litedram/test/test_lpddr5.py

770 lines
35 KiB
Python

#
# This file is part of LiteDRAM.
#
# Copyright (c) 2021 Antmicro <www.antmicro.com>
# SPDX-License-Identifier: BSD-2-Clause
import unittest
from typing import Mapping
from collections import defaultdict
from functools import partial, wraps
from migen import *
from litedram.phy.lpddr5.simphy import LPDDR5SimPHY
from litedram.phy.lpddr5 import simsoc
from litedram.phy.sim_utils import SimLogger
import test.phy_common
from test.phy_common import DFISequencer, PadChecker, run_simulation as _run_simulation
def generate_clocks(max):
def phase(ck, phase):
assert ck % 2 == 0
assert phase % 90 == 0 and 0 <= phase < 360
if phase in [90, 270]:
assert ck % 4 == 0
p = ck // 2 - 1
p -= (ck // 4) * phase//90
p %= ck
assert 1 <= p <= ck-1
return p
sys = 8 * max
clocks = {
"sys": (sys, phase(sys, 0)),
"sys_90": (sys, phase(sys, 90)),
"sys_180": (sys, phase(sys, 180)),
"sys_270": (sys, phase(sys, 270)),
}
for i in range(1, log2_int(max) + 1):
n = 2**i
assert sys % n == 0
clocks[f"sys{n}x"] = (sys // n, phase(sys // n, 0))
if n < max or True:
clocks[f"sys{n}x_90"] = (sys // n, phase(sys // n, 90))
clocks[f"sys{n}x_180"] = (sys // n, phase(sys // n, 180))
clocks[f"sys{n}x_270"] = (sys // n, phase(sys // n, 270))
return clocks
# Clocks are set up such that the first rising edge is on tic 1 (not 0), just as in test_lpddr4.
run_simulation = partial(test.phy_common.run_simulation, clocks=generate_clocks(max=8))
dfi_data_to_dq = partial(test.phy_common.dfi_data_to_dq, databits=16, nphases=1, burst=16)
dq_pattern = partial(test.phy_common.dq_pattern, databits=16, nphases=1, burst=16)
def wck_ratio_subtests(testfunc):
"""Wraps a test running it for both WCK:CK=2:1 and 4:1. Passes wrapped LPDDR5SimPHY constructor as an argument."""
@wraps(testfunc)
def wrapper(self):
for wck_ck_ratio in [2, 4]:
with self.subTest(wck_ck_ratio=wck_ck_ratio):
Phy = lambda *args, **kwargs: LPDDR5SimPHY(*args, wck_ck_ratio=wck_ck_ratio, **kwargs)
testfunc(self, Phy)
return wrapper
class LPDDR5Tests(unittest.TestCase):
SYS_CLK_FREQ = 100e6
def run_test(self, dut, dfi_sequence, pad_checkers: Mapping[str, Mapping[str, str]], pad_generators=None, chunk_size=8, **kwargs):
# pad_checkers: {clock: {sig: values}}
dfi = DFISequencer(dfi_sequence)
checkers = {clk: PadChecker(dut.pads, pad_signals) for clk, pad_signals in pad_checkers.items()}
generators = defaultdict(list)
generators["sys"].append(dfi.generator(dut.dfi))
generators["sys"].append(dfi.reader(dut.dfi))
for clock, checker in checkers.items():
generators[clock].append(checker.run())
pad_generators = pad_generators or {}
for clock, gens in pad_generators.items():
gens = gens if isinstance(gens, list) else [gens]
for gen in gens:
generators[clock].append(gen(dut.pads))
run_simulation(dut, generators, **kwargs)
PadChecker.assert_ok(self, checkers, chunk_size=chunk_size)
dfi.assert_ok(self)
@wck_ratio_subtests
def test_lpddr5_reset_n(self, Phy):
# Test serialization of DFI reset_n
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
