litedram/test/test_adaptation.py

409 lines
18 KiB
Python

#
# This file is part of LiteDRAM.
#
# Copyright (c) 2017-2019 Florent Kermarrec <florent@enjoy-digital.fr>
# Copyright (c) 2020 Antmicro <www.antmicro.com>
# SPDX-License-Identifier: BSD-2-Clause
import unittest
from migen import *
from litex.soc.interconnect.stream import *
from litedram.common import LiteDRAMNativePort, LiteDRAMNativeWritePort, LiteDRAMNativeReadPort
from litedram.frontend.adapter import LiteDRAMNativePortConverter, LiteDRAMNativePortCDC
from test.common import *
from litex.gen.sim import *
class ConverterDUT(Module):
def __init__(self, user_data_width, native_data_width, mem_depth, separate_rw=True, read_latency=0):
self.separate_rw = separate_rw
if separate_rw:
self.write_user_port = LiteDRAMNativeWritePort(address_width=32, data_width=user_data_width)
self.write_crossbar_port = LiteDRAMNativeWritePort(address_width=32, data_width=native_data_width)
self.read_user_port = LiteDRAMNativeReadPort( address_width=32, data_width=user_data_width)
self.read_crossbar_port = LiteDRAMNativeReadPort( address_width=32, data_width=native_data_width)
self.write_driver = NativePortDriver(self.write_user_port)
self.read_driver = NativePortDriver(self.read_user_port)
else:
self.write_user_port = LiteDRAMNativePort(mode="both", address_width=32, data_width=user_data_width)
self.write_crossbar_port = LiteDRAMNativePort(mode="both", address_width=32, data_width=native_data_width)
self.write_driver = NativePortDriver(self.write_user_port)
self.read_user_port = self.write_user_port
self.read_crossbar_port = self.write_crossbar_port
self.read_driver = self.write_driver
self.driver_generators = [self.write_driver.write_data_handler(),
self.read_driver.read_data_handler(latency=read_latency)]
# Memory
self.memory = DRAMMemory(native_data_width, mem_depth)
def do_finalize(self):
if self.separate_rw:
self.submodules.write_converter = LiteDRAMNativePortConverter(
self.write_user_port, self.write_crossbar_port)
self.submodules.read_converter = LiteDRAMNativePortConverter(
self.read_user_port, self.read_crossbar_port)
else:
self.submodules.converter = LiteDRAMNativePortConverter(
self.write_user_port, self.write_crossbar_port)
def read(self, address, **kwargs):
return (yield from self.read_driver.read(address, **kwargs))
def write(self, address, data, **kwargs):
if self.write_user_port.data_width > self.write_crossbar_port.data_width:
kwargs["data_with_cmd"] = True
return (yield from self.write_driver.write(address, data, **kwargs))
class CDCDUT(ConverterDUT):
def do_finalize(self):
# Change clock domains
self.write_user_port.clock_domain = "user"
self.read_user_port.clock_domain = "user"
self.write_crossbar_port.clock_domain = "native"
self.read_crossbar_port.clock_domain = "native"
# Add CDC
self.submodules.write_converter = LiteDRAMNativePortCDC(
port_from = self.write_user_port,
port_to = self.write_crossbar_port)
self.submodules.read_converter = LiteDRAMNativePortCDC(
port_from = self.read_user_port,
port_to = self.read_crossbar_port)
class TestAdapter(MemoryTestDataMixin, unittest.TestCase):
def test_down_converter_ratio_must_be_integer(self):
with self.assertRaises(ValueError) as cm:
dut = ConverterDUT(user_data_width=64, native_data_width=24, mem_depth=128)
dut.finalize()
self.assertIn("ratio must be an int", str(cm.exception).lower())
def test_up_converter_ratio_must_be_integer(self):
with self.assertRaises(ValueError) as cm:
dut = ConverterDUT(user_data_width=32, native_data_width=48, mem_depth=128)
dut.finalize()
self.assertIn("ratio must be an int", str(cm.exception).lower())
def converter_readback_test(self, dut, pattern, mem_expected, main_generator=None):
assert len(set(adr for adr, _ in pattern)) == len(pattern), "Pattern has duplicates!"
