mirror of
https://github.com/enjoy-digital/litedram.git
synced 2025-01-04 09:52:25 -05:00
test: update summary to work for all configurations (use pandas)
This commit is contained in:
parent
f9f86d507f
commit
1702e2ad7c
1 changed files with 312 additions and 223 deletions
|
@ -12,6 +12,15 @@ import subprocess
|
|||
from collections import defaultdict, namedtuple
|
||||
|
||||
import yaml
|
||||
try:
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib
|
||||
from matplotlib.ticker import FuncFormatter, PercentFormatter, ScalarFormatter
|
||||
_summary = True
|
||||
except ImportError as e:
|
||||
_summary = False
|
||||
print('[WARNING] Results summary not available:', e, file=sys.stderr)
|
||||
|
||||
from litedram.common import Settings as _Settings
|
||||
|
||||
|
@ -19,24 +28,12 @@ from . import benchmark
|
|||
from .benchmark import LiteDRAMBenchmarkSoC, load_access_pattern
|
||||
|
||||
|
||||
# constructs python regex named group
|
||||
def ng(name, regex):
|
||||
return r'(?P<{}>{})'.format(name, regex)
|
||||
|
||||
def center(text, width, fillc=' '):
|
||||
added = width - len(text)
|
||||
left = added // 2
|
||||
right = added - left
|
||||
return fillc * left + text + fillc * right
|
||||
|
||||
def human_readable(value):
|
||||
binary_prefixes = ['', 'k', 'M', 'G', 'T']
|
||||
mult = 1.0
|
||||
for prefix in binary_prefixes:
|
||||
if value * mult < 1024:
|
||||
break
|
||||
mult /= 1024
|
||||
return mult, prefix
|
||||
|
||||
# Benchmark configuration --------------------------------------------------------------------------
|
||||
|
||||
|
@ -72,7 +69,7 @@ class CustomAccess(Settings):
|
|||
self.set_attributes(locals())
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
def pattern(self):
|
||||
# we have to load the file to know pattern length, cache it when requested
|
||||
if not hasattr(self, '_pattern'):
|
||||
path = self.pattern_file
|
||||
|
@ -80,7 +77,11 @@ class CustomAccess(Settings):
|
|||
benchmark_dir = os.path.dirname(benchmark.__file__)
|
||||
path = os.path.join(benchmark_dir, path)
|
||||
self._pattern = load_access_pattern(path)
|
||||
return len(self._pattern)
|
||||
return self._pattern
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
return len(self.pattern)
|
||||
|
||||
def as_args(self):
|
||||
return ['--access-pattern=%s' % self.pattern_file]
|
||||
|
@ -107,247 +108,319 @@ class BenchmarkConfiguration(Settings):
|
|||
def length(self):
|
||||
return self.access_pattern.length
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, d):
|
||||
access_cls = CustomAccess if 'pattern_file' in d['access_pattern'] else GeneratedAccess
|
||||
d['access_pattern'] = access_cls(**d['access_pattern'])
|
||||
return cls(**d)
|
||||
|
||||
@classmethod
|
||||
def load_yaml(cls, yaml_file):
|
||||
with open(yaml_file) as f:
|
||||
description = yaml.safe_load(f)
|
||||
configs = []
|
||||
for name, desc in description.items():
|
||||
if 'access_pattern' in desc:
|
||||
access = CustomAccess(desc.pop('access_pattern'))
|
||||
else:
|
||||
access = GeneratedAccess(desc.pop('bist_length'), desc.pop('bist_random'))
|
||||
configs.append(cls(name, **desc, access_pattern=access))
|
||||
desc['name'] = name
|
||||
configs.append(cls.from_dict(desc))
|
||||
return configs
|
||||
|
||||
def __repr__(self):
|
||||
return 'BenchmarkConfiguration(%s)' % self.as_dict()
|
||||
|
||||
@property
|
||||
def soc(self):
|
||||
if not hasattr(self, '_soc'):
|
||||
kwargs = dict(
|
||||
sdram_module=self.sdram_module,
|
||||
sdram_data_width=self.sdram_data_width,
|
||||
)
|
||||
if isinstance(self.access_pattern, GeneratedAccess):
|
||||
kwargs['bist_length'] = self.access_pattern.bist_length
