fpu added exact div/sqrt implementations using iterative approaches

This commit is contained in:
Dolu1990 2021-02-25 15:28:38 +01:00
parent 47673863fb
commit de09ed3fcb
5 changed files with 537 additions and 74 deletions

View File

@ -3,6 +3,7 @@ package vexriscv.ip.fpu
import spinal.core._ import spinal.core._
import spinal.lib._ import spinal.lib._
import spinal.lib.eda.bench.{Bench, Rtl, XilinxStdTargets} import spinal.lib.eda.bench.{Bench, Rtl, XilinxStdTargets}
import spinal.lib.math.UnsignedDivider
import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.ArrayBuffer
@ -24,8 +25,8 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
val exponentF32Infinity = exponentOne+127+1 val exponentF32Infinity = exponentOne+127+1
val exponentF64Infinity = exponentOne+1023+1 val exponentF64Infinity = exponentOne+1023+1
val rfLockCount = 5
val lockIdType = HardType(UInt(log2Up(rfLockCount) bits)) val lockIdType = HardType(UInt(log2Up(p.rfLockCount) bits))
def whenDouble(format : FpuFormat.C)(yes : => Unit)(no : => Unit): Unit ={ def whenDouble(format : FpuFormat.C)(yes : => Unit)(no : => Unit): Unit ={
if(p.withDouble) when(format === FpuFormat.DOUBLE) { yes } otherwise{ no } if(p.withDouble) when(format === FpuFormat.DOUBLE) { yes } otherwise{ no }
@ -106,6 +107,25 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
val format = p.withDouble generate FpuFormat() val format = p.withDouble generate FpuFormat()
} }
case class DivInput() extends Bundle{
val source = Source()
val rs1, rs2 = p.internalFloating()
val rd = p.rfAddress()
val lockId = lockIdType()
val roundMode = FpuRoundMode()
val format = p.withDouble generate FpuFormat()
}
case class SqrtInput() extends Bundle{
val source = Source()
val rs1 = p.internalFloating()
val rd = p.rfAddress()
val lockId = lockIdType()
val roundMode = FpuRoundMode()
val format = p.withDouble generate FpuFormat()
}
case class AddInput() extends Bundle{ case class AddInput() extends Bundle{
val source = Source() val source = Source()
@ -145,11 +165,11 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
val boxed = p.withDouble generate Bool() val boxed = p.withDouble generate Bool()
} }
val ram = Mem(Entry(), 32*portCount) val ram = Mem(Entry(), 32*portCount)
val lock = for(i <- 0 until rfLockCount) yield new Area{ val lock = for(i <- 0 until p.rfLockCount) yield new Area{
val valid = RegInit(False) val valid = RegInit(False)
val source = Reg(Source()) val source = Reg(Source())
val address = Reg(p.rfAddress) val address = Reg(p.rfAddress)
val id = Reg(UInt(log2Up(rfLockCount) bits)) val id = Reg(UInt(log2Up(p.rfLockCount+1) bits))
val commited = Reg(Bool) val commited = Reg(Bool)
val write = Reg(Bool) val write = Reg(Bool)
} }
@ -184,7 +204,7 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
val commitLogic = for(source <- 0 until portCount) yield new Area{ val commitLogic = for(source <- 0 until portCount) yield new Area{
val fire = False val fire = False
val target, hit = Reg(UInt(log2Up(rfLockCount+1) bits)) init(0) val target, hit = Reg(UInt(log2Up(p.rfLockCount+1) bits)) init(0)
val full = target + 1 === hit val full = target + 1 === hit
when(fire){ when(fire){
hit := hit + 1 hit := hit + 1
@ -241,7 +261,7 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
commitLogic(i).target := commitLogic(i).target + 1 commitLogic(i).target := commitLogic(i).target + 1
} }
} }
for(i <- 0 until rfLockCount){ for(i <- 0 until p.rfLockCount){
when(rf.lockFreeId(i)){ when(rf.lockFreeId(i)){
rf.lock(i).valid := True rf.lock(i).valid := True
rf.lock(i).source := s0.source rf.lock(i).source := s0.source
@ -317,10 +337,31 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
