mirror of
https://github.com/enjoy-digital/litex.git
synced 2025-01-04 09:52:26 -05:00
1031 lines
34 KiB
C
1031 lines
34 KiB
C
|
|
||
|
/*
|
||
|
===============================================================================
|
||
|
|
||
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point
|
||
|
Arithmetic Package, Release 2.
|
||
|
|
||
|
Written by John R. Hauser. This work was made possible in part by the
|
||
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
||
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
||
|
National Science Foundation under grant MIP-9311980. The original version
|
||
|
of this code was written as part of a project to build a fixed-point vector
|
||
|
processor in collaboration with the University of California at Berkeley,
|
||
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||
|
is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
||
|
arithmetic/softfloat.html'.
|
||
|
|
||
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||
|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||
|
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||
|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
||
|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
||
|
|
||
|
Derivative works are acceptable, even for commercial purposes, so long as
|
||
|
(1) they include prominent notice that the work is derivative, and (2) they
|
||
|
include prominent notice akin to these three paragraphs for those parts of
|
||
|
this code that are retained.
|
||
|
|
||
|
===============================================================================
|
||
|
*/
|
||
|
|
||
|
#include "milieu.h"
|
||
|
#include "softfloat.h"
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Floating-point rounding mode and exception flags.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
int8 float_rounding_mode = float_round_nearest_even;
|
||
|
int8 float_exception_flags = 0;
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Primitive arithmetic functions, including multi-word arithmetic, and
|
||
|
division and square root approximations. (Can be specialized to target if
|
||
|
desired.)
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
#include "softfloat-macros.h"
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Functions and definitions to determine: (1) whether tininess for underflow
|
||
|
is detected before or after rounding by default, (2) what (if anything)
|
||
|
happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
||
|
from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
|
||
|
are propagated from function inputs to output. These details are target-
|
||
|
specific.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
#include "softfloat-specialize.h"
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the fraction bits of the single-precision floating-point value `a'.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
INLINE bits32 extractFloat32Frac( float32 a )
|
||
|
{
|
||
|
|
||
|
return a & 0x007FFFFF;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the exponent bits of the single-precision floating-point value `a'.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
INLINE int16 extractFloat32Exp( float32 a )
|
||
|
{
|
||
|
|
||
|
return ( a>>23 ) & 0xFF;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the sign bit of the single-precision floating-point value `a'.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
INLINE flag extractFloat32Sign( float32 a )
|
||
|
{
|
||
|
|
||
|
return a>>31;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Normalizes the subnormal single-precision floating-point value represented
|
||
|
by the denormalized significand `aSig'. The normalized exponent and
|
||
|
significand are stored at the locations pointed to by `zExpPtr' and
|
||
|
`zSigPtr', respectively.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
static void
|
||
|
normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
|
||
|
{
|
||
|
int8 shiftCount;
|
||
|
|
||
|
shiftCount = countLeadingZeros32( aSig ) - 8;
|
||
|
*zSigPtr = aSig<<shiftCount;
|
||
|
*zExpPtr = 1 - shiftCount;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
||
|
single-precision floating-point value, returning the result. After being
|
||
|
shifted into the proper positions, the three fields are simply added
|
||
|
together to form the result. This means that any integer portion of `zSig'
|
||
|
will be added into the exponent. Since a properly normalized significand
|
||
|
will have an integer portion equal to 1, the `zExp' input should be 1 less
|
||
|
than the desired result exponent whenever `zSig' is a complete, normalized
|
||
|
significand.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
|
||
|
{
|
||
|
|
||
|
return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
||
|
and significand `zSig', and returns the proper single-precision floating-
|
||
|
point value corresponding to the abstract input. Ordinarily, the abstract
|
||
|
value is simply rounded and packed into the single-precision format, with
|
||
|
the inexact exception raised if the abstract input cannot be represented
|
||
|
exactly. If the abstract value is too large, however, the overflow and
|
||
|
inexact exceptions are raised and an infinity or maximal finite value is
|
||
|
returned. If the abstract value is too small, the input value is rounded to
|
||
|
a subnormal number, and the underflow and inexact exceptions are raised if
|
||
|
the abstract input cannot be represented exactly as a subnormal single-
|
||
|
precision floating-point number.
