litedram/test/test_multiplexer.py

574 lines
20 KiB
Python

# This file is Copyright (c) 2020 Antmicro <www.antmicro.com>
# License: BSD
import copy
import random
import unittest
from collections import namedtuple
from migen import *
from litex.soc.interconnect import stream
from litedram.common import *
from litedram.phy import dfi
from litedram.core.multiplexer import Multiplexer
# load after "* imports" to avoid using Migen version of vcd.py
from litex.gen.sim import run_simulation
from test.common import timeout_generator, CmdRequestRWDriver
def dfi_cmd_to_char(cas_n, ras_n, we_n):
return {
(1, 1, 1): "_",
(0, 1, 0): "w",
(0, 1, 1): "r",
(1, 0, 1): "a",
(1, 0, 0): "p",
(0, 0, 1): "f",
}[(cas_n, ras_n, we_n)]
class BankMachineStub:
def __init__(self, babits, abits):
self.cmd = stream.Endpoint(cmd_request_rw_layout(a=abits, ba=babits))
self.refresh_req = Signal()
self.refresh_gnt = Signal()
class RefresherStub:
def __init__(self, babits, abits):
self.cmd = stream.Endpoint(cmd_request_rw_layout(a=abits, ba=babits))
class MultiplexerDUT(Module):
# define default settings that can be overwritten in specific tests
# use only these settings that we actually need for Multiplexer
default_controller_settings = dict(
read_time=32,
write_time=16,
with_bandwidth=False,
)
default_phy_settings = dict(
nphases=2,
rdphase=0,
wrphase=1,
rdcmdphase=1,
wrcmdphase=0,
read_latency=5,
cwl=3,
# indirectly
nranks=1,
databits=16,
dfi_databits=2*16,
memtype="DDR2",
)
default_geom_settings = dict(
bankbits=3,
rowbits=13,
colbits=10,
)
default_timing_settings = dict(
tWTR=2,
tFAW=None,
tCCD=1,
tRRD=None,
)
def __init__(self, controller_settings=None, phy_settings=None, geom_settings=None,
timing_settings=None):
# update settings if provided
def updated(settings, update):
copy = settings.copy()
copy.update(update or {})
return copy
controller_settings = updated(self.default_controller_settings, controller_settings)
phy_settings = updated(self.default_phy_settings, phy_settings)
geom_settings = updated(self.default_geom_settings, geom_settings)
timing_settings = updated(self.default_timing_settings, timing_settings)
# use simpler settigns to include only Multiplexer-specific members
class SimpleSettings(Settings):
def __init__(self, **kwargs):
self.set_attributes(kwargs)
settings = SimpleSettings(**controller_settings)
settings.phy = SimpleSettings(**phy_settings)
settings.geom = SimpleSettings(**geom_settings)
settings.timing = SimpleSettings(**timing_settings)
settings.geom.addressbits = max(settings.geom.rowbits, settings.geom.colbits)
self.settings = settings
# create interfaces and stubs required to instantiate Multiplexer
abits = settings.geom.addressbits
babits = settings.geom.bankbits
nbanks = 2**babits
nranks = settings.phy.nranks
self.bank_machines = [BankMachineStub(abits=abits, babits=babits)
for _ in range(nbanks*nranks)]
self.refresher = RefresherStub(abits=abits, babits=babits)
self.dfi = dfi.Interface(addressbits=abits, bankbits=babits, nranks=settings.phy.nranks,
databits=settings.phy.dfi_databits, nphases=settings.phy.nphases)
address_align = log2_int(burst_lengths[settings.phy.memtype])
self.interface = LiteDRAMInterface(address_align=address_align, settings=settings)
# add Multiplexer
self.submodules.multiplexer = Multiplexer(settings, self.bank_machines, self.refresher,
self.dfi, self.interface)
# add helpers for driving bank machines/refresher
self.bm_drivers = [CmdRequestRWDriver(bm.cmd, i) for i, bm in enumerate(self.bank_machines)]
self.refresh_driver = CmdRequestRWDriver(self.refresher.cmd, i=1)
def fsm_state(self):
# return name of current state of Multiplexer's FSM
return self.multiplexer.fsm.decoding[(yield self.multiplexer.fsm.state)]
class TestMultiplexer(unittest.TestCase):
def test_init(self):