divSqrt.div := input.opcode === p.Opcode.DIV divSqrt.div := input.opcode === p.Opcode.DIV
} }
val divHit = input.opcode === p.Opcode.DIV
val div = Stream(DivInput())
if(p.withDiv) {
input.ready setWhen (divHit && div.ready)
div.valid := input.valid && divHit
div.payload.assignSomeByName(input.payload)
}
val sqrtHit = input.opcode === p.Opcode.SQRT
val sqrt = Stream(SqrtInput())
if(p.withSqrt) {
input.ready setWhen (sqrtHit && sqrt.ready)
sqrt.valid := input.valid && sqrtHit
sqrt.payload.assignSomeByName(input.payload)
}
val fmaHit = input.opcode === p.Opcode.FMA val fmaHit = input.opcode === p.Opcode.FMA
val mulHit = input.opcode === p.Opcode.MUL || fmaHit val mulHit = input.opcode === p.Opcode.MUL || fmaHit
val mul = Stream(new MulInput()) val mul = Stream(new MulInput())
val divSqrtToMul = Stream(new MulInput()) val divSqrtToMul = Stream(new MulInput())
if(!p.withDivSqrt){
divSqrtToMul.valid := False
divSqrtToMul.payload.assignDontCare()
}
if(p.withMul) { if(p.withMul) {
input.ready setWhen (mulHit && mul.ready && !divSqrtToMul.valid) input.ready setWhen (mulHit && mul.ready && !divSqrtToMul.valid)
@ -910,7 +951,7 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
// val flag = io.port(input.source).completion.flag // val flag = io.port(input.source).completion.flag
when(forceNan) { when(forceNan) {
output.setNanQuiet output.setNanQuiet
NV setWhen(input.valid && (infinitynan || input.rs1.isNanSignaling || input.rs2.isNanSignaling)) NV setWhen(infinitynan || input.rs1.isNanSignaling || input.rs2.isNanSignaling)
} elsewhen(forceOverflow) { } elsewhen(forceOverflow) {
output.setInfinity output.setInfinity
} elsewhen(forceZero) { } elsewhen(forceZero) {
@ -958,6 +999,145 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
} }
} }
val div = p.withDiv generate new Area{
val input = decode.div.halfPipe()
val haltIt = True
val output = input.haltWhen(haltIt).swapPayload(new MergeInput())
val dividerShift = if(p.withDouble) 0 else 1
val divider = FpuDiv(p.internalMantissaSize + dividerShift)
divider.io.input.a := input.rs1.mantissa << dividerShift
divider.io.input.b := input.rs2.mantissa << dividerShift
val dividerResult = divider.io.output.result >> dividerShift
val dividerScrap = divider.io.output.remain =/= 0 || divider.io.output.result(0, dividerShift bits) =/= 0
val cmdSent = RegInit(False) setWhen(divider.io.input.fire) clearWhen(!haltIt)
divider.io.input.valid := input.valid && !cmdSent
divider.io.output.ready := input.ready
output.payload.assignSomeByName(input.payload)
val needShift = !dividerResult.msb
val mantissa = needShift ? dividerResult(0, p.internalMantissaSize + 1 bits) | dividerResult(1, p.internalMantissaSize + 1 bits)
val scrap = dividerScrap || !needShift && dividerResult(0)
val exponentOffset = 1 << (p.internalExponentSize + (if(p.withDouble) 0 else 1))
val exponent = input.rs1.exponent + U(exponentOffset | exponentOne) - input.rs2.exponent - U(needShift)
output.value.setNormal
output.value.sign := input.rs1.sign ^ input.rs2.sign
output.value.exponent := exponent.resized
output.value.mantissa := mantissa
output.scrap := scrap
if(!p.withDouble) when(exponent.takeHigh(2) === 3){ output.value.exponent(p.internalExponentSize-3, 3 bits) := 7} //Handle overflow
val underflowThreshold = muxDouble[UInt](input.format)(exponentOne + exponentOffset - 1023 - 53) (exponentOne + exponentOffset - 127 - 24)
val underflowExp = muxDouble[UInt](input.format)(exponentOne + exponentOffset - 1023 - 54) (exponentOne + exponentOffset - 127 - 25)
val forceUnderflow = exponent < underflowThreshold
val forceOverflow = input.rs1.isInfinity || input.rs2.isZero
val infinitynan = input.rs1.isZero && input.rs2.isZero
val forceNan = input.rs1.isNan || input.rs2.isNan || infinitynan
val forceZero = input.rs1.isZero