if main_generator is None:
def main_generator(dut):
for adr, data in pattern:
yield from dut.write(adr, data)
for adr, _ in pattern[:-1]:
yield from dut.read(adr, wait_data=False)
# use cmd.last to indicate last command in the sequence
# this is needed for the cases in up-converter when it cannot be deduced
# that port_to.cmd should be sent
adr, _ = pattern[-1]
yield from dut.read(adr, wait_data=False, last=1)
yield from dut.write_driver.wait_all()
yield from dut.read_driver.wait_all()
generators = [
main_generator(dut),
*dut.driver_generators,
dut.memory.write_handler(dut.write_crossbar_port),
dut.memory.read_handler(dut.read_crossbar_port),
timeout_generator(1000),
]
run_simulation(dut, generators, vcd_name='sim.vcd')
self.assertEqual(dut.memory.mem, mem_expected)
self.assertEqual(dut.read_driver.rdata, [data for adr, data in pattern])
def converter_test(self, test_data, user_data_width, native_data_width, **kwargs):
for separate_rw in [True, False]:
with self.subTest(separate_rw=separate_rw):
data = self.pattern_test_data[test_data]
dut = ConverterDUT(user_data_width=user_data_width, native_data_width=native_data_width,
mem_depth=len(data["expected"]), separate_rw=separate_rw, **kwargs)
self.converter_readback_test(dut, data["pattern"], data["expected"])
def test_converter_1to1(self):
# Verify 64-bit to 64-bit identify-conversion.
self.converter_test(test_data="64bit", user_data_width=64, native_data_width=64)
def test_converter_2to1(self):
# Verify 64-bit to 32-bit down-conversion.
self.converter_test(test_data="64bit_to_32bit", user_data_width=64, native_data_width=32)
def test_converter_4to1(self):
# Verify 32-bit to 8-bit down-conversion.
self.converter_test(test_data="32bit_to_8bit", user_data_width=32, native_data_width=8)
def test_converter_8to1(self):
# Verify 64-bit to 8-bit down-conversion.
self.converter_test(test_data="64bit_to_8bit", user_data_width=64, native_data_width=8)
def test_converter_1to2(self):
# Verify 8-bit to 16-bit up-conversion.
self.converter_test(test_data="8bit_to_16bit", user_data_width=8, native_data_width=16)
def test_converter_1to4(self):
# Verify 32-bit to 128-bit up-conversion.
self.converter_test(test_data="32bit_to_128bit", user_data_width=32, native_data_width=128)
def test_converter_1to8(self):