# Verify that instantiation of Multiplexer in MultiplexerDUT is correct
# This will fail if Multiplexer starts using any new setting from controller.settings
MultiplexerDUT()
def test_fsm_start_at_read(self):
# FSM should start at READ state (assumed in some other tests)
def main_generator(dut):
self.assertEqual((yield from dut.fsm_state()), "READ")
dut = MultiplexerDUT()
run_simulation(dut, main_generator(dut))
def test_fsm_read_to_write_latency(self):
# Verify the timing of READ to WRITE transition
def main_generator(dut):
rtw = dut.settings.phy.read_latency
expected = "r" + (rtw - 1) * ">" + "w"
states = ""
# set write_available=1
yield from dut.bm_drivers[0].write()
yield
for _ in range(len(expected)):
state = (yield from dut.fsm_state())
# use ">" for all other states, as FSM.delayed_enter uses
# anonymous states instead of staying in RTW
states += {
"READ": "r",
"WRITE": "w",
}.get(state, ">")
yield
self.assertEqual(states, expected)
dut = MultiplexerDUT()
run_simulation(dut, main_generator(dut))
def test_fsm_write_to_read_latency(self):
# Verify the timing of WRITE to READ transition
def main_generator(dut):
write_latency = math.ceil(dut.settings.phy.cwl / dut.settings.phy.nphases)
wtr = dut.settings.timing.tWTR + write_latency + dut.settings.timing.tCCD or 0
expected = "w" + (wtr - 1) * ">" + "r"
states = ""
# simulate until we are in WRITE
yield from dut.bm_drivers[0].write()
while (yield from dut.fsm_state()) != "WRITE":
yield
# set read_available=1
yield from dut.bm_drivers[0].read()
yield
for _ in range(len(expected)):
state = (yield from dut.fsm_state())
states += {
"READ": "r",
"WRITE": "w",
}.get(state, ">")
yield
self.assertEqual(states, expected)
dut = MultiplexerDUT()
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_steer_read_correct_phases(self):
# Check that correct phases are being used during READ
def main_generator(dut):
yield from dut.bm_drivers[2].read()
yield from dut.bm_drivers[3].activate()
while not (yield dut.bank_machines[2].cmd.ready):
yield
yield
# fsm starts in READ
for phase in range(dut.settings.phy.nphases):
if phase == dut.settings.phy.rdphase:
self.assertEqual((yield dut.dfi.phases[phase].bank), 2)
elif phase == dut.settings.phy.rdcmdphase:
self.assertEqual((yield dut.dfi.phases[phase].bank), 3)
else:
self.assertEqual((yield dut.dfi.phases[phase].bank), 0)
dut = MultiplexerDUT()
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_steer_write_correct_phases(self):
# Check that correct phases are being used during WRITE
def main_generator(dut):
yield from dut.bm_drivers[2].write()
yield from dut.bm_drivers[3].activate()
while not (yield dut.bank_machines[2].cmd.ready):
yield
yield
# fsm starts in READ
for phase in range(dut.settings.phy.nphases):
if phase == dut.settings.phy.wrphase:
self.assertEqual((yield dut.dfi.phases[phase].bank), 2)
elif phase == dut.settings.phy.wrcmdphase:
self.assertEqual((yield dut.dfi.phases[phase].bank), 3)
else:
self.assertEqual((yield dut.dfi.phases[phase].bank), 0)
dut = MultiplexerDUT()
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_single_phase_cmd_req(self):
# Verify that, for a single phase, commands are sent sequentially
def main_generator(dut):
yield from dut.bm_drivers[2].write()
yield from dut.bm_drivers[3].activate()
ready = {2: dut.bank_machines[2].cmd.ready, 3: dut.bank_machines[3].cmd.ready}
# activate should appear first
while not ((yield ready[2]) or (yield ready[3])):
yield
yield from dut.bm_drivers[3].nop()
yield
self.assertEqual((yield dut.dfi.phases[0].bank), 3)
# than write
while not (yield ready[2]):
yield
yield from dut.bm_drivers[2].nop()
yield
self.assertEqual((yield dut.dfi.phases[0].bank), 2)
dut = MultiplexerDUT(phy_settings=dict(nphases=1))
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_ras_trrd(self):