output.NV := False
output.DZ := !forceNan && input.rs2.isZero
when(exponent(exponent.getWidth-3, 3 bits) === 7) { output.value.exponent(p.internalExponentSize-2, 2 bits) := 3 }
when(forceNan) {
output.value.setNanQuiet
output.NV setWhen((infinitynan || input.rs1.isNanSignaling || input.rs2.isNanSignaling))
} elsewhen(forceOverflow) {
output.value.setInfinity
} elsewhen(forceZero) {
output.value.setZero
} elsewhen(forceUnderflow) {
output.value.exponent := underflowExp.resized
}
haltIt clearWhen(divider.io.output.valid)
}
val sqrt = p.withSqrt generate new Area{
val input = decode.sqrt.halfPipe()
val haltIt = True
val output = input.haltWhen(haltIt).swapPayload(new MergeInput())
val needShift = !input.rs1.exponent.lsb
val sqrt = FpuSqrt(p.internalMantissaSize)
sqrt.io.input.a := (needShift ? (U"1" @@ input.rs1.mantissa @@ U"0") | (U"01" @@ input.rs1.mantissa))
val cmdSent = RegInit(False) setWhen(sqrt.io.input.fire) clearWhen(!haltIt)
sqrt.io.input.valid := input.valid && !cmdSent
sqrt.io.output.ready := input.ready
output.payload.assignSomeByName(input.payload)
val scrap = sqrt.io.output.remain =/= 0
val exponent = RegNext(exponentOne-exponentOne/2 -1 +^ (input.rs1.exponent >> 1) + U(input.rs1.exponent.lsb))
output.value.setNormal
output.value.sign := input.rs1.sign
output.value.exponent := exponent
output.value.mantissa := sqrt.io.output.result
output.scrap := scrap
output.NV := False
output.DZ := False
val negative = !input.rs1.isNan && !input.rs1.isZero && input.rs1.sign
when(input.rs1.isInfinity){
output.value.setInfinity
}
when(negative){
output.value.setNanQuiet
output.NV := True
}
when(input.rs1.isNan){
output.value.setNanQuiet
output.NV := !input.rs1.isQuiet
}
when(input.rs1.isZero){
output.value.setZero
}
// val underflowThreshold = muxDouble[UInt](input.format)(exponentOne + exponentOffset - 1023 - 53) (exponentOne + exponentOffset - 127 - 24)
// val underflowExp = muxDouble[UInt](input.format)(exponentOne + exponentOffset - 1023 - 54) (exponentOne + exponentOffset - 127 - 25)
// val forceUnderflow = exponent < underflowThreshold
// val forceOverflow = input.rs1.isInfinity// || input.rs2.isInfinity
// val infinitynan = input.rs1.isZero && input.rs2.isZero
// val forceNan = input.rs1.isNan || input.rs2.isNan || infinitynan
// val forceZero = input.rs1.isZero
//
//
//
// output.NV := False
// output.DZ := !forceNan && input.rs2.isZero
//
// when(exponent(exponent.getWidth-3, 3 bits) === 7) { output.value.exponent(p.internalExponentSize-2, 2 bits) := 3 }
//
// when(forceNan) {
// output.value.setNanQuiet
// output.NV setWhen((infinitynan || input.rs1.isNanSignaling || input.rs2.isNanSignaling))
// } elsewhen(forceOverflow) {
// output.value.setInfinity
// } elsewhen(forceZero) {
// output.value.setZero
// } elsewhen(forceUnderflow) {
// output.value.exponent := underflowExp.resized
// }
haltIt clearWhen(sqrt.io.output.valid)
}
val divSqrt = p.withDivSqrt generate new Area { val divSqrt = p.withDivSqrt generate new Area {
val input = decode.divSqrt.halfPipe() val input = decode.divSqrt.halfPipe()
@ -1263,7 +1443,7 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
// val flag = io.port(input.source).completion.flag // val flag = io.port(input.source).completion.flag
output.NV := (input.valid && (infinityNan || input.rs1.isNanSignaling || input.rs2.isNanSignaling)) output.NV := infinityNan || input.rs1.isNanSignaling || input.rs2.isNanSignaling
output.DZ := False output.DZ := False
when(forceNan) { when(forceNan) {
output.value.setNanQuiet output.value.setNanQuiet
@ -1286,6 +1466,8 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
//TODO maybe load can bypass merge and round. //TODO maybe load can bypass merge and round.