read = dict(cs_n=0, cas_n=0, ras_n=1, we_n=1)
self.run_test(phy,
dfi_sequence = [
{0: dict(reset_n=1, **read)},
{},
{}, {},
{0: dict(reset_n=0, **read)},
{},
{0: dict(reset_n=0)},
{0: dict(reset_n=0)},
],
pad_checkers = {"sys_270": {
"cs": "0 1100 1100",
"reset_n": "x 1111 0100",
}},
)
@wck_ratio_subtests
def test_lpddr5_cs(self, Phy):
# Test that CS is serialized correctly
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=1, ras_n=0, we_n=1)}, # ACT
{},
{0: dict(cs_n=0, cas_n=1, ras_n=0, we_n=0)}, # PRE
{},
{},
{0: dict(cs_n=0, cas_n=1, ras_n=0, we_n=1)}, # ACT
{0: dict(cs_n=0, cas_n=1, ras_n=0, we_n=1)}, # ACT (will be ignored)
],
# use 270 phase shift to sample when the data is valid, i.e. CS is shifted 180 deg
# by PHY (to make it center aligned with CK), then we add 90 to sample in the center of CS
pad_checkers = {"sys_270": {
'cs': '0 1101011000',
}},
)
@wck_ratio_subtests
def test_lpddr5_ck(self, Phy):
# Test clock serialization, first cycle is undefined so ignore them
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1)},
],
pad_checkers = {"sys2x_90": { # sampling at DDR CK
'ck': 'xx' + '10101010' * 3,
}},
)
@wck_ratio_subtests
def test_lpddr5_ca(self, Phy):
# Test proper serialization of commands to CA pads and that overlapping commands are handled
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
read = {0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1)} # CAS+RD16
precharge = {0: dict(cs_n=0, cas_n=1, ras_n=0, we_n=0)}
self.run_test(phy,
dfi_sequence = [
read,
{},
{},
precharge,
read, # ignored
],
pad_checkers = {
"sys_270": {
'cs': '0' ' 1 1 0 0 1 ', },
"sys2x": { # it is serialized on DDR sys_270 so check at sys2x with additional cycle (00)
'ca0': '00' '00' '0010 00 0000',
'ca1': '00' '00' '0000 00 0000',
'ca2': '00' '00' '1000 00 0000',
'ca3': '00' '00' '1000 00 0010',
'ca4': '00' '00' '0000 00 0010',
'ca5': '00' '00' '1000 00 0010',
'ca6': '00' '00' '0000 00 0010',
}
},
chunk_size=4,
)
@wck_ratio_subtests
def test_lpddr5_cas_wck_sync_read(self, Phy):
# Test that WCK sync bit in CAS command is set on first read command
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
read = {0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1)} # CAS+RD16
self.run_test(phy,
dfi_sequence = [
read, # with WCK sync
{},
{},
read, # with WCK sync
{},
{},
],
pad_checkers = {
"sys_270": {
'cs': '0' ' 1 1 0 1 1 0 ', },
"sys2x": {
'ca0': '00' '00' '0010 0000 1000',
'ca1': '00' '00' '0000 0000 0000',
'ca2': '00' '00' '1000 0010 0000',
'ca3': '00' '00' '1000 0010 0000',
'ca4': '00' '00' '0000 0000 0000',
'ca5': '00' '00' '1000 0010 0000',
'ca6': '00' '00' '0000 0000 0000',
}
},
chunk_size=4,
)
@wck_ratio_subtests
def test_lpddr5_cas_wck_sync_mrr(self, Phy):
# Test that WCK sync bit in CAS command is set on first MRR command (CAS with WS_RD)
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
mrr = {0: dict(cs_n=0, cas_n=1, ras_n=1, we_n=0, bank=1)} # MRR is ZQC with bank=1
self.run_test(phy,
dfi_sequence = [
mrr, # with WCK sync
{},
{},
mrr, # with WCK sync
{},
{},
],
pad_checkers = {
"sys_270": {
