litex/migen/genlib/fsm.py

177 lines
6 KiB
Python
Raw Normal View History

2013-06-25 16:17:39 -04:00
from collections import OrderedDict
from migen.fhdl.structure import *
from migen.fhdl.structure import _Slice, _ArrayProxy
from migen.fhdl.module import Module, FinalizeError
2013-06-25 16:17:39 -04:00
from migen.fhdl.visit import NodeTransformer
from migen.fhdl.bitcontainer import value_bits_sign
2012-01-09 10:28:48 -05:00
2015-04-13 14:45:35 -04:00
__all__ = ["AnonymousState", "NextState", "NextValue", "FSM"]
2013-06-25 16:17:39 -04:00
class AnonymousState:
pass
2013-06-25 16:17:39 -04:00
2015-04-13 14:45:35 -04:00
2013-06-25 16:17:39 -04:00
# do not use namedtuple here as it inherits tuple
# and the latter is used elsewhere in FHDL
class NextState:
def __init__(self, state):
self.state = state
2013-06-25 16:17:39 -04:00
2015-04-13 14:45:35 -04:00
class NextValue:
def __init__(self, target, value):
self.target = target
self.value = value
2015-04-13 14:45:35 -04:00
def _target_eq(a, b):
if type(a) != type(b):
return False
ty = type(a)
if ty == Constant:
return a.value == b.value
elif ty == Signal:
return a is b
elif ty == Cat:
return all(_target_eq(x, y) for x, y in zip(a.l, b.l))
elif ty == _Slice:
return (_target_eq(a.value, b.value)
and a.start == b.start
and a.end == b.end)
elif ty == _ArrayProxy:
return (all(_target_eq(x, y) for x, y in zip(a.choices, b.choices))
and _target_eq(a.key, b.key))
else:
raise ValueError("NextValue cannot be used with target type '{}'"
.format(ty))
class _LowerNext(NodeTransformer):
def __init__(self, next_state_signal, encoding, aliases):
self.next_state_signal = next_state_signal
self.encoding = encoding
self.aliases = aliases
# (target, next_value_ce, next_value)
self.registers = []
def _get_register_control(self, target):
for x in self.registers:
if _target_eq(target, x[0]):
return x
raise KeyError
def visit_unknown(self, node):
if isinstance(node, NextState):
try:
actual_state = self.aliases[node.state]
except KeyError:
actual_state = node.state
return self.next_state_signal.eq(self.encoding[actual_state])
elif isinstance(node, NextValue):
try:
next_value_ce, next_value = self._get_register_control(node.target)
except KeyError:
related = node.target if isinstance(node.target, Signal) else None
next_value = Signal(bits_sign=value_bits_sign(node.target), related=related)
next_value_ce = Signal(related=related)
self.registers.append((node.target, next_value_ce, next_value))
return next_value.eq(node.value), next_value_ce.eq(1)
else:
return node
2013-06-25 16:17:39 -04:00
2015-04-13 14:45:35 -04:00
2013-06-25 16:17:39 -04:00
class FSM(Module):
def __init__(self, reset_state=None):
self.actions = OrderedDict()
self.state_aliases = dict()
self.reset_state = reset_state
self.before_entering_signals = OrderedDict()
self.before_leaving_signals = OrderedDict()
self.after_entering_signals = OrderedDict()
self.after_leaving_signals = OrderedDict()
def act(self, state, *statements):
if self.finalized:
raise FinalizeError
if self.reset_state is None:
self.reset_state = state
if state not in self.actions:
self.actions[state] = []
self.actions[state] += statements
def delayed_enter(self, name, target, delay):
if self.finalized:
raise FinalizeError
if delay > 0:
state = name
for i in range(delay):
if i == delay - 1:
next_state = target
else:
next_state = AnonymousState()
self.act(state, NextState(next_state))
state = next_state
else:
self.state_aliases[name] = target
def ongoing(self, state):
is_ongoing = Signal()
self.act(state, is_ongoing.eq(1))
return is_ongoing
def _get_signal(self, d, state):
if state not in self.actions:
self.actions[state] = []
try:
return d[state]
except KeyError:
is_el = Signal()
d[state] = is_el
return is_el
def before_entering(self, state):
return self._get_signal(self.before_entering_signals, state)
def before_leaving(self, state):
return self._get_signal(self.before_leaving_signals, state)
def after_entering(self, state):
signal = self._get_signal(self.after_entering_signals, state)
self.sync += signal.eq(self.before_entering(state))
return signal
def after_leaving(self, state):
signal = self._get_signal(self.after_leaving_signals, state)
self.sync += signal.eq(self.before_leaving(state))
return signal
def do_finalize(self):
nstates = len(self.actions)
self.encoding = dict((s, n) for n, s in enumerate(self.actions.keys()))
self.state = Signal(max=nstates, reset=self.encoding[self.reset_state])
self.next_state = Signal(max=nstates)
ln = _LowerNext(self.next_state, self.encoding, self.state_aliases)
cases = dict((self.encoding[k], ln.visit(v)) for k, v in self.actions.items() if v)
self.comb += [
self.next_state.eq(self.state),
Case(self.state, cases).makedefault(self.encoding[self.reset_state])
]
self.sync += self.state.eq(self.next_state)
for register, next_value_ce, next_value in ln.registers:
self.sync += If(next_value_ce, register.eq(next_value))
# drive entering/leaving signals
for state, signal in self.before_leaving_signals.items():
encoded = self.encoding[state]
self.comb += signal.eq((self.state == encoded) & ~(self.next_state == encoded))
if self.reset_state in self.after_entering_signals:
self.after_entering_signals[self.reset_state].reset = 1
for state, signal in self.before_entering_signals.items():
encoded = self.encoding[state]
self.comb += signal.eq(~(self.state == encoded) & (self.next_state == encoded))