val inputs = ArrayBuffer[Stream[MergeInput]]() val inputs = ArrayBuffer[Stream[MergeInput]]()
inputs += load.s1.output.stage() inputs += load.s1.output.stage()
if(p.withSqrt) (inputs += sqrt.output)
if(p.withDiv) (inputs += div.output)
if(p.withAdd) (inputs += add.result.output) if(p.withAdd) (inputs += add.result.output)
if(p.withMul) (inputs += mul.result.output) if(p.withMul) (inputs += mul.result.output)
if(p.withShortPipMisc) (inputs += shortPip.rfOutput.pipelined(m2s = true)) if(p.withShortPipMisc) (inputs += shortPip.rfOutput.pipelined(m2s = true))
@ -1422,7 +1604,7 @@ case class FpuCore( portCount : Int, p : FpuParameter) extends Component{
} }
when(input.valid){ when(input.valid){
for(i <- 0 until rfLockCount) when(input.lockId === i){ for(i <- 0 until p.rfLockCount) when(input.lockId === i){
rf.lock(i).valid := False rf.lock(i).valid := False
} }
} }
@ -1516,19 +1698,40 @@ object FpuSynthesisBench extends App{
SpinalVerilog(new Component{ SpinalVerilog(new Component{
val a = Delay(in UInt(width bits), 3) val a = Delay(in UInt(width bits), 3)
val sel = Delay(in UInt(log2Up(width) bits),3) val sel = Delay(in UInt(log2Up(width) bits),3)
// val result = // val result =
// val output = Delay(result, 3) // val output = Delay(result, 3)
setDefinitionName(Rotate3.this.getName()) setDefinitionName(Rotate3.this.getName())
}) })
} }
class Div(width : Int) extends Rtl{
override def getName(): String = "div_" + width
override def getRtlPath(): String = getName() + ".v"
SpinalVerilog(new UnsignedDivider(width,width, false).setDefinitionName(Div.this.getName()))
}
class Add(width : Int) extends Rtl{
override def getName(): String = "add_" + width
override def getRtlPath(): String = getName() + ".v"
SpinalVerilog(new Component{
val a, b = in UInt(width bits)
val result = out(a + b)
setDefinitionName(Add.this.getName())
})
}
class DivSqrtRtl(width : Int) extends Rtl{
override def getName(): String = "DivSqrt_" + width
override def getRtlPath(): String = getName() + ".v"
SpinalVerilog(new FpuDiv(width).setDefinitionName(DivSqrtRtl.this.getName()))
}
val rtls = ArrayBuffer[Rtl]() val rtls = ArrayBuffer[Rtl]()
rtls += new Fpu( rtls += new Fpu(
"32", "32",
portCount = 1, portCount = 1,
FpuParameter( FpuParameter(
// withDivSqrt = false,
withDouble = false withDouble = false
) )
) )
@ -1536,11 +1739,18 @@ object FpuSynthesisBench extends App{
"64", "64",
portCount = 1, portCount = 1,
FpuParameter( FpuParameter(
// withDivSqrt = false,
withDouble = true withDouble = true
) )
) )
// rtls += new Shifter(24) // rtls += new Div(52)
// rtls += new Div(23)
// rtls += new Add(64)
// rtls += new DivSqrtRtl(52)
// rtls += new DivSqrtRtl(23)
// rtls += new Shifter(24)
// rtls += new Shifter(32) // rtls += new Shifter(32)
// rtls += new Shifter(52) // rtls += new Shifter(52)
// rtls += new Shifter(64) // rtls += new Shifter(64)
@ -1558,3 +1768,27 @@ object FpuSynthesisBench extends App{
Bench(rtls, targets) Bench(rtls, targets)
} }
//Fpu_32 ->
//Artix 7 -> 136 Mhz 1471 LUT 1336 FF
//Artix 7 -> 196 Mhz 1687 LUT 1371 FF
//Fpu_64 ->
//Artix 7 -> 105 Mhz 2822 LUT 2132 FF
//Artix 7 -> 161 Mhz 3114 LUT 2272 FF
//
//
//
//Fpu_32 ->
//Artix 7 -> 128 Mhz 1693 LUT 1481 FF