'cs': '0' ' 1 1 0 1 1 0 ', },
"sys2x": {
'ca0': '00' '00' '0000 0000 0000',
'ca1': '00' '00' '0000 0000 0000',
'ca2': '00' '00' '1000 0010 0000',
'ca3': '00' '00' '1010 0010 1000',
'ca4': '00' '00' '0010 0000 1000',
'ca5': '00' '00' '1000 0010 0000',
'ca6': '00' '00' '0000 0000 0000',
}
},
chunk_size=4,
)
@wck_ratio_subtests
def test_lpddr5_cas_wck_sync_write(self, Phy):
# Test that WCK sync bit in CAS command is set on first write command
write = {0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0)} # CAS+WR16
for masked_write in [True, False]:
with self.subTest(masked_write=masked_write):
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ, masked_write=masked_write)
w1 = f"10{int(not masked_write)}0"
w2 = f"{int(not masked_write)}000"
self.run_test(phy,
dfi_sequence = [
write, # with WCK sync
{},
{},
write, # with WCK sync
{},
{},
],
pad_checkers = {
"sys_270": {
'cs': '0' ' 1 1 0 1 1 0 ', },
"sys2x": {
'ca0': '00' '00' '0000 0000 0000',
'ca1': '00' '00' '0010 0000 1000',
'ca2': '00' '00'f'{w1} 0010 {w2}',
'ca3': '00' '00' '1000 0010 0000',
'ca4': '00' '00' '1000 0010 0000',
'ca5': '00' '00' '0000 0000 0000',
'ca6': '00' '00' '0000 0000 0000',
}
},
chunk_size=4,
)
@wck_ratio_subtests
def test_lpddr5_ca_addressing(self, Phy):
# Test that bank/address for different commands are correctly serialized to CA pads
# LPDDR5 has only 64 columns, but uses optional 4-bit "burst address"
read = dict(cs_n=0, cas_n=0, ras_n=1, we_n=1, bank=0b1111, address=0b1101010000)
write_ap = dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, bank=0b1010, address=0b10000000000)
activate = dict(cs_n=0, cas_n=1, ras_n=0, we_n=1, bank=0b0010, address=0b111110000111100001)
refresh_ab = dict(cs_n=0, cas_n=0, ras_n=0, we_n=1, bank=0b1001, address=0b10000000000)
precharge = dict(cs_n=0, cas_n=1, ras_n=0, we_n=0, bank=0b0111, address=0)
mrw = dict(cs_n=0, cas_n=0, ras_n=0, we_n=0, bank=0b1010011, address=0b10101010) # bank=7-bit address, address=8-bit op code
mrr = dict(cs_n=0, cas_n=1, ras_n=1, we_n=0, bank=1, address=0b1101101) # 7-bit address (bank=1 selects MRR)
zqc_start = dict(cs_n=0, cas_n=1, ras_n=1, we_n=0, bank=0, address=0b10000101) # MPC with ZQCAL START operand
zqc_latch = dict(cs_n=0, cas_n=1, ras_n=1, we_n=0, bank=0, address=0b10000110) # MPC with ZQCAL LATCH operand
for masked_write in [True, False]:
with self.subTest(masked_write=masked_write):
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ, masked_write=masked_write)
mw = f"10{int(not masked_write)}0"
self.run_test(phy,
dfi_sequence = [
{},
{0: read}, {}, # WCK sync
{0: write_ap}, {}, # with WCK sync
{0: activate}, {},
{0: refresh_ab},{},
{0: precharge}, {},
{0: mrw}, {},
{0: mrr}, {}, # with WCK sync
{0: zqc_start}, {},
{0: zqc_latch}, {},
],
pad_checkers = {
"sys_270": { # RD WR ACT REF PRE MRW MRR ZQCS ZQCL
'cs': '0 0 ' '1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 ', },
"sys2x": {
'ca0': '00' '0000' '0011 0000 1011 0001 0001 0100 0001 0001 0000',
'ca1': '00' '0000' '0001 0011 1110 0000 0001 0101 0000 0000 0001',
