Merge pull request #351 from trabucayre/gw5a_ddr3

phy/gw5ddrphy: introducing GW5A DDR phy
This commit is contained in:
enjoy-digital 2023-11-09 11:43:26 +01:00 committed by GitHub
commit 16eb5a931c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 485 additions and 0 deletions

View File

@ -6,6 +6,7 @@ from litedram.phy.usddrphy import USDDRPHY, USPDDRPHY
from litedram.phy.ecp5ddrphy import ECP5DDRPHY, ECP5DDRPHYInit from litedram.phy.ecp5ddrphy import ECP5DDRPHY, ECP5DDRPHYInit
from litedram.phy.gw2ddrphy import GW2DDRPHY from litedram.phy.gw2ddrphy import GW2DDRPHY
from litedram.phy.gw5ddrphy import GW5DDRPHY
# backward compatibility (remove when no longer needed) # backward compatibility (remove when no longer needed)
from litedram.phy import s7ddrphy as a7ddrphy from litedram.phy import s7ddrphy as a7ddrphy

484
litedram/phy/gw5ddrphy.py Normal file
View File

@ -0,0 +1,484 @@
#
# This file is part of LiteDRAM.
#
# Copyright (c) 2019 David Shah <dave@ds0.me>
# Copyright (c) 2019-2020 Florent Kermarrec <florent@enjoy-digital.fr>
# Copyright (c) 2022 Icenowy Zheng <icenowy@aosc.io>
# Copyright (c) 2023 Gwenhael Goavec-Merou <gwenhael@enjoy-digital.fr>
# SPDX-License-Identifier: BSD-2-Clause
# 1:2 frequency-ratio DDR3 PHY for Gowin's GW5A
# DDR3: 800 MT/s
from functools import reduce
from operator import or_
import math
from migen import *
from litex.gen import *
from migen.fhdl.specials import Tristate
from migen.genlib.cdc import MultiReg
from litex.gen.genlib.misc import timeline
from litex.soc.interconnect.csr import *
from litedram.common import *
from litedram.phy.dfi import *
# BitSlip ------------------------------------------------------------------------------------------
# FIXME: Use BitSlip from litedram.common.
class BitSlip(Module):
def __init__(self, dw, rst=None, slp=None, cycles=1):
self.i = Signal(dw)
self.o = Signal(dw)
self.rst = Signal() if rst is None else rst
self.slp = Signal() if slp is None else slp
# # #
value = Signal(max=cycles*dw)
self.sync += If(self.slp, value.eq(value + 1))
self.sync += If(self.rst, value.eq(0))
r = Signal((cycles+1)*dw, reset_less=True)
self.sync += r.eq(Cat(r[dw:], self.i))
cases = {}
for i in range(cycles*dw):
cases[i] = self.o.eq(r[i:dw+i])
self.comb += Case(value, cases)
# Gowin GW5A DDR PHY Initialization -----------------------------------------------------------------
class GW5DDRPHYInit(Module):
def __init__(self):
self.pause = Signal()
self.stop = Signal()
self.delay = Signal(8)
self.reset = Signal()
# # #
new_lock = Signal()
update = Signal()
stop = Signal()
freeze = Signal()
pause = Signal()
reset = Signal()
# DDRDLLA instance -------------------------------------------------------------------------
_lock = Signal()
delay = Signal(8)
self.specials += Instance("DDRDLL",
p_SCAL_EN = "false",
i_RESET = ResetSignal("init"),
i_CLKIN = ClockSignal("sys2x"),
i_UPDNCNTL = ~update,
i_STOP = freeze,
o_STEP = delay,
o_LOCK = _lock
)
lock = Signal()
lock_d = Signal()