|
||
|
The input significand `zSig' has its binary point between bits 30
|
||
|
and 29, which is 7 bits to the left of the usual location. This shifted
|
||
|
significand must be normalized or smaller. If `zSig' is not normalized,
|
||
|
`zExp' must be 0; in that case, the result returned is a subnormal number,
|
||
|
and it must not require rounding. In the usual case that `zSig' is
|
||
|
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
||
|
The handling of underflow and overflow follows the IEC/IEEE Standard for
|
||
|
Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
|
||
|
{
|
||
|
int8 roundingMode;
|
||
|
flag roundNearestEven;
|
||
|
int8 roundIncrement, roundBits;
|
||
|
flag isTiny;
|
||
|
|
||
|
roundingMode = float_rounding_mode;
|
||
|
roundNearestEven = roundingMode == float_round_nearest_even;
|
||
|
roundIncrement = 0x40;
|
||
|
if ( ! roundNearestEven ) {
|
||
|
if ( roundingMode == float_round_to_zero ) {
|
||
|
roundIncrement = 0;
|
||
|
}
|
||
|
else {
|
||
|
roundIncrement = 0x7F;
|
||
|
if ( zSign ) {
|
||
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
||
|
}
|
||
|
else {
|
||
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
roundBits = zSig & 0x7F;
|
||
|
if ( 0xFD <= (bits16) zExp ) {
|
||
|
if ( ( 0xFD < zExp )
|
||
|
|| ( ( zExp == 0xFD )
|
||
|
&& ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
|
||
|
) {
|
||
|
float_raise( float_flag_overflow | float_flag_inexact );
|
||
|
return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
|
||
|
}
|
||
|
if ( zExp < 0 ) {
|
||
|
isTiny =
|
||
|
( float_detect_tininess == float_tininess_before_rounding )
|
||
|
|| ( zExp < -1 )
|
||
|
|| ( zSig + roundIncrement < 0x80000000 );
|
||
|
shift32RightJamming( zSig, - zExp, &zSig );
|
||
|
zExp = 0;
|
||
|
roundBits = zSig & 0x7F;
|
||
|
if ( isTiny && roundBits ) float_raise( float_flag_underflow );
|
||
|
}
|
||
|
}
|
||
|
if ( roundBits ) float_exception_flags |= float_flag_inexact;
|
||
|
zSig = ( zSig + roundIncrement )>>7;
|
||
|
zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
||
|
if ( zSig == 0 ) zExp = 0;
|
||
|
return packFloat32( zSign, zExp, zSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
||
|
and significand `zSig', and returns the proper single-precision floating-
|
||
|
point value corresponding to the abstract input. This routine is just like
|
||
|
`roundAndPackFloat32' except that `zSig' does not have to be normalized in
|
||
|
any way. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
||
|
point exponent.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
static float32
|
||
|
normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
|
||
|
{
|
||
|
int8 shiftCount;
|
||
|
|
||
|
shiftCount = countLeadingZeros32( zSig ) - 1;
|
||
|
return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of converting the 32-bit two's complement integer `a' to
|
||
|
the single-precision floating-point format. The conversion is performed
|
||
|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 int32_to_float32( int32 a )
|
||
|
{
|
||
|
flag zSign;
|
||
|
|
||
|
if ( a == 0 ) return 0;
|
||
|
if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
|
||
|
zSign = ( a < 0 );
|
||
|
return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of converting the single-precision floating-point value
|
||
|
`a' to the 32-bit two's complement integer format. The conversion is
|
||
|
performed according to the IEC/IEEE Standard for Binary Floating-point