|
||||
kwargs['bist_random'] = self.access_pattern.bist_random
|
||||
elif isinstance(self.access_pattern, CustomAccess):
|
||||
kwargs['pattern_init'] = self.access_pattern.pattern
|
||||
else:
|
||||
raise ValueError(self.access_pattern)
|
||||
self._soc = LiteDRAMBenchmarkSoC(**kwargs)
|
||||
return self._soc
|
||||
|
||||
# Benchmark results --------------------------------------------------------------------------------
|
||||
|
||||
# constructs python regex named group
|
||||
def ng(name, regex):
|
||||
return r'(?P<{}>{})'.format(name, regex)
|
||||
|
||||
|
||||
def _compiled_pattern(stage, var):
|
||||
pattern_fmt = r'{stage}\s+{var}:\s+{value}'
|
||||
pattern = pattern_fmt.format(
|
||||
stage=stage,
|
||||
var=var,
|
||||
value=ng('value', '[0-9]+'),
|
||||
)
|
||||
return re.compile(pattern)
|
||||
result = re.search(pattern, benchmark_output)
|
||||
|
||||
|
||||
class BenchmarkResult:
|
||||
def __init__(self, config, output):
|
||||
self.config = config
|
||||
# pre-compiled patterns for all benchmarks
|
||||
patterns = {
|
||||
'generator_ticks': _compiled_pattern('BIST-GENERATOR', 'ticks'),
|
||||
'checker_errors': _compiled_pattern('BIST-CHECKER', 'errors'),
|
||||
'checker_ticks': _compiled_pattern('BIST-CHECKER', 'ticks'),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def find(pattern, output):
|
||||
result = pattern.search(output)
|
||||
assert result is not None, \
|
||||
'Could not find pattern "%s" in output:\n%s' % (pattern, benchmark_output)
|
||||
return int(result.group('value'))
|
||||
|
||||
def __init__(self, output):
|
||||
self._output = output
|
||||
self.parse_output(output)
|
||||
# instantiate the benchmarked soc to check its configuration
|
||||
self.benchmark_soc = LiteDRAMBenchmarkSoC(**self.config._settings)
|
||||
for attr, pattern in self.patterns.items():
|
||||
setattr(self, attr, self.find(pattern, output))
|
||||
|
||||
def cmd_count(self):
|
||||
data_width = self.benchmark_soc.sdram.controller.interface.data_width
|
||||
return self.config.bist_length / (data_width // 8)
|
||||
|
||||
def clk_period(self):
|
||||
clk_freq = self.benchmark_soc.sdrphy.module.clk_freq
|
||||
return 1 / clk_freq
|
||||
|
||||
def write_bandwidth(self):
|
||||
return (8 * self.config.bist_length) / (self.generator_ticks * self.clk_period())
|
||||
|
||||
def read_bandwidth(self):
|
||||
return (8 * self.config.bist_length) / (self.checker_ticks * self.clk_period())
|
||||
|
||||
def write_efficiency(self):
|
||||
return self.cmd_count() / self.generator_ticks
|
||||
|
||||
def read_efficiency(self):
|
||||
return self.cmd_count() / self.checker_ticks
|
||||
|
||||
def write_latency(self):
|
||||
assert self.config.bist_length == 1, 'Not a latency benchmark'
|
||||
return self.generator_ticks
|
||||
|
||||
def read_latency(self):
|
||||
assert self.config.bist_length == 1, 'Not a latency benchmark'
|
||||
return self.checker_ticks
|
||||
|
||||
def parse_output(self, output):
|
||||
bist_pattern = r'{stage}\s+{var}:\s+{value}'
|
||||
|
||||
def find(stage, var):
|
||||
pattern = bist_pattern.format(
|
||||
stage=stage,
|
||||
var=var,
|
||||
value=ng('value', '[0-9]+'),
|
||||
)
|
||||
result = re.search(pattern, output)
|
||||
assert result is not None, 'Could not find pattern in output: %s, %s' % (pattern, output)
|
||||
return int(result.group('value'))
|
||||
|
||||
self.generator_ticks = find('BIST-GENERATOR', 'ticks')
|
||||
self.checker_errors = find('BIST-CHECKER', 'errors')
|
||||
self.checker_ticks = find('BIST-CHECKER', 'ticks')
|
||||
|
||||
@classmethod
|
||||
def dump_results_json(cls, results, file):
|
||||
"""Save multiple results in a JSON file.