self.specials += MultiReg(_lock, lock, "init")
self.sync.init += lock_d.eq(lock)
self.comb += new_lock.eq(lock & ~lock_d)
# DDRDLLA/DDQBUFM/ECLK initialization sequence ---------------------------------------------
t = 8 # in cycles
self.sync.init += [
# Wait DDRDLLA Lock
timeline(new_lock, [
( 1*t, [freeze.eq(1)]), # Freeze DDRDLLA
( 2*t, [ stop.eq(1)]), # Stop ECLK domain
( 3*t, [ reset.eq(1)]), # Reset ECLK domain
( 4*t, [ reset.eq(0)]), # Release ECLK domain reset
( 5*t, [ stop.eq(0)]), # Release ECLK domain stop
( 6*t, [freeze.eq(0)]), # Release DDRDLLA freeze
( 7*t, [ pause.eq(1)]), # Pause DQSBUFM
( 8*t, [update.eq(1)]), # Update DDRDLLA
( 9*t, [update.eq(0)]), # Release DDRDMMA update
(10*t, [ pause.eq(0)]), # Release DQSBUFM pause
])
]
# ------------------------------------------------------------------------------------------
self.comb += [
self.pause.eq(pause),
self.stop.eq(stop),
self.delay.eq(delay),
self.reset.eq(reset),
]
# Gowin GW5A DDR PHY -------------------------------------------------------------------------------
class GW5DDRPHY(Module, AutoCSR):
def __init__(self, pads,
sys_clk_freq = 100e6,
cl = None,
cwl = None,
cmd_delay = 0,
clk_polarity = 0,
dm_remapping = None):
assert isinstance(cmd_delay, int) and cmd_delay < 128
pads = PHYPadsCombiner(pads)
memtype = "DDR3"
tck = 2/(2*2*sys_clk_freq)
addressbits = len(pads.a)
bankbits = len(pads.ba)
nranks = 1 if not hasattr(pads, "cs_n") else len(pads.cs_n)
databits = len(pads.dq)
nphases = 2
if not dm_remapping:
dm_remapping = {}
assert databits%8 == 0
# Init -------------------------------------------------------------------------------------
self.submodules.init = GW5DDRPHYInit()
# Parameters -------------------------------------------------------------------------------
cl = get_default_cl( memtype, tck) if cl is None else cl
cwl = get_default_cwl(memtype, tck) if cwl is None else cwl
cl_sys_latency = get_sys_latency(nphases, cl)
cwl_sys_latency = get_sys_latency(nphases, cwl)
# Registers --------------------------------------------------------------------------------
self._dly_sel = CSRStorage(databits//8)
self._rdly_dq_rst = CSR()
self._rdly_dq_inc = CSR()
self._rdly_dq_bitslip_rst = CSR()
self._rdly_dq_bitslip = CSR()
self._burstdet_clr = CSR()
self._burstdet_seen = CSRStatus(databits//8)
# Observation
self.datavalid = Signal(databits//8)
# PHY settings -----------------------------------------------------------------------------
rdphase = get_sys_phase(nphases, cl_sys_latency, cl)
wrphase = get_sys_phase(nphases, cwl_sys_latency, cwl)
self.settings = PhySettings(
phytype = "GW5DDRPHY",
memtype = memtype,
databits = databits,
dfi_databits = 4*databits,
nranks = nranks,
nphases = nphases,
rdphase = rdphase,
wrphase = wrphase,
cl = cl,
cwl = cwl,
read_latency = cl_sys_latency + 9 + 1,
write_latency = cwl_sys_latency - 1 + 1,
read_leveling = True,
bitslips = 4,
delays = 8,
)
# DFI Interface ----------------------------------------------------------------------------
self.dfi = dfi = Interface(addressbits, bankbits, nranks, 4*databits, nphases)