//Artix 7 -> 203 Mhz 1895 LUT 1481 FF
//Fpu_64 ->
//Artix 7 -> 99 Mhz 3073 LUT 2396 FF
//Artix 7 -> 164 Mhz 3433 LUT 2432 FF
//Fpu_32 ->
//Artix 7 -> 112 Mhz 1790 LUT 1666 FF
//Artix 7 -> 158 Mhz 1989 LUT 1701 FF
//Fpu_64 ->
//Artix 7 -> 100 Mhz 3294 LUT 2763 FF
//Artix 7 -> 151 Mhz 3708 LUT 2904 FF

View File

@ -0,0 +1,128 @@
package vexriscv.ip.fpu
import spinal.core._
import spinal.lib.math.{UnsignedDividerCmd, UnsignedDividerRsp}
import spinal.lib._
import spinal.lib.sim.{StreamDriver, StreamMonitor, StreamReadyRandomizer}
import scala.collection.mutable
import scala.util.Random
case class FpuDivCmd(mantissaWidth : Int) extends Bundle{
val a,b = UInt(mantissaWidth bits)
}
case class FpuDivRsp(mantissaWidth : Int) extends Bundle{
val result = UInt(mantissaWidth+1 + 2 bits)
val remain = UInt(mantissaWidth+1 bits)
}
case class FpuDiv(val mantissaWidth : Int) extends Component {
assert(mantissaWidth % 2 == 0)
val io = new Bundle{
val input = slave Stream(FpuDivCmd(mantissaWidth))
val output = master Stream(FpuDivRsp(mantissaWidth))
}
val iterations = (mantissaWidth+2+2)/2
val counter = Reg(UInt(log2Up(iterations) bits))
val busy = RegInit(False) clearWhen(io.output.fire)
val done = RegInit(False) setWhen(busy && counter === iterations-1) clearWhen(io.output.fire)
val shifter = Reg(UInt(mantissaWidth + 3 bits))
val result = Reg(UInt(mantissaWidth+1+2 bits))
val div1, div3 = Reg(UInt(mantissaWidth+3 bits))
val div2 = div1 |<< 1
val sub1 = shifter -^ div1
val sub2 = shifter -^ div2
val sub3 = shifter -^ div3
io.output.valid := done
io.output.result := (result << 0).resized
io.output.remain := (shifter >> 2).resized
io.input.ready := !busy
when(!done){
counter := counter + 1
val sel = CombInit(shifter)
result := result |<< 2
when(!sub1.msb){
sel := sub1.resized
result(1 downto 0) := 1
}
when(!sub2.msb){
sel := sub2.resized
result(1 downto 0) := 2
}
when(!sub3.msb){
sel := sub3.resized
result(1 downto 0) := 3
}
shifter := sel |<< 2
}
when(!busy){
counter := 0
shifter := (U"1" @@ io.input.a @@ U"").resized
div1 := (U"1" @@ io.input.b).resized
div3 := (U"1" @@ io.input.b) +^ (((U"1" @@ io.input.b)) << 1)
busy := io.input.valid
}
}
object FpuDivTester extends App{
import spinal.core.sim._
for(w <- List(16, 20)) {
val config = SimConfig
config.withFstWave
config.compile(new FpuDiv(w)).doSim(seed=2){dut =>
dut.clockDomain.forkStimulus(10)
val (cmdDriver, cmdQueue) = StreamDriver.queue(dut.io.input, dut.clockDomain)
val rspQueue = mutable.Queue[FpuDivRsp => Unit]()
StreamMonitor(dut.io.output, dut.clockDomain)( rspQueue.dequeue()(_))
StreamReadyRandomizer(dut.io.output, dut.clockDomain)
def test(a : Int, b : Int): Unit ={
cmdQueue +={p =>
p.a #= a
p.b #= b
}
rspQueue += {p =>
val x = (a | (1 << dut.mantissaWidth)).toLong
val y = (b | (1 << dut.mantissaWidth)).toLong
val result = (x << dut.mantissaWidth+2) / y
val remain = (x << dut.mantissaWidth+2) % y
assert(p.result.toLong == result, f"$x%x/$y%x=${p.result.toLong}%x instead of $result%x")
assert(p.remain.toLong == remain, f"$x%x %% $y%x=${p.remain.toLong}%x instead of $remain%x")
}
}
val s = dut.mantissaWidth-16
val f = (1 << dut.mantissaWidth)-1
test(0xE000 << s, 0x8000 << s)