'ca2': '00' '0000'f'1001 {mw} 1000 0000 0001 0000 1001 0001 0001',
'ca3': '00' '0000' '1011 1001 1010 0010 0010 1011 1011 0000 0000',
'ca4': '00' '0000' '0000 1000 1010 0010 001x 1100 0010 0010 0010',
'ca5': '00' '0000' '1011 0000 1001 0010 001x 0001 1001 0010 0010',
'ca6': '00' '0000' '0010 0001 1101 0001 0010 1110 0001 0010 0010',
}
},
chunk_size=4,
)
def test_lpddr5_dq_out_2to1(self):
# Test serialization of dfi wrdata to DQ pads
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ)
dfi_data = {
0: dict(wrdata=0x111122223333444455556666777788889999aaaabbbbccccddddeeeeffff0000),
}
dfi_wrdata_en = {0: dict(wrdata_en=1)}
latency = [{}] * (phy.settings.write_latency - 1)
self.run_test(phy,
dfi_sequence = [dfi_wrdata_en, *latency, dfi_data],
pad_checkers = {"sys4x_90": {
f'dq{i}': "0000"*phy.settings.write_latency + "0000 0000" + dq_pattern(i, dfi_data, "wrdata") + "0000"
for i in range(16)
}},
chunk_size=4,
)
def test_lpddr5_dq_out_4to1(self):
# Test serialization of dfi wrdata to DQ pads
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ, wck_ck_ratio=4)
dfi_data = {
0: dict(wrdata=0x111122223333444455556666777788889999aaaabbbbccccddddeeeeffff0000),
}
dfi_wrdata_en = {0: dict(wrdata_en=1)}
latency = [{}] * (phy.settings.write_latency - 1)
self.run_test(phy,
dfi_sequence = [dfi_wrdata_en, *latency, dfi_data],
pad_checkers = {"sys8x_90": {
f'dq{i}': "00000000"*phy.settings.write_latency + "00000000 00000000" + dq_pattern(i, dfi_data, "wrdata") + "00000000"
for i in range(16)
}},
)
def test_lpddr5_dmi_out_2to1(self):
# Test serialization of dfi wrdata to DQ pads
for masked_write in [False, True]:
with self.subTest(masked_write=masked_write):
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ, masked_write=masked_write)
wl = phy.settings.write_latency
dfi_data = {
0: dict( # all DQs have the same value on each cycle, each mask bit is 1 byte
wrdata = 0xffff0000ffffffff00000000ffffffff0000ffff00000000ffffffff0000ffff,
wrdata_mask = 0b11001000110110110101010010110011,
),
}
dfi_wrdata_en = {0: dict(wrdata_en=1)}
latency = [{}] * (wl - 1)
pads = {
f"dq{i}": "0000"*wl + "0000 0000" "1011 0010 1100 1101" "0000"
for i in range(16)
}
pads["dmi0"] = "0000"*wl + "0000 0000" + ("1010011110110001" if masked_write else 16*"0") + "0000"
pads["dmi1"] = "0000"*wl + "0000 0000" + ("1011000011010101" if masked_write else 16*"0") + "0000"
self.run_test(phy,
dfi_sequence = [dfi_wrdata_en, *latency, dfi_data],
pad_checkers = {"sys4x_90": pads},
chunk_size=4,
)
def test_lpddr5_dmi_out_4to1(self):
# Test serialization of dfi wrdata to DQ pads
for masked_write in [False, True]:
with self.subTest(masked_write=masked_write):
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ, masked_write=masked_write, wck_ck_ratio=4)
wl = phy.settings.write_latency
dfi_data = {
0: dict( # all DQs have the same value on each cycle, each mask bit is 1 byte
wrdata = 0xffff0000ffffffff00000000ffffffff0000ffff00000000ffffffff0000ffff,
wrdata_mask = 0b11001000110110110101010010110011,
),
}
dfi_wrdata_en = {0: dict(wrdata_en=1)}
latency = [{}] * (wl - 1)