|
||||
|
||||
Only configurations and outpits are saved, as they can be used to reconstruct BenchmarkResult.
|
||||
"""
|
||||
# simply use config._settings as it defines the BenchmarkConfiguration
|
||||
results_raw = [(r.config._settings, r._output) for r in results]
|
||||
with open(file, 'w') as f:
|
||||
json.dump(results_raw, f)
|
||||
|
||||
@classmethod
|
||||
def load_results_json(cls, file):
|
||||
"""Load results from a JSON file."""
|
||||
with open(file, 'r') as f:
|
||||
results_raw = json.load(f)
|
||||
return [cls(BenchmarkConfiguration(**settings), output) for (settings, output) in results_raw]
|
||||
def __repr__(self):
|
||||
d = {attr: getattr(self, attr) for attr in self.patterns.keys()}
|
||||
return 'BenchmarkResult(%s)' % d
|
||||
|
||||
# Results summary ----------------------------------------------------------------------------------
|
||||
|
||||
def human_readable(value):
|
||||
binary_prefixes = ['', 'k', 'M', 'G', 'T']
|
||||
mult = 1.0
|
||||
for prefix in binary_prefixes:
|
||||
if value * mult < 1024:
|
||||
break
|
||||
mult /= 1024
|
||||
return mult, prefix
|
||||
|
||||
|
||||
def clocks_fmt(clocks):
|
||||
return '{:d} clk'.format(int(clocks))
|
||||
|
||||
|
||||
def bandwidth_fmt(bw):
|
||||
mult, prefix = human_readable(bw)
|
||||
return '{:.1f} {}bps'.format(bw * mult, prefix)
|
||||
|
||||
|
||||
def efficiency_fmt(eff):
|
||||
return '{:.1f} %'.format(eff * 100)
|
||||
|
||||
|
||||
class ResultsSummary:
|
||||
# value_scaling is a function: value -> (multiplier, prefix)
|
||||
Fmt = namedtuple('MetricFormatting', ['name', 'unit', 'value_scaling'])
|
||||
metric_formats = {
|
||||
'write_bandwidth': Fmt('Write bandwidth', 'bps', lambda value: human_readable(value)),
|
||||
'read_bandwidth': Fmt('Read bandwidth', 'bps', lambda value: human_readable(value)),
|
||||
'write_efficiency': Fmt('Write efficiency', '', lambda value: (100, '%')),
|
||||
'read_efficiency': Fmt('Read efficiency', '', lambda value: (100, '%')),
|
||||
'write_latency': Fmt('Write latency', 'clk', lambda value: (1, '')),
|
||||
'read_latency': Fmt('Read latency', 'clk', lambda value: (1, '')),
|
||||
}
|
||||
def __init__(self, run_data, plots_dir='plots'):
|
||||
self.plots_dir = plots_dir
|
||||
|
||||
def __init__(self, results):
|
||||
self.results = results
|
||||
# gather results into tabular data
|
||||
column_mappings = {
|
||||
'name': lambda d: d.config.name,
|
||||
'sdram_module': lambda d: d.config.sdram_module,
|
||||
'sdram_data_width': lambda d: d.config.sdram_data_width,
|
||||
'bist_length': lambda d: getattr(d.config.access_pattern, 'bist_length', None),
|
||||
'bist_random': lambda d: getattr(d.config.access_pattern, 'bist_random', None),
|
||||
'pattern_file': lambda d: getattr(d.config.access_pattern, 'pattern_file', None),
|
||||
'length': lambda d: d.config.length,
|
||||
'generator_ticks': lambda d: d.result.generator_ticks,
|
||||
'checker_errors': lambda d: d.result.checker_errors,
|
||||
'checker_ticks': lambda d: d.result.checker_ticks,
|
||||
'ctrl_data_width': lambda d: d.config.soc.sdram.controller.interface.data_width,
|
||||
'clk_freq': lambda d: d.config.soc.sdrphy.module.clk_freq,
|
||||
}
|
||||
columns = {name: [mapping(data) for data in run_data] for name, mapping, in column_mappings.items()}
|
||||
self.df = df = pd.DataFrame(columns)
|
||||
|
||||
def by_metric(self, metric):
|
||||