test(0xC000 << s, 0x4000 << s)
test(0xC835 << s, 0x4742 << s)
test(0,0)
test(0,f)
test(f,0)
test(f,f)
for(i <- 0 until 10000){
test(Random.nextInt(1 << dut.mantissaWidth), Random.nextInt(1 << dut.mantissaWidth))
}
waitUntil(rspQueue.isEmpty)
dut.clockDomain.waitSampling(100)
}
}
}

View File

@ -0,0 +1,116 @@
package vexriscv.ip.fpu
import spinal.core._
import spinal.lib._
import spinal.lib.sim.{StreamDriver, StreamMonitor, StreamReadyRandomizer}
import scala.collection.mutable
import scala.util.Random
case class FpuSqrtCmd(mantissaWidth : Int) extends Bundle{
val a = UInt(mantissaWidth+2 bits)
}
case class FpuSqrtRsp(mantissaWidth : Int) extends Bundle{
val result = UInt(mantissaWidth+1 bits)
val remain = UInt(mantissaWidth+5 bits)
}
case class FpuSqrt(val mantissaWidth : Int) extends Component {
val io = new Bundle{
val input = slave Stream(FpuSqrtCmd(mantissaWidth))
val output = master Stream(FpuSqrtRsp(mantissaWidth))
}
val iterations = mantissaWidth+2
val counter = Reg(UInt(log2Up(iterations ) bits))
val busy = RegInit(False) clearWhen(io.output.fire)
val done = RegInit(False) setWhen(busy && counter === iterations-1) clearWhen(io.output.fire)
val a = Reg(UInt(mantissaWidth+5 bits))
val x = Reg(UInt(mantissaWidth bits))
val q = Reg(UInt(mantissaWidth+1 bits))
val t = a-(q @@ U"01")
io.output.valid := done
io.output.result := (q << 0).resized
io.output.remain := a
io.input.ready := !busy
when(!done){
counter := counter + 1
val sel = CombInit(a)
when(!t.msb){
sel := t.resized
}
q := (q @@ !t.msb).resized
a := (sel @@ x(widthOf(x)-2,2 bits)).resized
x := x |<< 2
}
when(!busy){
q := 0
a := io.input.a(widthOf(io.input.a)-2,2 bits).resized
x := (io.input.a).resized
counter := 0
when(io.input.valid){
busy := True
}
}
}
object FpuSqrtTester extends App{
import spinal.core.sim._
for(w <- List(16)) {
val config = SimConfig
config.withFstWave
config.compile(new FpuSqrt(w)).doSim(seed=2){dut =>
dut.clockDomain.forkStimulus(10)
val (cmdDriver, cmdQueue) = StreamDriver.queue(dut.io.input, dut.clockDomain)
val rspQueue = mutable.Queue[FpuSqrtRsp => Unit]()
StreamMonitor(dut.io.output, dut.clockDomain)( rspQueue.dequeue()(_))
StreamReadyRandomizer(dut.io.output, dut.clockDomain)
def test(a : Int): Unit ={
cmdQueue +={p =>
p.a #= a
}
rspQueue += {p =>
// val x = (a * (1l << dut.mantissaWidth)).toLong
// val result = Math.sqrt(x).toLong/(1 << dut.mantissaWidth/2)
// val remain = a-x*x
val x = a.toDouble / (1 << dut.mantissaWidth)
val result = (Math.sqrt(x)*(1 << dut.mantissaWidth+1)).toLong
val filtred = result % (1 << dut.mantissaWidth+1)
// val remain = (a-(result*result)).toLong
assert(p.result.toLong == filtred, f"$a%x=${p.result.toLong}%x instead of $filtred%x")
// assert(p.remain.toLong == remain, f"$a%x=${p.remain.toLong}%x instead of $remain%x")
}
}
val s = dut.mantissaWidth-16
val f = (1 << dut.mantissaWidth)-1
// test(121)
test(0x20000)
test(0x18000)
// test(0,0)
// test(0,f)
// test(f,0)
// test(f,f)
for(i <- 0 until 10000){
test(Random.nextInt(3 << dut.mantissaWidth) + (1 << dut.mantissaWidth))
}
waitUntil(rspQueue.isEmpty)
dut.clockDomain.waitSampling(100)
}
}
}

View File

@ -118,10 +118,13 @@ object FpuRoundModeInstr extends SpinalEnum(){