pads = {
f"dq{i}": "00000000"*wl + "00000000 00000000" "1011 0010 1100 1101" "00000000"
for i in range(16)
}
pads["dmi0"] = "00000000"*wl + "00000000 00000000" + ("1010011110110001" if masked_write else 16*"0") + "00000000"
pads["dmi1"] = "00000000"*wl + "00000000 00000000" + ("1011000011010101" if masked_write else 16*"0") + "00000000"
self.run_test(phy,
dfi_sequence = [dfi_wrdata_en, *latency, dfi_data],
pad_checkers = {"sys8x_90": pads},
)
def test_lpddr5_dq_out_only_1_cycle(self):
# Test that only single cycle of wrdata after write_latency gets serialized
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ)
dfi_data = {
0: dict(wrdata=0x111122223333444455556666777788889999aaaabbbbccccddddeeeeffff0000),
}
dfi_wrdata_en = {0: dict(wrdata_en=1)}
latency = [dfi_data] * (phy.settings.write_latency - 1)
self.run_test(phy,
dfi_sequence = [dfi_wrdata_en, *latency, dfi_data],
pad_checkers = {"sys4x_90": {
f'dq{i}': "0000"*phy.settings.write_latency + "0000 0000" + dq_pattern(i, dfi_data, "wrdata") + "0000"
for i in range(16)
}},
chunk_size=4,
)
@wck_ratio_subtests
def test_lpddr5_dq_in_rddata_valid(self, Phy):
# Test that rddata_valid is set with correct delay
phy = Phy(sys_clk_freq=self.SYS_CLK_FREQ)
dfi_sequence = [
{0: dict(rddata_en=1)}, # command is issued by MC (appears on next cycle)
*[{0: dict(rddata_valid=0)} for _ in range(phy.settings.read_latency - 1)], # nothing is sent during write latency
{0: dict(rddata_valid=1)},
{},
]
self.run_test(phy,
dfi_sequence = dfi_sequence,
pad_checkers = {},
pad_generators = {},
)
def test_lpddr5_dq_in_rddata(self):
# Test that data on DQ pads is deserialized correctly to DFI rddata.
phy = LPDDR5SimPHY(sys_clk_freq=self.SYS_CLK_FREQ)
dfi_data = {
0: dict(
rddata=0x111122223333444455556666777788889999aaaabbbbccccddddeeeeffff0000,
rddata_valid=1
),
}
def sim_dq(pads):
i = 0
while not (yield pads.cs):
i += 1
assert i < 40, "Timeout waiting for RD cmd"
yield
# RD is registered on the second CS, then wait for RL (everyting in CK domain)
for _ in range(4 * (1 + phy.settings.cl)):
yield
# wait one more cycle, need to verify the latencies on actual hardware
for _ in range(2):
yield
for cyc in range(16): # send a burst of data on pads
for bit in range(16):
yield pads.dq_i[bit].eq(int(dq_pattern(bit, dfi_data, "rddata")[cyc]))
yield
for bit in range(16):
yield pads.dq_i[bit].eq(0)
yield
read_des_delay = 3 # phy.read_des_delay
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1, rddata_en=1)},
*[{} for _ in range(phy.settings.read_latency - 1)],
dfi_data,
{},
]
self.run_test(phy,
dfi_sequence = dfi_sequence,
pad_checkers = {},
pad_generators = {
"sys4x_180": sim_dq,
},
)
def test_lpddr5_wck_sync_2to1_write(self):
# Test that correct WCK sequence is generated during WCK sync before burst write for WCK:CK=2:1
cases = { # sys_clk_freq: timings
100e6: dict(t_wckenl_wr=1, t_wckenl_static=1, t_wckenl_toggle_wr=3), # data rate 400 MT/s
200e6: dict(t_wckenl_wr=0, t_wckenl_static=2, t_wckenl_toggle_wr=3), # 800 MT/s
300e6: dict(t_wckenl_wr=1, t_wckenl_static=2, t_wckenl_toggle_wr=4), # 1200 MT/s