|
||
|
Arithmetic---which means in particular that the conversion is rounded
|
||
|
according to the current rounding mode. If `a' is a NaN, the largest
|
||
|
positive integer is returned. Otherwise, if the conversion overflows, the
|
||
|
largest integer with the same sign as `a' is returned.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
int32 float32_to_int32( float32 a )
|
||
|
{
|
||
|
flag aSign;
|
||
|
int16 aExp, shiftCount;
|
||
|
bits32 aSig, zExtra;
|
||
|
int32 z;
|
||
|
int8 roundingMode;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
shiftCount = aExp - 0x96;
|
||
|
if ( 0 <= shiftCount ) {
|
||
|
if ( 0x9E <= aExp ) {
|
||
|
if ( a == 0xCF000000 ) return 0x80000000;
|
||
|
float_raise( float_flag_invalid );
|
||
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
||
|
return 0x80000000;
|
||
|
}
|
||
|
z = ( aSig | 0x00800000 )<<shiftCount;
|
||
|
if ( aSign ) z = - z;
|
||
|
}
|
||
|
else {
|
||
|
if ( aExp < 0x7E ) {
|
||
|
zExtra = aExp | aSig;
|
||
|
z = 0;
|
||
|
}
|
||
|
else {
|
||
|
aSig |= 0x00800000;
|
||
|
zExtra = aSig<<( shiftCount & 31 );
|
||
|
z = aSig>>( - shiftCount );
|
||
|
}
|
||
|
if ( zExtra ) float_exception_flags |= float_flag_inexact;
|
||
|
roundingMode = float_rounding_mode;
|
||
|
if ( roundingMode == float_round_nearest_even ) {
|
||
|
if ( (sbits32) zExtra < 0 ) {
|
||
|
++z;
|
||
|
if ( (bits32) ( zExtra<<1 ) == 0 ) z &= ~1;
|
||
|
}
|
||
|
if ( aSign ) z = - z;
|
||
|
}
|
||
|
else {
|
||
|
zExtra = ( zExtra != 0 );
|
||
|
if ( aSign ) {
|
||
|
z += ( roundingMode == float_round_down ) & zExtra;
|
||
|
z = - z;
|
||
|
}
|
||
|
else {
|
||
|
z += ( roundingMode == float_round_up ) & zExtra;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return z;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of converting the single-precision floating-point value
|
||
|
`a' to the 32-bit two's complement integer format. The conversion is
|
||
|
performed according to the IEC/IEEE Standard for Binary Floating-point
|
||
|
Arithmetic, except that the conversion is always rounded toward zero. If
|
||
|
`a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
||
|
conversion overflows, the largest integer with the same sign as `a' is
|
||
|
returned.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
int32 float32_to_int32_round_to_zero( float32 a )
|
||
|
{
|
||
|
flag aSign;
|
||
|
int16 aExp, shiftCount;
|
||
|
bits32 aSig;
|
||
|
int32 z;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
shiftCount = aExp - 0x9E;
|
||
|
if ( 0 <= shiftCount ) {
|
||
|
if ( a == 0xCF000000 ) return 0x80000000;
|
||
|
float_raise( float_flag_invalid );
|
||
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
||
|
return 0x80000000;
|
||
|
}
|
||
|
else if ( aExp <= 0x7E ) {
|
||
|
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
|
||
|
return 0;
|
||
|
}
|
||
|
aSig = ( aSig | 0x00800000 )<<8;
|
||
|
z = aSig>>( - shiftCount );
|
||
|
if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
|
||
|
float_exception_flags |= float_flag_inexact;
|
||
|
}
|
||
|
return aSign ? - z : z;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Rounds the single-precision floating-point value `a' to an integer, and
|
||
|
returns the result as a single-precision floating-point value. The
|
||
|
operation is performed according to the IEC/IEEE Standard for Binary
|
||
|
Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_round_to_int( float32 a )
|
||
|
{
|
||
|