# # #
bl8_chunk = Signal()
# Iterate on pads groups -------------------------------------------------------------------
for pads_group in range(len(pads.groups)):
pads.sel_group(pads_group)
# Clock --------------------------------------------------------------------------------
clk_pattern = {0: 0b1010, 1: 0b0101}[clk_polarity]
for i in range(len(pads.clk_p)):
pad_oddrx2f = Signal()
pad_clk = Signal()
self.specials += Instance("OSER4",
p_TXCLK_POL = 0b0,
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
**{f"i_TX{n}": 0b0 for n in range(2)},
**{f"i_D{n}": (clk_pattern >> n) & 0b1 for n in range(4)},
o_Q0 = pad_oddrx2f,
o_Q1 = Open()
)
self.specials += Instance("IODELAY",
p_C_STATIC_DLY = cmd_delay,
p_DYN_DLY_EN = "FALSE",
p_ADAPT_EN = "FALSE",
i_SDTAP = 0,
i_DLYSTEP = Constant(0, 8),
i_VALUE = 0,
i_DI = pad_oddrx2f,
o_DF = Open(),
o_DO = pad_clk,
)
self.specials += Instance("ELVDS_OBUF",
i_I = pad_clk,
o_O = pads.clk_p[i],
o_OB = pads.clk_n[i]
)
# Commands -----------------------------------------------------------------------------
commands = {
# Pad name: (DFI name, Pad type (required or optional))
"reset_n" : ("reset_n", "optional"),
"cs_n" : ("cs_n", "optional"),
"a" : ("address", "required"),
"ba" : ("bank" , "required"),
"ras_n" : ("ras_n" , "required"),
"cas_n" : ("cas_n" , "required"),
"we_n" : ("we_n" , "required"),
"cke" : ("cke" , "optional"),
"odt" : ("odt" , "optional"),
}
for pad_name, (dfi_name, pad_type) in commands.items():
pad = getattr(pads, pad_name, None)
if (pad is None):
if (pad_type == "required"):
raise ValueError(f"DRAM pad {pad_name} required but not found in pads.")
continue
for i in range(len(pad)):
pad_oddrx2f = Signal()
self.specials += Instance("OSER4",
p_TXCLK_POL = 0b0,
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
**{f"i_TX{n}": 0b0 for n in range(2)},
**{f"i_D{n}": getattr(dfi.phases[n//2], dfi_name)[i] for n in range(4)},
o_Q0 = pad_oddrx2f,
o_Q1 = Open()
)
self.specials += Instance("IODELAY",
p_C_STATIC_DLY = cmd_delay,
p_DYN_DLY_EN = "FALSE",
p_ADAPT_EN = "FALSE",
i_SDTAP = 0,
i_DLYSTEP = Constant(0, 8),
i_VALUE = 0,
i_DI = pad_oddrx2f,
o_DF = Open(),
o_DO = pad[i]
)
# DQS/DM/DQ --------------------------------------------------------------------------------
dq_oe = Signal()
dqs_re = Signal()
dqs_oe = Signal()
dqs_postamble = Signal()
dqs_preamble = Signal()
for i in range(databits//8):
# DQS
dqs_i = Signal()
dqsr90 = Signal()
dqsw270 = Signal()
dqsw = Signal()
rdpntr = Signal(3)
wrpntr = Signal(3)
rdly = Signal(3)
burstdet = Signal()
self.sync += [
If(self._dly_sel.storage[i] & self._rdly_dq_rst.re, rdly.eq(0)),
If(self._dly_sel.storage[i] & self._rdly_dq_inc.re, rdly.eq(rdly + 1))
]
self.specials += Instance("DQS",
p_DQS_MODE = "X2_DDR3",
# Clocks / Reset
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
i_DLLSTEP = self.init.delay,
i_HOLD = self.init.pause | self._dly_sel.storage[i],
# Control
# Assert LOADNs to use DDRDEL control
i_RLOADN = 0,