500e6: dict(t_wckenl_wr=2, t_wckenl_static=3, t_wckenl_toggle_wr=4), # 2000 MT/s
600e6: dict(t_wckenl_wr=1, t_wckenl_static=4, t_wckenl_toggle_wr=4), # 2400 MT/s
800e6: dict(t_wckenl_wr=3, t_wckenl_static=4, t_wckenl_toggle_wr=4), # 3200 MT/s
}
for sys_clk_freq, t in cases.items():
with self.subTest(sys_clk_freq=sys_clk_freq, timings=t):
phy = LPDDR5SimPHY(sys_clk_freq=sys_clk_freq)
wl = phy.settings.write_latency
dfi_data = { # `10101010...` pattern on dq0 and `11111...` on others
0: dict(wrdata=0xfffefffffffefffffffefffffffefffffffefffffffefffffffefffffffeffff),
}
latency = [{}] * (wl - 1)
# minimum latency to have correct wck synchronization
consecutive_burst_latency = [{}] * 6
wck_preamble = "00 00" * t["t_wckenl_wr"] + "00 00" * t["t_wckenl_static"] + "10 10" * t["t_wckenl_toggle_wr"]
wck_burst = "10 10" * (16//4)
wck_postamble = "10 10" + "10 00"
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
],
pad_checkers = {
"sys_270": {
"cs": "01100000",
},
"sys4x_90": { # DQ just for reference
"dq0": "0000"*wl + "0000 0000" + "10101010 10101010" + "0000",
"dq1": "0000"*wl + "0000 0000" + "11111111 11111111" + "0000",
},
"sys4x_270": {
# tWCKENL_WR starts counting from first command (CAS) so we add command latency,
# then preamble, then toggle for the whole burst, then postamble for tWCKPST=2.5tCK
# (but for now we assume that WCK is never disabled)
"wck0": "0000 0000" + \
"0000" + wck_preamble + wck_burst + wck_postamble + \
"0000" + wck_preamble + wck_burst + wck_postamble + \
"0000" + wck_preamble + wck_burst + wck_postamble + \
"0000" + wck_preamble + wck_burst + wck_postamble,
},
},
chunk_size=4,
)
def test_lpddr5_wck_sync_4to1_write(self):
# Test that correct WCK sequence is generated during WCK sync before burst write for WCK:CK=4:1
cases = { # sys_clk_freq: timings
50e6: dict(t_wckenl_wr=0, t_wckenl_static=1, t_wckenl_toggle_wr=2), # data rate 400 MT/s
100e6: dict(t_wckenl_wr=0, t_wckenl_static=1, t_wckenl_toggle_wr=2), # 800 MT/s
150e6: dict(t_wckenl_wr=1, t_wckenl_static=1, t_wckenl_toggle_wr=2), # 1200 MT/s
250e6: dict(t_wckenl_wr=1, t_wckenl_static=2, t_wckenl_toggle_wr=2), # 2000 MT/s
300e6: dict(t_wckenl_wr=1, t_wckenl_static=2, t_wckenl_toggle_wr=2), # 2400 MT/s
400e6: dict(t_wckenl_wr=2, t_wckenl_static=2, t_wckenl_toggle_wr=2), # 3200 MT/s
}
for sys_clk_freq, t in cases.items():
with self.subTest(sys_clk_freq=sys_clk_freq, timings=t):
phy = LPDDR5SimPHY(sys_clk_freq=sys_clk_freq, wck_ck_ratio=4)
wl = phy.settings.write_latency
dfi_data = { # `10101010...` pattern on dq0 and `11111...` on others
0: dict(wrdata=0xfffefffffffefffffffefffffffefffffffefffffffefffffffefffffffeffff),
}
latency = [{}] * (wl - 1)
# minimum latency to have correct wck synchronization
consecutive_burst_latency = [{}] * 3
wck_preamble = "00000000" * (t["t_wckenl_wr"] + t["t_wckenl_static"]) + "11001100" + "10101010" * (t["t_wckenl_toggle_wr"] - 1)
wck_burst = "10101010" * (16//8)
wck_postamble = "10101000"
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
*consecutive_burst_latency,