# Verify 32-bit to 256-bit up-conversion.
self.converter_test(test_data="32bit_to_256bit", user_data_width=32, native_data_width=256)
def test_up_converter_read_latencies(self):
# Verify that up-conversion works with different port reader latencies
cases = {
"1to2": dict(test_data="8bit_to_16bit", user_data_width=8, native_data_width=16),
"1to4": dict(test_data="32bit_to_128bit", user_data_width=32, native_data_width=128),
"1to8": dict(test_data="32bit_to_256bit", user_data_width=32, native_data_width=256),
}
for latency in [0, 1]:
with self.subTest(latency=latency):
for conversion, kwargs in cases.items():
with self.subTest(conversion=conversion):
self.converter_test(**kwargs, read_latency=latency)
def test_down_converter_read_latencies(self):
# Verify that down-conversion works with different port reader latencies
cases = {
"2to1": dict(test_data="64bit_to_32bit", user_data_width=64, native_data_width=32),
"4to1": dict(test_data="32bit_to_8bit", user_data_width=32, native_data_width=8),
"8to1": dict(test_data="64bit_to_8bit", user_data_width=64, native_data_width=8),
}
for latency in [0, 1]:
with self.subTest(latency=latency):
for conversion, kwargs in cases.items():
with self.subTest(conversion=conversion):
self.converter_test(**kwargs, read_latency=latency)
def test_up_converter_write_complete_sequence(self):
# Verify up-conversion when master sends full sequences (of `ratio` length)
def main_generator(dut):
yield from dut.write(0x00, 0x11) # first
yield from dut.write(0x01, 0x22)
yield from dut.write(0x02, 0x33)
yield from dut.write(0x03, 0x44)
yield from dut.write(0x04, 0x55) # second
yield from dut.write(0x05, 0x66)
yield from dut.write(0x06, 0x77)
yield from dut.write(0x07, 0x88)
yield from dut.write_driver.wait_all()
for _ in range(8): # wait for memory
yield
mem_expected = [
# data address
0x44332211, # 0x00
0x88776655, # 0x04
0x00000000, # 0x08
0x00000000, # 0x0c
]
for separate_rw in [True, False]:
with self.subTest(separate_rw=separate_rw):
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(mem_expected), separate_rw=separate_rw)
self.converter_readback_test(dut, pattern=[], mem_expected=mem_expected,
main_generator=main_generator)
def test_up_converter_write_with_manual_flush(self):
# Verify that up-conversion writes incomplete data when it receives cmd.last
def main_generator(dut):
yield from dut.write(0x00, 0x11, wait_data=False)
yield from dut.write(0x01, 0x22, wait_data=False)
yield from dut.write(0x02, 0x33, wait_data=False, last=1)
yield from dut.write_driver.wait_all()
for _ in range(8): # wait for memory
yield
mem_expected = [
# data address
0x00332211, # 0x00
0x00000000, # 0x04
0x00000000, # 0x08
0x00000000, # 0x0c
]
for separate_rw in [True, False]:
with self.subTest(separate_rw=separate_rw):
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(mem_expected), separate_rw=separate_rw)
self.converter_readback_test(dut, pattern=[], mem_expected=mem_expected,
main_generator=main_generator)
def test_up_converter_auto_flush_on_address_change(self):
# Verify that up-conversion automatically flushes the cmd if the (shifted) address changes
def main_generator(dut):
yield from dut.write(0x00, 0x11, wait_data=False) # -> 0x00
yield from dut.write(0x01, 0x22, wait_data=False) # -> 0x00
yield from dut.write(0x02, 0x33, wait_data=False) # -> 0x00
yield from dut.write(0x04, 0x55, wait_data=False) # -> 0x01
yield from dut.write(0x05, 0x66, wait_data=False) # -> 0x01
yield from dut.write(0x06, 0x77, wait_data=False) # -> 0x01
yield from dut.write(0x07, 0x88, wait_data=False) # -> 0x01
yield from dut.write_driver.wait_all()
for _ in range(8): # wait for memory
yield
mem_expected = [
# data address
0x00332211, # 0x00
0x88776655, # 0x04
0x00000000, # 0x08
0x00000000, # 0x0c
]
for separate_rw in [True, False]:
with self.subTest(separate_rw=separate_rw):
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(mem_expected), separate_rw=separate_rw)
self.converter_readback_test(dut, pattern=[], mem_expected=mem_expected,
main_generator=main_generator)