i_RMOVE = 0,
i_RDIR = 1,
i_WLOADN = 0,
i_WMOVE = 0,
i_WDIR = 1,
o_RFLAG = Open(),
o_WFLAG = Open(),
# Reads (generate shifted DQS clock for reads)
i_READ = Replicate(dqs_re, 4),
i_RCLKSEL = rdly,
i_DQSIN = dqs_i,
o_DQSR90 = dqsr90,
o_RPOINT = rdpntr,
o_WPOINT = wrpntr,
o_RVALID = self.datavalid[i],
o_RBURST = burstdet,
# Writes (generate shifted ECLK clock for writes)
i_WSTEP = Constant(0, 8),
o_DQSW270 = dqsw270,
o_DQSW0 = dqsw
)
burstdet_d = Signal()
self.sync += [
burstdet_d.eq(burstdet),
If(self._burstdet_clr.re, self._burstdet_seen.status[i].eq(0)),
If(burstdet & ~burstdet_d, self._burstdet_seen.status[i].eq(1)),
]
# DQS ----------------------------------------------------------------------------------
dqs_o = Signal()
dqs_o_oen = Signal()
self.specials += [
Instance("OSER4_MEM",
p_TCLK_SOURCE = "DQSW",
p_TXCLK_POL = 0b1,
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
i_TCLK = dqsw,
i_TX0 = ~(dqs_oe | dqs_postamble),
i_TX1 = ~(dqs_oe | dqs_preamble),
**{f"i_D{n}": (0b1010 >> n) & 0b1 for n in range(4)},
o_Q0 = dqs_o,
o_Q1 = dqs_o_oen
),
Instance("ELVDS_IOBUF",
i_I = dqs_o,
i_OEN = dqs_o_oen,
o_O = dqs_i,
io_IO = pads.dqs_p[i],
io_IOB = pads.dqs_n[i]
)
]
# DM -----------------------------------------------------------------------------------
dm_o_data = Signal(8)
dm_o_data_d = Signal(8)
dm_o_data_muxed = Signal(4)
for n in range(8):
self.comb += dm_o_data[n].eq(dfi.phases[n//4].wrdata_mask[n%4*databits//8+dm_remapping.get(i, i)])
self.sync += dm_o_data_d.eq(dm_o_data)
dm_bl8_cases = {}
dm_bl8_cases[0] = dm_o_data_muxed.eq(dm_o_data[:4])
dm_bl8_cases[1] = dm_o_data_muxed.eq(dm_o_data_d[4:])
self.sync += Case(bl8_chunk, dm_bl8_cases)
self.specials += Instance("OSER4_MEM",
p_TCLK_SOURCE = "DQSW270",
p_TXCLK_POL = 0b0,
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
i_TCLK = dqsw270,
**{f"i_TX{n}": 0b0 for n in range(2)},
**{f"i_D{n}": dm_o_data_muxed[n] for n in range(4)},
o_Q0 = pads.dm[i],
o_Q1 = Open()
)
# DQ -----------------------------------------------------------------------------------
for j in range(8*i, 8*(i+1)):
dq_o = Signal()
dq_o_oen = Signal()
dq_i = Signal()
dq_i_data = Signal(8)
dq_o_data = Signal(8)
dq_o_data_d = Signal(8)
dq_o_data_muxed = Signal(4)
for n in range(8):
self.comb += dq_o_data[n].eq(dfi.phases[n//4].wrdata[n%4*databits+j])
self.sync += dq_o_data_d.eq(dq_o_data)
dq_bl8_cases = {}
dq_bl8_cases[0] = dq_o_data_muxed.eq(dq_o_data[:4])
dq_bl8_cases[1] = dq_o_data_muxed.eq(dq_o_data_d[4:])
self.sync += Case(bl8_chunk, dq_bl8_cases)
self.specials += Instance("OSER4_MEM",
p_TCLK_SOURCE = "DQSW270",
p_TXCLK_POL = 0b0,
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
i_TCLK = dqsw270,
i_TX0 = ~dq_oe,
i_TX1 = ~dq_oe,
**{f"i_D{n}": dq_o_data_muxed[n] for n in range(4)},
o_Q0 = dq_o,
o_Q1 = dq_o_oen,
)
dq_i_bitslip = BitSlip(4,
rst = self._dly_sel.storage[i] & self._rdly_dq_bitslip_rst.re,
slp = self._dly_sel.storage[i] & self._rdly_dq_bitslip.re,
cycles = 1)
self.submodules += dq_i_bitslip