# Verify tRRD
def main_generator(dut):
yield from dut.bm_drivers[2].activate()
yield from dut.bm_drivers[3].activate()
ready = {2: dut.bank_machines[2].cmd.ready, 3: dut.bank_machines[3].cmd.ready}
# wait for activate
while not ((yield ready[2]) or (yield ready[3])):
yield
# invalidate command that was ready
if (yield ready[2]):
yield from dut.bm_drivers[2].nop()
else:
yield from dut.bm_drivers[3].nop()
yield
# wait for the second activate; start from 1 for the previous cycle
ras_time = 1
while not ((yield ready[2]) or (yield ready[3])):
ras_time += 1
yield
self.assertEqual(ras_time, 6)
dut = MultiplexerDUT(timing_settings=dict(tRRD=6))
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_cas_tccd(self):
# Verify tCCD
def main_generator(dut):
yield from dut.bm_drivers[2].read()
yield from dut.bm_drivers[3].read()
ready = {2: dut.bank_machines[2].cmd.ready, 3: dut.bank_machines[3].cmd.ready}
# wait for activate
while not ((yield ready[2]) or (yield ready[3])):
yield
# invalidate command that was ready
if (yield ready[2]):
yield from dut.bm_drivers[2].nop()
else:
yield from dut.bm_drivers[3].nop()
yield
# wait for the second activate; start from 1 for the previous cycle
cas_time = 1
while not ((yield ready[2]) or (yield ready[3])):
cas_time += 1
yield
self.assertEqual(cas_time, 3)
dut = MultiplexerDUT(timing_settings=dict(tCCD=3))
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_fsm_anti_starvation(self):
# Check that anti-starvation works according to controller settings
def main_generator(dut):
yield from dut.bm_drivers[2].read()
yield from dut.bm_drivers[3].write()
# go to WRITE
# anti starvation does not work for 1st read, as read_time_en already starts as 1
# READ -> RTW -> WRITE
while (yield from dut.fsm_state()) != "WRITE":
yield
# wait for write anti starvation
for _ in range(dut.settings.write_time):
self.assertEqual((yield from dut.fsm_state()), "WRITE")
yield
self.assertEqual((yield from dut.fsm_state()), "WTR")
# WRITE -> WTR -> READ
while (yield from dut.fsm_state()) != "READ":
yield
# wait for read anti starvation
for _ in range(dut.settings.read_time):
self.assertEqual((yield from dut.fsm_state()), "READ")
yield
self.assertEqual((yield from dut.fsm_state()), "RTW")
dut = MultiplexerDUT()
generators = [
main_generator(dut),
timeout_generator(100),
]
run_simulation(dut, generators)
def test_write_datapath(self):
# Verify that data is transmitted from native interface to DFI
def main_generator(dut):
yield from dut.bm_drivers[2].write()
# 16bits * 2 (DDR) * 1 (phases)
yield dut.interface.wdata.eq(0xbaadf00d)
yield dut.interface.wdata_we.eq(0xf)
while not (yield dut.bank_machines[2].cmd.ready):
yield
yield
self.assertEqual((yield dut.dfi.phases[0].wrdata), 0xbaadf00d)
self.assertEqual((yield dut.dfi.phases[0].wrdata_en), 1)
self.assertEqual((yield dut.dfi.phases[0].address), 2)
self.assertEqual((yield dut.dfi.phases[0].bank), 2)
dut = MultiplexerDUT(phy_settings=dict(nphases=1))
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_read_datapath(self):
# Verify that data is transmitted from DFI to native interface
def main_generator(dut):
yield from dut.bm_drivers[2].write()
# 16bits * 2 (DDR) * 1 (phases)
yield dut.dfi.phases[0].rddata.eq(0xbaadf00d)
yield dut.dfi.phases[0].rddata_en.eq(1)
yield
while not (yield dut.bank_machines[2].cmd.ready):
yield
yield
self.assertEqual((yield dut.interface.rdata), 0xbaadf00d)
self.assertEqual((yield dut.interface.wdata_we), 0)
self.assertEqual((yield dut.dfi.phases[0].address), 2)
self.assertEqual((yield dut.dfi.phases[0].bank), 2)
dut = MultiplexerDUT(phy_settings=dict(nphases=1))
generators = [
main_generator(dut),
timeout_generator(50),
]
run_simulation(dut, generators)
def test_refresh_requires_gnt(self):