case class FpuParameter( withDouble : Boolean, case class FpuParameter( withDouble : Boolean,
mulWidthA : Int = 18, mulWidthA : Int = 18,
mulWidthB : Int = 18, mulWidthB : Int = 18,
rfLockCount : Int = 8,
sim : Boolean = false, sim : Boolean = false,
withAdd : Boolean = true, withAdd : Boolean = true,
withMul : Boolean = true, withMul : Boolean = true,
withDivSqrt : Boolean = true, withDivSqrt : Boolean = false,
withDiv : Boolean = true,
withSqrt : Boolean = true,
withShortPipMisc : Boolean = true){ withShortPipMisc : Boolean = true){
val internalMantissaSize = if(withDouble) 52 else 23 val internalMantissaSize = if(withDouble) 52 else 23

View File

@ -55,11 +55,11 @@ class FpuTest extends FunSuite{
} }
def testP(p : FpuParameter){ def testP(p : FpuParameter){
val portCount = 4 val portCount = 1
val config = SimConfig val config = SimConfig
config.allOptimisation config.allOptimisation
// if(p.withDouble) config.withFstWave // config.withFstWave
config.compile(new FpuCore(portCount, p){ config.compile(new FpuCore(portCount, p){
for(i <- 0 until portCount) out(Bits(5 bits)).setName(s"flagAcc$i") := io.port(i).completion.flags.asBits for(i <- 0 until portCount) out(Bits(5 bits)).setName(s"flagAcc$i") := io.port(i).completion.flags.asBits
setDefinitionName("FpuCore"+ (if(p.withDouble) "Double" else "")) setDefinitionName("FpuCore"+ (if(p.withDouble) "Double" else ""))
@ -724,58 +724,34 @@ class FpuTest extends FunSuite{
} }
} }
def testSqrtExact(a : Float, ref : Float, flag : Int, rounding : FpuRoundMode.E): Unit ={
val rs = new RegAllocator()
val rs1, rs2, rs3 = rs.allocate()
val rd = Random.nextInt(32)
load(rs1, a)
sqrt(rd,rs1, FpuRoundMode.RNE, FpuFormat.FLOAT)
storeFloat(rd){v =>
val error = Math.abs(ref-v)/ref
assert(checkFloat(ref, v), f"sqrt($a) = $v, $ref $error $rounding")
}
}
def testDivExact(a : Float, b : Float, ref : Float, flag : Int, rounding : FpuRoundMode.E): Unit ={
val rs = new RegAllocator()
val rs1, rs2, rs3 = rs.allocate()
val rd = Random.nextInt(32)
load(rs1, a)
load(rs2, b)
div(rd,rs1, rs2, FpuRoundMode.RNE, FpuFormat.FLOAT)
storeFloat(rd){v =>
val error = Math.abs(ref-v)/ref
assert(checkFloat(ref, v), f"div($a, $b) = $v, $ref $error $rounding")
}
}
def testSqrtF64Exact(a : Double, ref : Double, flag : Int, rounding : FpuRoundMode.E): Unit ={ def testSqrtF64Exact(a : Double, ref : Double, flag : Int, rounding : FpuRoundMode.E): Unit ={
val rs = new RegAllocator() val rs = new RegAllocator()
val rs1, rs2, rs3 = rs.allocate() val rs1, rs2, rs3 = rs.allocate()
val rd = Random.nextInt(32) val rd = Random.nextInt(32)
load(rs1, a) load(rs1, a)
sqrt(rd,rs1, FpuRoundMode.RNE, FpuFormat.DOUBLE) sqrt(rd,rs1, rounding, FpuFormat.DOUBLE)
store(rd){v => store(rd){v =>
val error = Math.abs(ref-v)/ref assert(d2b(v) == d2b(ref), f"## sqrt${a} = $v, $ref $rounding, ${d2b(a).toString(16)} ${d2b(ref).toString(16)}")
assert(checkDouble(ref, v), f"sqrt($a) = $v, $ref $error $rounding")
}
} }
def testDivF64Exact(a : Double, b : Double, ref : Double, flag : Int, rounding : FpuRoundMode.E): Unit ={ flagMatch(flag, ref, f"## sqrt${a} $ref $rounding")
}
def testSqrtExact(a : Float, ref : Float, flag : Int, rounding : FpuRoundMode.E): Unit ={
