:22:02 -05:00

133 lines
5.1 KiB
Scheme

;;; SPDX-FileCopyrightText: 2020 Arvydas Silanskas
;;; SPDX-FileCopyrightText: 2020 Linas Vepštas
;;; SPDX-FileCopyrightText: 2024 Bradley J Lucier
;;; SPDX-License-Identifier: MIT
;;;
;;; sphere.scm
;;; Uniform distributions on a sphere, and a ball.
;;; Submitted for inclusion in srfi-194
;;;
;;; Algorithm based on BoxMeuller as described in
;;; http://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
;;;
;;; make-sphere-generator N - return a generator of points uniformly
;;; distributed on an N-dimensional sphere.
;;; This implements the BoxMeuller algorithm, that is, of normalizing
;;; N+1 Gaussian random variables.
(define (make-sphere-generator arg)
(cond
((and (integer? arg)
(exact? arg)
(positive? arg))
(make-ellipsoid-generator* (make-vector (+ 1 arg) 1.0)))
(else
(error "make-sphere-generator: The argument must be a positive exact integer: " arg))))
(define (make-ellipsoid-generator arg)
(define (return-error)
(error "make-ellipsoid-generator: The argument must be a vector of real numbers that are finite and positive when converted to inexact: " arg))
(if (and (vector? arg)
(vector-every real? arg))
(let ((inexact-arg (vector-map inexact arg)))
(if (vector-every (lambda (x)
(and (positive? x) (finite? x)))
inexact-arg)
(make-ellipsoid-generator* inexact-arg)
(return-error)))
(return-error)))
;;; -----------------------------------------------
;;; Generator of points uniformly distributed on an N-dimensional ellipsoid.
;;;
;;; The `axes` should be a vector of floats, specifying the axes of the
;;; ellipsoid. The algorithm used is an accept/reject sampling algo,
;;; wherein the acceptance rate is proportional to the measure of a
;;; surface element on the ellipsoid. The measure is straight-forward to
;;; arrive at, and the 3D case is described by `mercio` in detail at
;;; https://math.stackexchange.com/questions/973101/how-to-generate-points-uniformly-distributed-on-the-surface-of-an-ellipsoid
;;;
;;; Note that sampling means that complexity goes as
;;; O(B/A x C/A x D/A x ...) where `A` is the shorest axis,
;;; and `B`, `C`, `D`, ... are the other axes. Maximum performance
;;; is achieved on spheres, which is the case used in make-ball-generator
(define (make-ellipsoid-generator* axes)
(let ((gauss (make-normal-generator))
(uniform (make-random-real-generator 0. 1.)) ;; should really be from a separate stream
(min-axis (vector-fold min +inf.0 axes)))
(define (sphere)
(let* ((point
(vector-map (lambda (_) (gauss)) axes))
(norm-inverse
(/ (sqrt (vector-fold (lambda (sum x)
(+ sum (square x)))
0.
point)))))
(vector-map (lambda (x) (* x norm-inverse)) point)))
(define (ellipsoid-distance ray)
(sqrt (vector-fold
(lambda (sum x a) (+ sum (square (/ x a))))
0. ray axes)))
(define (keep point)
(< (uniform)
(* min-axis (ellipsoid-distance point))))
(define (sample)
(let ((point (sphere)))
(if (keep point)
point
(sample))))
(lambda ()
(vector-map * (sample) axes))))
;;;-----------------------------------------------
;;; make-ball-generator N - return a generator of points
;;; inside an N-dimensional ball. It's based on the algorithm in
;;;
;;; An Efficient Method for Generating Points
;;; Uniformly Distributed in Hyperellipsoids
;;; Jean Dezert and Christian Musso
;;; https://www.onera.fr/sites/default/files/297/C013_-_Dezert_-_YBSTributeMonterey2001.pdf
;;;
;;; which in turn is based on the Harman-Lacko-Voelker Dropped Coordinate method for
;;; generating points uniformly inside the unit ball in N dimensions.
(define (make-ball-generator arg)
(define (return-error)
(error "make-ball-generator: The argument must be either an exact, positive, integer or a vector of real numbers that are positive and finite when converted to inexact: " arg))
(if (and (integer? arg)
(exact? arg)
(positive? arg))
(make-ball-generator* (make-vector arg 1.0))
(if (and (vector? arg)
(vector-every real? arg))
(let ((inexact-arg (vector-map inexact arg)))
(if (vector-every (lambda (x)
(and (positive? x)
(finite? x)))
inexact-arg)
(make-ball-generator* inexact-arg)
(return-error)))
(return-error))))
(define (make-ball-generator* axes)
(let* ((sphere-generator
;; returns vectors with (vector-length axes) + 2 elements
(make-sphere-generator (+ (vector-length axes) 1))))
(lambda ()
;; returns vectors with (vector-length axes) elements
(vector-map (lambda (el axis)
(* el axis))
(sphere-generator)
axes))))