"""Returns pairs of value of the given metric and the configuration used for benchmark"""
|
||||
for result in self.results:
|
||||
# omit the results that should not be used to calculate given metric
|
||||
if result.config.bist_length == 1 and metric not in ['read_latency', 'write_latency'] \
|
||||
or result.config.bist_length != 1 and metric in ['read_latency', 'write_latency']:
|
||||
continue
|
||||
value = getattr(result, metric)()
|
||||
yield value, result.config
|
||||
# replace None with NaN
|
||||
df.fillna(value=np.nan, inplace=True)
|
||||
|
||||
def print(self):
|
||||
legend = '(module, datawidth, length, random, result)'
|
||||
fmt = ' {module:15} {dwidth:2} {length:4} {random:1} {result}'
|
||||
# compute other metrics based on ticks and configuration parameters
|
||||
df['clk_period'] = 1 / df['clk_freq']
|
||||
df['write_bandwidth'] = (8 * df['length']) / (df['generator_ticks'] * df['clk_period'])
|
||||
df['read_bandwidth'] = (8 * df['length']) / (df['checker_ticks'] * df['clk_period'])
|
||||
|
||||
# store formatted lines per metric
|
||||
metric_lines = defaultdict(list)
|
||||
for metric, (_, unit, formatter) in self.metric_formats.items():
|
||||
for value, config in self.by_metric(metric):
|
||||
mult, prefix = formatter(value)
|
||||
value_fmt = '{:5.1f} {}{}' if isinstance(value * mult, float) else '{:5d} {}{}'
|
||||
result = value_fmt.format(value * mult, prefix, unit)
|
||||
line = fmt.format(module=config.sdram_module,
|
||||
dwidth=config.sdram_data_width,
|
||||
length=config.bist_length,
|
||||
random=int(config.bist_random),
|
||||
result=result)
|
||||
metric_lines[metric].append(line)
|
||||
df['cmd_count'] = df['length'] / (df['ctrl_data_width'] / 8)
|
||||
df['write_efficiency'] = df['cmd_count'] / df['generator_ticks']
|
||||
df['read_efficiency'] = df['cmd_count'] / df['checker_ticks']
|
||||
|
||||
# find length of the longest line
|
||||
max_length = max((len(l) for lines in metric_lines.values() for l in lines))
|
||||
max_length = max(max_length, len(legend) + 2)
|
||||
width = max_length + 2
|
||||
df['write_latency'] = df[df['bist_length'] == 1]['generator_ticks']
|
||||
df['read_latency'] = df[df['bist_length'] == 1]['checker_ticks']
|
||||
|
||||
# print the formatted summary
|
||||
def header(text):
|
||||
mid = center(text, width - 6, '=')
|
||||
return center(mid, width, '-')
|
||||
print(header(' Summary '))
|
||||
print(center(legend, width))
|
||||
for metric, lines in metric_lines.items():
|
||||
print(center(self.metric_formats[metric].name, width))
|
||||
for line in lines:
|
||||
print(line)
|
||||
print(header(''))
|
||||
# boolean distinction between latency benchmarks and sequence benchmarks,
|
||||
# as thier results differ significanly
|
||||
df['is_latency'] = ~pd.isna(df['write_latency'])
|
||||
assert (df['is_latency'] == ~pd.isna(df['read_latency'])).all(), \
|
||||
'write_latency and read_latency should both have a value or both be NaN'
|
||||
|
||||
def plot(self, output_dir, backend='Agg', theme='default', save_format='png', **savefig_kwargs):
|
||||
"""Create plots with benchmark results summary
|
||||
# data formatting for text summary
|
||||
self.text_formatters = {
|
||||
'write_bandwidth': bandwidth_fmt,
|
||||
'read_bandwidth': bandwidth_fmt,
|
||||
'write_efficiency': efficiency_fmt,
|
||||
'read_efficiency': efficiency_fmt,
|
||||
'write_latency': clocks_fmt,
|
||||