def test_up_converter_auto_flush_on_cmd_we_change(self):
# Verify that up-conversion automatically flushes the cmd when command type (write/read) changes
def main_generator(dut):
yield from dut.write(0x00, 0x11, wait_data=False)
yield from dut.write(0x01, 0x22, wait_data=False)
yield from dut.read(0x00, wait_data=False)
yield from dut.read(0x01, wait_data=False)
yield from dut.read(0x02, wait_data=False)
yield from dut.read(0x03, wait_data=False)
yield from dut.write_driver.wait_all()
yield from dut.read_driver.wait_all()
for _ in range(8): # wait for memory
yield
mem_expected = [
# data address
0x00002211, # 0x00
0x00000000, # 0x04
0x00000000, # 0x08
0x00000000, # 0x0c
]
pattern = [
(0x00, 0x11),
(0x01, 0x22),
(0x02, 0x00),
(0x03, 0x00),
]
# with separate_rw=True we will fail because read will happen before write completes
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(mem_expected), separate_rw=False)
self.converter_readback_test(dut, pattern=pattern, mem_expected=mem_expected,
main_generator=main_generator)
def test_up_converter_write_with_gap(self):
# Verify that the up-converter can mask data properly when sending non-sequential writes
def main_generator(dut):
yield from dut.write(0x00, 0x11, wait_data=False)
yield from dut.write(0x02, 0x22, wait_data=False)
yield from dut.write(0x03, 0x33, wait_data=False, last=1)
yield from dut.write_driver.wait_all()
for _ in range(8): # wait for memory
yield
mem_expected = [
# data, address
0x33220011, # 0x00
0x00000000, # 0x04
0x00000000, # 0x08
0x00000000, # 0x0c
]
for separate_rw in [True, False]:
with self.subTest(separate_rw=separate_rw):
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(mem_expected), separate_rw=separate_rw)
self.converter_readback_test(dut, pattern=[], mem_expected=mem_expected,
main_generator=main_generator)
def test_up_converter_not_aligned(self):
data = self.pattern_test_data["8bit_to_32bit_not_aligned"]
dut = ConverterDUT(user_data_width=8, native_data_width=32,
mem_depth=len(data["expected"]), separate_rw=False)
self.converter_readback_test(dut, data["pattern"], data["expected"])
def cdc_readback_test(self, dut, pattern, mem_expected, clocks):
assert len(set(adr for adr, _ in pattern)) == len(pattern), "Pattern has duplicates!"
read_data = []
@passive
def read_handler(read_port):
yield read_port.rdata.ready.eq(1)
while True:
if (yield read_port.rdata.valid):
read_data.append((yield read_port.rdata.data))
yield
def main_generator(dut, pattern):
for adr, data in pattern:
yield from dut.write(adr, data)
for adr, _ in pattern:
yield from dut.read(adr, wait_data=False)
yield from dut.write_driver.wait_all()
yield from dut.read_driver.wait_all()
generators = {
"user": [
main_generator(dut, pattern),
read_handler(dut.read_user_port),
*dut.driver_generators,
timeout_generator(5000),
],
"native": [
dut.memory.write_handler(dut.write_crossbar_port),
dut.memory.read_handler(dut.read_crossbar_port),
],
}
run_simulation(dut, generators, clocks)
self.assertEqual(dut.memory.mem, mem_expected)
self.assertEqual(read_data, [data for adr, data in pattern])
def test_port_cdc_same_clocks(self):
# Verify CDC with same clocks (frequency and phase).
data = self.pattern_test_data["32bit"]
dut = CDCDUT(user_data_width=32, native_data_width=32, mem_depth=len(data["expected"]))
clocks = {
"user": 10,
"native": (7, 3),
}
self.cdc_readback_test(dut, data["pattern"], data["expected"], clocks=clocks)
def test_port_cdc_different_period(self):
# Verify CDC with different clock frequencies.
data = self.pattern_test_data["32bit"]
dut = CDCDUT(user_data_width=32, native_data_width=32, mem_depth=len(data["expected"]))
clocks = {
"user": 10,
"native": 7,
}
self.cdc_readback_test(dut, data["pattern"], data["expected"], clocks=clocks)
def test_port_cdc_out_of_phase(self):
# Verify CDC with different clock phases.
data = self.pattern_test_data["32bit"]
dut = CDCDUT(user_data_width=32, native_data_width=32, mem_depth=len(data["expected"]))
clocks = {
"user": 10,
"native": (7, 3),
}
self.cdc_readback_test(dut, data["pattern"], data["expected"], clocks=clocks)