val rs = new RegAllocator() val rs = new RegAllocator()
val rs1, rs2, rs3 = rs.allocate() val rs1, rs2, rs3 = rs.allocate()
val rd = Random.nextInt(32) val rd = Random.nextInt(32)
load(rs1, a) load(rs1, a)
load(rs2, b)
div(rd,rs1, rs2, FpuRoundMode.RNE, FpuFormat.DOUBLE) sqrt(rd,rs1, rounding, FpuFormat.FLOAT)
store(rd){v =>
val error = Math.abs(ref-v)/ref storeFloat(rd){v =>
assert(checkDouble(ref, v), f"div($a, $b) = $v, $ref $error $rounding") assert(d2b(v) == d2b(ref), f"## sqrt${a} = $v, $ref $rounding, ${f2b(a).toString()} ${f2b(ref).toString()}")
} }
flagMatch(flag, ref, f"## sqrt${a} $ref $rounding")
} }
@ -1108,8 +1084,7 @@ class FpuTest extends FunSuite{
def testDiv() : Unit = { def testDiv() : Unit = {
val rounding = FpuRoundMode.elements.randomPick() val rounding = FpuRoundMode.elements.randomPick()
val (a,b,r,f) = f32.div(rounding).f32_f32_f32 val (a,b,r,f) = f32.div(rounding).f32_f32_f32
testDivExact(a, b, r, f, rounding) testBinaryOp(div, a, b, r, f, rounding, "div")
flagClear()
} }
def testSqrt() : Unit = { def testSqrt() : Unit = {
@ -1132,7 +1107,8 @@ class FpuTest extends FunSuite{
def testDivF64() : Unit = { def testDivF64() : Unit = {
val rounding = FpuRoundMode.elements.randomPick() val rounding = FpuRoundMode.elements.randomPick()
val (a,b,r,f) = f64.div(rounding).f64_f64_f64 val (a,b,r,f) = f64.div(rounding).f64_f64_f64
testDivF64Exact(a, b, r, f, rounding) // testDivF64Exact(a, b, r, f, rounding)
testBinaryOpF64(div, a, b, r, f,rounding, "div")
flagClear() flagClear()
} }
@ -1281,21 +1257,33 @@ class FpuTest extends FunSuite{
var fxxTests = f32Tests var fxxTests = f32Tests
if(p.withDouble) fxxTests ++= f64Tests if(p.withDouble) fxxTests ++= f64Tests
for(_ <- 0 until 10000) testDiv()
println("f32 div done")
for(_ <- 0 until 10000) testSqrt()
println("f32 sqrt done")
//TODO test boxing //TODO test boxing
//TODO double <-> simple convertions //TODO double <-> simple convertions
if(p.withDouble) { if(p.withDouble) {
load(0, 1.0) testSqrtF64Exact(1.25*1.25, 1.25, 0, FpuRoundMode.RNE)
load(0, 2.0) testSqrtF64Exact(1.5*1.5, 1.5, 0, FpuRoundMode.RNE)
load(0, 2.5)
load(0, 0.75) for(_ <- 0 until 10000) testSqrtF64()
load(0, -5) println("f64 sqrt done")
load(0, 0)
load(0, Double.PositiveInfinity) // testDivF64Exact(1.0, 8.0, 0.125, 0, FpuRoundMode.RNE)
load(0, Double.NaN) // testDivF64Exact(4.0, 8.0, 0.5, 0, FpuRoundMode.RNE)
dut.clockDomain.waitSampling(200) // testDivF64Exact(8.0, 8.0, 1.0, 0, FpuRoundMode.RNE)
simSuccess() // testDivF64Exact(1.5, 2.0, 0.75, 0, FpuRoundMode.RNE)
// testDivF64Exact(1.875, 1.5, 1.25, 0, FpuRoundMode.RNE)
for(_ <- 0 until 10000) testDivF64()
println("f64 div done")
for(_ <- 0 until 10000) testSgnjF64() for(_ <- 0 until 10000) testSgnjF64()
println("f64 sgnj done") println("f64 sgnj done")
@ -1338,12 +1326,6 @@ class FpuTest extends FunSuite{
println("f64 Cmp done") println("f64 Cmp done")
for(_ <- 0 until 10000) testDivF64()
println("f64 div done")
for(_ <- 0 until 10000) testSqrtF64()
println("f64 sqrt done")
for(_ <- 0 until 10000) testClassF64() for(_ <- 0 until 10000) testClassF64()
println("f64 class done") println("f64 class done")
// //