'read_latency': clocks_fmt,
|
||||
}
|
||||
|
||||
Default backend is Agg, which is non-GUI backed and only allows
|
||||
to save figures as files. If a GUI backed is passed, plt.show()
|
||||
will be called at the end.
|
||||
"""
|
||||
# import locally here to be able to run benchmarks without installing matplotlib
|
||||
import matplotlib
|
||||
matplotlib.use(backend)
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.ticker import FuncFormatter, PercentFormatter, ScalarFormatter
|
||||
|
||||
plt.style.use(theme)
|
||||
|
||||
def bandwidth_formatter_func(value, pos):
|
||||
mult, prefix = human_readable(value)
|
||||
return '{:.1f}{}bps'.format(value * mult, prefix)
|
||||
|
||||
tick_formatters = {
|
||||
'write_bandwidth': FuncFormatter(bandwidth_formatter_func),
|
||||
'read_bandwidth': FuncFormatter(bandwidth_formatter_func),
|
||||
# data formatting for plot summary
|
||||
self.plot_xticks_formatters = {
|
||||
'write_bandwidth': FuncFormatter(lambda value, pos: bandwidth_fmt(value)),
|
||||
'read_bandwidth': FuncFormatter(lambda value, pos: bandwidth_fmt(value)),
|
||||
'write_efficiency': PercentFormatter(1.0),
|
||||
'read_efficiency': PercentFormatter(1.0),
|
||||
'write_latency': ScalarFormatter(),
|
||||
'read_latency': ScalarFormatter(),
|
||||
}
|
||||
|
||||
def config_tick_name(config):
|
||||
return '{}\n{}, {}, {}'.format(config.sdram_module, config.sdram_data_width,
|
||||
config.bist_length, int(config.bist_random))
|
||||
def print_df(self, title, df):
|
||||
# make sure all data will be shown
|
||||
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
|
||||
print('===> {}:'.format(title))
|
||||
print(df)
|
||||
|
||||
for metric, (name, unit, _) in self.metric_formats.items():
|
||||
fig = plt.figure()
|
||||
axis = plt.gca()
|
||||
def get_summary(self, mask=None, columns=None, column_formatting=None, sort_kwargs=None):
|
||||
# work on a copy
|
||||
df = self.df.copy()
|
||||
|
||||
values, configs = zip(*self.by_metric(metric))
|
||||
ticks = np.arange(len(configs))
|
||||
if sort_kwargs is not None:
|
||||
df = df.sort_values(**sort_kwargs)
|
||||
|
||||
axis.barh(ticks, values, align='center')
|
||||
axis.set_yticks(ticks)
|
||||
axis.set_yticklabels([config_tick_name(c) for c in configs])
|
||||
axis.invert_yaxis()
|
||||
axis.xaxis.set_major_formatter(tick_formatters[metric])
|
||||
axis.xaxis.set_tick_params(rotation=30)
|
||||
axis.grid(True)
|
||||
axis.spines['top'].set_visible(False)
|
||||
axis.spines['right'].set_visible(False)
|
||||
axis.set_axisbelow(True)
|
||||
if column_formatting is not None:
|
||||
for column, mapping in column_formatting.items():
|
||||
old = '_{}'.format(column)
|
||||
df[old] = df[column].copy()
|
||||
df[column] = df[column].map(lambda value: mapping(value) if not pd.isna(value) else value)
|
||||
|
||||
# force xmax to 100%
|
||||
if metric in ['write_efficiency', 'read_efficiency']:
|
||||
axis.set_xlim(right=1.0)
|
||||
df = df[mask] if mask is not None else df
|
||||
df = df[columns] if columns is not None else df
|
||||
|
||||
title = self.metric_formats[metric].name
|
||||
axis.set_title(title, fontsize=12)
|
||||
return df
|
||||
|
||||
plt.tight_layout()
|
||||
filename = '{}.{}'.format(metric, save_format)
|
||||
fig.savefig(os.path.join(output_dir, filename), **savefig_kwargs)
|
||||
def text_summary(self):
|
||||
for title, df in self.groupped_results():
|
||||