# After refresher command request, multiplexer waits for permission from all bank machines
def main_generator(dut):
def assert_dfi_cmd(cas, ras, we):
p = dut.dfi.phases[0]
cas_n, ras_n, we_n = (yield p.cas_n), (yield p.ras_n), (yield p.we_n)
self.assertEqual((cas_n, ras_n, we_n), (1 - cas, 1 - ras, 1 - we))
for bm in dut.bank_machines:
self.assertEqual((yield bm.refresh_req), 0)
yield from dut.refresh_driver.refresh()
yield
# bank machines get the request
for bm in dut.bank_machines:
self.assertEqual((yield bm.refresh_req), 1)
# no command yet
yield from assert_dfi_cmd(cas=0, ras=0, we=0)
# grant permission for refresh
prng = random.Random(42)
delays = [prng.randrange(100) for _ in dut.bank_machines]
for t in range(max(delays) + 1):
# grant permission
for delay, bm in zip(delays, dut.bank_machines):
if delay == t:
yield bm.refresh_gnt.eq(1)
yield
# make sure thare is no command yet
yield from assert_dfi_cmd(cas=0, ras=0, we=0)
yield
yield
# refresh command
yield from assert_dfi_cmd(cas=1, ras=1, we=0)
dut = MultiplexerDUT()
run_simulation(dut, main_generator(dut))
def test_requests_from_multiple_bankmachines(self):
# Check complex communication scenario with requests from multiple bank machines
# The communication is greatly simplified - data path is completely ignored,
# no responses from PHY are simulated. Each bank machine performs a sequence of
# requests, bank machines are ordered randomly and the DFI command data is
# checked to verify if all the commands have been sent if correct per-bank order.
# requests sequence on given bank machines
bm_sequences = {
0: "awwwwwwp",
1: "arrrrrrp",
2: "arwrwrwp",
3: "arrrwwwp",
4: "awparpawp",
5: "awwparrrrp",
}
# convert to lists to use .pop()
bm_sequences = {bm_num: list(seq) for bm_num, seq in bm_sequences.items()}
def main_generator(bank_machines, drivers):
# work on a copy
bm_seq = copy.deepcopy(bm_sequences)
def non_empty():
return list(filter(lambda n: len(bm_seq[n]) > 0, bm_seq.keys()))
# artificially perform the work of LiteDRAMCrossbar by always picking only one request
prng = random.Random(42)
while len(non_empty()) > 0:
# pick random bank machine
bm_num = prng.choice(non_empty())
# set given request
request_char = bm_seq[bm_num].pop(0)
yield from drivers[bm_num].request(request_char)
yield
# wait for ready
while not (yield bank_machines[bm_num].cmd.ready):
yield
# disable it
yield from drivers[bm_num].nop()
for _ in range(16):
yield
# gather data on DFI
DFISnapshot = namedtuple("DFICapture",
["cmd", "bank", "address", "wrdata_en", "rddata_en"])
dfi_snapshots = []
@passive
def dfi_monitor(dfi):
while True:
# capture current state of DFI lines
phases = []
for i, p in enumerate(dfi.phases):
# transform cas/ras/we to command name
cas_n, ras_n, we_n = (yield p.cas_n), (yield p.ras_n), (yield p.we_n)
captured = {"cmd": dfi_cmd_to_char(cas_n, ras_n, we_n)}
# capture rest of fields
for field in DFISnapshot._fields:
if field != "cmd":
captured[field] = (yield getattr(p, field))
phases.append(DFISnapshot(**captured))
dfi_snapshots.append(phases)
yield
dut = MultiplexerDUT()
generators = [
main_generator(dut.bank_machines, dut.bm_drivers),
dfi_monitor(dut.dfi),
timeout_generator(200),
]
run_simulation(dut, generators)
# check captured DFI data with the description
for snap in dfi_snapshots:
for i, phase_snap in enumerate(snap):
if phase_snap.cmd == "_":
continue
# distinguish bank machines by the bank number
bank = phase_snap.bank
# find next command for the given bank
cmd = bm_sequences[bank].pop(0)
# check if the captured data is correct
self.assertEqual(phase_snap.cmd, cmd)
if cmd in ["w", "r"]:
# addresses are artificially forced to bank numbers in drivers
self.assertEqual(phase_snap.address, bank)
if cmd == "w":
self.assertEqual(phase_snap.wrdata_en, 1)
if cmd == "r":
self.assertEqual(phase_snap.rddata_en, 1)