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=0, wrdata_en=1)},
*latency,
dfi_data,
],
pad_checkers = {
"sys_270": {
"cs": "01100000",
},
"sys8x_90": { # DQ just for reference
"dq0": "00000000"*wl + "00000000 00000000" + "10101010 10101010" + "00000000",
"dq1": "00000000"*wl + "00000000 00000000" + "11111111 11111111" + "00000000",
},
"sys8x_270": {
# tWCKENL_WR starts counting from first command (CAS) so we add command latency,
# then preamble, then toggle for the whole burst, then postamble for tWCKPST=2.5tCK
# (but for now we assume that WCK is never disabled)
"wck0": "00000000 00000000" + \
"00000000" + wck_preamble + wck_burst + wck_postamble + \
"00000000" + wck_preamble + wck_burst + wck_postamble + \
"00000000" + wck_preamble + wck_burst + wck_postamble + \
"00000000" + wck_preamble + wck_burst + wck_postamble,
},
},
)
def test_lpddr5_wck_sync_2to1_read(self):
# Test that correct WCK sequence is generated during WCK sync before burst read for WCK:CK=2:1
cases = { # sys_clk_freq: timings
100e6: dict(t_wckenl_rd=0, t_wckenl_static=1, t_wckenl_toggle_rd=6), # data rate 400 MT/s
200e6: dict(t_wckenl_rd=0, t_wckenl_static=2, t_wckenl_toggle_rd=7), # 800 MT/s
300e6: dict(t_wckenl_rd=1, t_wckenl_static=2, t_wckenl_toggle_rd=8), # 1200 MT/s
500e6: dict(t_wckenl_rd=2, t_wckenl_static=3, t_wckenl_toggle_rd=8), # 2000 MT/s
600e6: dict(t_wckenl_rd=3, t_wckenl_static=4, t_wckenl_toggle_rd=10), # 2400 MT/s
800e6: dict(t_wckenl_rd=5, t_wckenl_static=4, t_wckenl_toggle_rd=10), # 3200 MT/s
}
for sys_clk_freq, t in cases.items():
with self.subTest(sys_clk_freq=sys_clk_freq, timings=t):
phy = LPDDR5SimPHY(sys_clk_freq=sys_clk_freq)
rl = phy.settings.read_latency
latency = [{}] * (rl - 1)
wck_preamble = "00 00" * t["t_wckenl_rd"] + "00 00" * t["t_wckenl_static"] + "10 10" * t["t_wckenl_toggle_rd"]
wck_burst = "10 10" * (16//4)
wck_postamble = "10 10" + "10 00"
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1, rddata_en=1)},
*latency,
{0: dict(rddata_valid=1)},
],
pad_checkers = {
"sys_270": {
"cs": "01100000",
},
"sys4x_270": {
"wck0": "0000 0000 0000" + wck_preamble + wck_burst + wck_postamble + "00 00",
},
},
chunk_size=4,
)
def test_lpddr5_wck_sync_4to1_read(self):
# Test that correct WCK sequence is generated during WCK sync before burst read for WCK:CK=4:1
cases = { # sys_clk_freq: timings
50e6: dict(t_wckenl_rd=0, t_wckenl_static=1, t_wckenl_toggle_rd=3), # data rate 400 MT/s
100e6: dict(t_wckenl_rd=0, t_wckenl_static=1, t_wckenl_toggle_rd=4), # 800 MT/s
150e6: dict(t_wckenl_rd=1, t_wckenl_static=1, t_wckenl_toggle_rd=4), # 1200 MT/s
250e6: dict(t_wckenl_rd=1, t_wckenl_static=2, t_wckenl_toggle_rd=4), # 2000 MT/s
300e6: dict(t_wckenl_rd=2, t_wckenl_static=2, t_wckenl_toggle_rd=5), # 2400 MT/s
400e6: dict(t_wckenl_rd=3, t_wckenl_static=2, t_wckenl_toggle_rd=5), # 3200 MT/s
}
for sys_clk_freq, t in cases.items():
with self.subTest(sys_clk_freq=sys_clk_freq, timings=t):
phy = LPDDR5SimPHY(sys_clk_freq=sys_clk_freq, wck_ck_ratio=4)
rl = phy.settings.read_latency
latency = [{}] * (rl - 1)