self.print_df(title, df)
|
||||
print()
|
||||
|
||||
def groupped_results(self, formatted=True):
|
||||
df = self.df
|
||||
|
||||
formatters = self.text_formatters if formatted else {}
|
||||
|
||||
common_columns = ['name', 'sdram_module', 'sdram_data_width']
|
||||
latency_columns = ['write_latency', 'read_latency']
|
||||
performance_columns = ['write_bandwidth', 'read_bandwidth', 'write_efficiency', 'read_efficiency']
|
||||
|
||||
yield 'Latency', self.get_summary(
|
||||
mask=df['is_latency'] == True,
|
||||
columns=common_columns + latency_columns,
|
||||
column_formatting=formatters,
|
||||
)
|
||||
# yield 'Any access pattern', self.get_summary(
|
||||
# mask=(df['is_latency'] == False),
|
||||
# columns=common_columns + performance_columns + ['length', 'bist_random', 'pattern_file'],
|
||||
# column_formatting=self.text_formatters,
|
||||
# **kwargs,
|
||||
# ),
|
||||
yield 'Custom access pattern', self.get_summary(
|
||||
mask=(df['is_latency'] == False) & (~pd.isna(df['pattern_file'])),
|
||||
columns=common_columns + performance_columns + ['length', 'pattern_file'],
|
||||
column_formatting=formatters,
|
||||
),
|
||||
yield 'Sequential access pattern', self.get_summary(
|
||||
mask=(df['is_latency'] == False) & (pd.isna(df['pattern_file'])) & (df['bist_random'] == False),
|
||||
columns=common_columns + performance_columns + ['bist_length'], # could be length
|
||||
column_formatting=formatters,
|
||||
),
|
||||
yield 'Random access pattern', self.get_summary(
|
||||
mask=(df['is_latency'] == False) & (pd.isna(df['pattern_file'])) & (df['bist_random'] == True),
|
||||
columns=common_columns + performance_columns + ['bist_length'],
|
||||
column_formatting=formatters,
|
||||
),
|
||||
|
||||
def plot_summary(self, plots_dir='plots', backend='Agg', theme='default', save_format='png', **savefig_kw):
|
||||
matplotlib.use(backend)
|
||||
import matplotlib.pyplot as plt
|
||||
plt.style.use(theme)
|
||||
|
||||
for title, df in self.groupped_results(formatted=False):
|
||||
for column in self.plot_xticks_formatters.keys():
|
||||
if column not in df.columns or df[column].empty:
|
||||
continue
|
||||
axis = self.plot_df(title, df, column)
|
||||
|
||||
# construct path
|
||||
def path_name(name):
|
||||
return name.lower().replace(' ', '_')
|
||||
|
||||
filename = '{}.{}'.format(path_name(column), save_format)
|
||||
path = os.path.join(plots_dir, path_name(title), filename)
|
||||
os.makedirs(os.path.dirname(path), exist_ok=True)
|
||||
|
||||
# save figure
|
||||
axis.get_figure().savefig(path, **savefig_kw)
|
||||
|
||||
if backend != 'Agg':
|
||||
plt.show()
|
||||
|
||||
def plot_df(self, title, df, column, save_format='png', save_filename=None):
|
||||
if save_filename is None:
|
||||
save_filename = os.path.join(self.plots_dir, title.lower().replace(' ', '_'))
|
||||
|
||||
axis = df.plot(kind='barh', x='name', y=column, title=title, grid=True, legend=False)
|
||||
if column in self.plot_xticks_formatters:
|
||||
axis.xaxis.set_major_formatter(self.plot_xticks_formatters[column])
|
||||
axis.xaxis.set_tick_params(rotation=15)
|
||||
axis.spines['top'].set_visible(False)
|
||||
axis.spines['right'].set_visible(False)
|
||||
axis.set_axisbelow(True)
|
||||
|
||||
# # force xmax to 100%
|
||||
# if column in ['write_efficiency', 'read_efficiency']:
|
||||
# axis.set_xlim(right=1.0)
|
||||
|
||||
return axis
|
||||
|
||||