self.specials += Instance("IDES4_MEM",
i_RESET = ResetSignal("sys"),
i_PCLK = ClockSignal("sys"),
i_FCLK = ClockSignal("sys2x"),
i_ICLK = dqsr90,
i_RADDR = rdpntr,
i_WADDR = wrpntr,
i_D = dq_i,
i_CALIB = 0,
**{f"o_Q{n}": dq_i_bitslip.i[n] for n in range(4)},
)
dq_i_bitslip_o_d = Signal(4)
self.sync += dq_i_bitslip_o_d.eq(dq_i_bitslip.o)
self.comb += dq_i_data.eq(Cat(dq_i_bitslip_o_d, dq_i_bitslip.o))
for n in range(8):
self.comb += dfi.phases[n//4].rddata[n%4*databits+j].eq(dq_i_data[n])
self.specials += Instance("IOBUF",
i_I = dq_o,
i_OEN = dq_o_oen,
o_O = dq_i,
io_IO = pads.dq[j]
)
# Read Control Path ------------------------------------------------------------------------
rdtap = cl_sys_latency - 1 + 1
# Creates a delay line of read commands coming from the DFI interface. The taps are used to
# control DQS read (internal read pulse of the DQSBUF) and the output of the delay is used
# signal a valid read data to the DFI interface.
#
# The DQS read must be asserted for 2 sys_clk cycles before the read data is coming back from
# the DRAM (see 6.2.4 READ Pulse Positioning Optimization of FPGA-TN-02035-1.2)
#
# The read data valid is asserted for 1 sys_clk cycle when the data is available on the DFI
# interface, the latency is the sum of the ODDRX2DQA, CAS, IDDRX2DQA latencies.
rddata_en = TappedDelayLine(
signal = reduce(or_, [dfi.phases[i].rddata_en for i in range(nphases)]),
ntaps = self.settings.read_latency
)
self.submodules += rddata_en
self.comb += [phase.rddata_valid.eq(rddata_en.output) for phase in dfi.phases]
self.comb += dqs_re.eq(rddata_en.taps[rdtap] | rddata_en.taps[rdtap + 1])
# Write Control Path -----------------------------------------------------------------------
wrtap = cwl_sys_latency - 1 + 1
# Create a delay line of write commands coming from the DFI interface. This taps are used to
# control DQ/DQS tristates and to select write data of the DRAM burst from the DFI interface.
# The PHY is operating in halfrate mode (so provide 4 datas every sys_clk cycles: 2x for DDR,
# 2x for halfrate) but DDR3 requires a burst of 8 datas (BL8) for best efficiency. Writes are
# then performed in 2 sys_clk cycles and data needs to be selected for each cycle.
wrdata_en = TappedDelayLine(
signal = reduce(or_, [dfi.phases[i].wrdata_en for i in range(nphases)]),
ntaps = wrtap + 4
)
self.submodules += wrdata_en
self.comb += dq_oe.eq(wrdata_en.taps[wrtap] | wrdata_en.taps[wrtap + 1])
self.comb += bl8_chunk.eq(wrdata_en.taps[wrtap])
self.comb += dqs_oe.eq(dq_oe)
# Write DQS Postamble/Preamble Control Path ------------------------------------------------
# Generates DQS Preamble 1 cycle before the first write and Postamble 1 cycle after the last
# write. During writes, DQS tristate is configured as output for at least 4 sys_clk cycles:
# 1 for Preamble, 2 for the Write and 1 for the Postamble.
self.comb += dqs_preamble.eq( wrdata_en.taps[wrtap - 1] & ~wrdata_en.taps[wrtap + 0])
self.comb += dqs_postamble.eq(wrdata_en.taps[wrtap + 2] & ~wrdata_en.taps[wrtap + 1])