wck_preamble = "00000000" * (t["t_wckenl_rd"] + t["t_wckenl_static"]) + "11001100" + "10101010" * (t["t_wckenl_toggle_rd"] - 1)
wck_burst = "10101010" * (16//8)
wck_postamble = "10101000"
self.run_test(phy,
dfi_sequence = [
{0: dict(cs_n=0, cas_n=0, ras_n=1, we_n=1, rddata_en=1)},
*latency,
{0: dict(rddata_valid=1)},
],
pad_checkers = {
"sys_270": {
"cs": "01100000",
},
"sys8x_270": {
"wck0": "00000000 00000000 00000000" + wck_preamble + wck_burst + wck_postamble + "00000000",
},
},
)
def test_lpddr5_wck_leveling(self):
# Test that correct WCK sequence is generated during WCK sync before burst write for WCK:CK=4:1
for wck_ck_ratio in [2, 4]:
with self.subTest(wck_ck_ratio=wck_ck_ratio):
phy = LPDDR5SimPHY(sys_clk_freq=50e6, wck_ck_ratio=wck_ck_ratio)
def write_leveling(pads):
for _ in range(4):
yield from phy._wlevel_en.write(1)
yield from phy._wlevel_strobe.write(1)
for i in range(4):
yield
yield from phy._wlevel_en.write(0)
self.run_test(phy,
dfi_sequence = {},
pad_checkers = {
f"sys4x_270": {
"wck0": "0000" + \
"0000" * 3 + "1010" * 4 + \
"0000" * 3 + "1010" * 4 + \
"0000" * 3 + "1010" * 4 + \
"0000" * 3 + "1010" * 4,
},
},
pad_generators = {
"sys": write_leveling,
}
)
class VerilatorLPDDR5Tests(unittest.TestCase):
def check_logs(self, logs, allowed):
for match in SimLogger.LOG_PATTERN.finditer(logs):
if match.group("level") in ["WARN", "ERROR"]:
is_allowed = any(
lvl == match.group("level") and msg in match.group("msg")
for lvl, msg in allowed
)
self.assertTrue(is_allowed, msg=match.group(0))
def run_test(self, args, allowed=None, **kwargs):
import pexpect
command = ["python3", simsoc.__file__, *args]
timeout = 12 * 60 # give more than enough time
p = pexpect.spawn(" ".join(command), timeout=timeout, **kwargs)
res = p.expect(["Memtest OK", "Memtest KO"])
self.assertEqual(res, 0, msg="{}\nGot '{}'".format(p.before.decode(), p.after.decode()))
# print(p.before.decode())
self.check_logs(p.before.decode(), allowed=allowed or [])
def test_lpddr5_sim_no_delays(self):
# Fast test of simulation with L2 cache (so no data masking is required)
for wck_ck_ratio in [2, 4]:
with self.subTest(wck_ck_ratio=wck_ck_ratio):
self.run_test([
"--finish-after-memtest", "--log-level=warn",
"--disable-delay",
f"--wck-ck-ratio={wck_ck_ratio}",
"--no-refresh", # FIXME: avoids warnings before initialization
])
def test_lpddr5_sim_delays_no_cache(self):
# Test simulation with regular delays and no L2 cache (masked write must work)
for wck_ck_ratio in [2, 4]:
with self.subTest(wck_ck_ratio=wck_ck_ratio):
# These happen due the fact that LiteDRAM starts in hw control mode which holds reset_n=1
# all the time. When the DRAM initialization starts we do a reset once more, this time properly.
allowed = [
("WARN", "tPW_RESET violated: RESET_n held low for too short"),
("WARN", "tINIT1 violated: RESET deasserted too fast"),
]
self.run_test([
"--finish-after-memtest", "--log-level=warn",
"--l2-size=0",
f"--wck-ck-ratio={wck_ck_ratio}",
"--no-refresh", # FIXME: LiteDRAM sends refresh commands when only MRW/MRR are allowed
], allowed=allowed)