# Run ----------------------------------------------------------------------------------------------
|
||||
|
||||
def run_benchmark(cmd_args):
|
||||
# run as separate process, because else we cannot capture all output from verilator
|
||||
benchmark_script = os.path.join(os.path.dirname(__file__), 'benchmark.py')
|
||||
command = ['python3', benchmark_script, *cmd_args]
|
||||
proc = subprocess.run(command, stdout=subprocess.PIPE)
|
||||
class RunCache(list):
|
||||
RunData = namedtuple('RunData', ['config', 'result'])
|
||||
|
||||
def dump_json(self, filename):
|
||||
json_data = [{'config': data.config.as_dict(), 'output': data.result._output} for data in self]
|
||||
with open(filename, 'w') as f:
|
||||
json.dump(json_data, f)
|
||||
|
||||
@classmethod
|
||||
def load_json(cls, filename):
|
||||
with open(filename, 'r') as f:
|
||||
json_data = json.load(f)
|
||||
loaded = []
|
||||
for data in json_data:
|
||||
config = BenchmarkConfiguration.from_dict(data['config'])
|
||||
result = BenchmarkResult(data['output'])
|
||||
loaded.append(cls.RunData(config=config, result=result))
|
||||
return loaded
|
||||
|
||||
|
||||
def run_python(script, args):
|
||||
command = ['python3', script, *args]
|
||||
proc = subprocess.run(command, stdout=subprocess.PIPE, cwd=os.path.dirname(script))
|
||||
return str(proc.stdout)
|
||||
|
||||
|
||||
def run_benchmarks(configurations):
|
||||
results = []
|
||||
for name, config in configurations.items():
|
||||
cmd_args = config.as_args()
|
||||
print('{}: {}'.format(name, ' '.join(cmd_args)))
|
||||
output = run_benchmark(cmd_args)
|
||||
# exit if checker had any read error
|
||||
result = BenchmarkResult(config, output)
|
||||
if result.checker_errors != 0:
|
||||
print('Error during benchmark "{}": checker_errors = {}'.format(
|
||||
name, result.checker_errors), file=sys.stderr)
|
||||
sys.exit(1)
|
||||
results.append(result)
|
||||
return results
|
||||
def run_benchmark(config):
|
||||
benchmark_script = os.path.join(os.path.dirname(__file__), 'benchmark.py')
|
||||
# run as separate process, because else we cannot capture all output from verilator
|
||||
output = run_python(benchmark_script, config.as_args())
|
||||
result = BenchmarkResult(output)
|
||||
# exit if checker had any read error
|
||||
if result.checker_errors != 0:
|
||||
raise RuntimeError('Error during benchmark: checker_errors = {}, args = {}'.format(
|
||||
result.checker_errors, args
|
||||
))
|
||||
return result
|
||||
|
||||
|
||||
def main(argv=None):
|
||||
|
@ -363,6 +436,7 @@ def main(argv=None):
|
|||
parser.add_argument('--plot-transparent', action='store_true', help='Use transparent background when saving plots')
|
||||
parser.add_argument('--plot-output-dir', default='plots', help='Specify where to save the plots')
|
||||
parser.add_argument('--plot-theme', default='default', help='Use different matplotlib theme')
|
||||
parser.add_argument('--ignore-failures', action='store_true', help='Ignore failuers during benchmarking, continue using successful runs only')
|
||||
parser.add_argument('--results-cache', help="""Use given JSON file as results cache. If the file exists,
|
||||
it will be loaded instead of running actual benchmarks,
|
||||
else benchmarks will be run normally, and then saved
|
||||
|
@ -370,6 +444,11 @@ def main(argv=None):
|
|||
to generate different summary without having to rerun benchmarks.""")
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
if not args.results_cache and not _summary:
|
||||
print('Summary not available and not running with --results-cache - run would not produce any results! Aborting.',
|
||||
file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# load and filter configurations
|
||||
configurations = BenchmarkConfiguration.load_yaml(args.config)
|
||||
filters = {
|
||||
|
@ -382,31 +461,41 @@ def main(argv=None):
|
|||
configurations = filter(f, configurations)
|
||||
configurations = list(configurations)
|
||||
|
||||
cache_exists = args.results_cache and os.path.isfile(args.results_cache)
|
||||
|
||||
# load outputs from cache if it exsits
|
||||
cache_exists = args.results_cache and os.path.isfile(args.results_cache)
|
||||
if args.results_cache and cache_exists:
|
||||
cached_results = BenchmarkResult.load_results_json(args.results_cache)
|
||||
cache = RunCache.load_json(args.results_cache)
|
||||
|
||||
# take only those that match configurations
|
||||
results = [r for r in cached_results if r.config in configurations.values()]
|
||||
names_to_load = [c.name for c in configurations]
|
||||
run_data = [data for data in cache if data.config.name in names_to_load]
|
||||
else: # run all the benchmarks normally
|
||||
results = run_benchmarks(configurations)
|
||||
run_data = []
|
||||
for config in configurations:
|
||||
print(' {}: {}'.format(config.name, ' '.join(config.as_args())))
|
||||
try:
|
||||
run_data.append(RunCache.RunData(config, run_benchmark(config)))
|
||||
except:
|
||||
if not args.ignore_failures:
|
||||
raise
|
||||
|
||||
# store outputs in cache
|
||||
if args.results_cache and not cache_exists:
|
||||
BenchmarkResult.dump_results_json(results, args.results_cache)
|
||||
cache = RunCache(run_data)
|
||||
cache.dump_json(args.results_cache)
|
||||
|
||||
# display the summary
|
||||
summary = ResultsSummary(results)
|
||||
summary.print()
|
||||
if args.plot:
|
||||
if not os.path.isdir(args.plot_output_dir):
|
||||
os.makedirs(args.plot_output_dir)
|
||||
summary.plot(args.plot_output_dir,
|
||||
backend=args.plot_backend,
|
||||
theme=args.plot_theme,
|
||||
save_format=args.plot_format,
|
||||
transparent=args.plot_transparent)
|
||||
# display summary
|
||||
if _summary:
|
||||
summary = ResultsSummary(run_data)
|
||||
summary.text_summary()
|
||||
if args.plot:
|
||||
summary.plot_summary(
|
||||
plots_dir=args.plot_output_dir,
|
||||
backend=args.plot_backend,
|
||||
theme=args.plot_theme,
|
||||
save_format=args.plot_format,
|
||||
transparent=args.plot_transparent,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in a new issue