flag aSign;
|
||
|
int16 aExp;
|
||
|
bits32 lastBitMask, roundBitsMask;
|
||
|
int8 roundingMode;
|
||
|
float32 z;
|
||
|
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
if ( 0x96 <= aExp ) {
|
||
|
if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
||
|
return propagateFloat32NaN( a, a );
|
||
|
}
|
||
|
return a;
|
||
|
}
|
||
|
if ( aExp <= 0x7E ) {
|
||
|
if ( (bits32) ( a<<1 ) == 0 ) return a;
|
||
|
float_exception_flags |= float_flag_inexact;
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
switch ( float_rounding_mode ) {
|
||
|
case float_round_nearest_even:
|
||
|
if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
||
|
return packFloat32( aSign, 0x7F, 0 );
|
||
|
}
|
||
|
break;
|
||
|
case float_round_down:
|
||
|
return aSign ? 0xBF800000 : 0;
|
||
|
case float_round_up:
|
||
|
return aSign ? 0x80000000 : 0x3F800000;
|
||
|
}
|
||
|
return packFloat32( aSign, 0, 0 );
|
||
|
}
|
||
|
lastBitMask = 1;
|
||
|
lastBitMask <<= 0x96 - aExp;
|
||
|
roundBitsMask = lastBitMask - 1;
|
||
|
z = a;
|
||
|
roundingMode = float_rounding_mode;
|
||
|
if ( roundingMode == float_round_nearest_even ) {
|
||
|
z += lastBitMask>>1;
|
||
|
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
||
|
}
|
||
|
else if ( roundingMode != float_round_to_zero ) {
|
||
|
if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
||
|
z += roundBitsMask;
|
||
|
}
|
||
|
}
|
||
|
z &= ~ roundBitsMask;
|
||
|
if ( z != a ) float_exception_flags |= float_flag_inexact;
|
||
|
return z;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of adding the absolute values of the single-precision
|
||
|
floating-point values `a' and `b'. If `zSign' is true, the sum is negated
|
||
|
before being returned. `zSign' is ignored if the result is a NaN. The
|
||
|
addition is performed according to the IEC/IEEE Standard for Binary
|
||
|
Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
|
||
|
{
|
||
|
int16 aExp, bExp, zExp;
|
||
|
bits32 aSig, bSig, zSig;
|
||
|
int16 expDiff;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
bSig = extractFloat32Frac( b );
|
||
|
bExp = extractFloat32Exp( b );
|
||
|
expDiff = aExp - bExp;
|
||
|
aSig <<= 6;
|
||
|
bSig <<= 6;
|
||
|
if ( 0 < expDiff ) {
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
||
|
return a;
|
||
|
}
|
||
|
if ( bExp == 0 ) {
|
||
|
--expDiff;
|
||
|
}
|
||
|
else {
|
||
|
bSig |= 0x20000000;
|
||
|
}
|
||
|
shift32RightJamming( bSig, expDiff, &bSig );
|
||
|
zExp = aExp;
|
||
|
}
|
||
|
else if ( expDiff < 0 ) {
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
return packFloat32( zSign, 0xFF, 0 );
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
++expDiff;
|
||
|
}
|
||
|
else {
|
||
|
aSig |= 0x20000000;
|
||
|
}
|
||
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
||
|
zExp = bExp;
|
||
|
}
|
||
|
else {
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
|
||
|
return a;
|
||
|
}
|
||
|
if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
||
|
zSig = 0x40000000 + aSig + bSig;
|
||
|
zExp = aExp;
|
||
|
goto roundAndPack;
|
||
|
}
|
||
|
aSig |= 0x20000000;
|
||
|
zSig = ( aSig + bSig )<<1;
|
||
|
--zExp;
|
||
|
if ( (sbits32) zSig < 0 ) {
|
||
|
zSig = aSig + bSig;
|
||
|
++zExp;
|
||
|
}
|
||
|
roundAndPack:
|
||
|
return roundAndPackFloat32( zSign, zExp, zSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of subtracting the absolute values of the single-
|
||
|
precision floating-point values `a' and `b'. If `zSign' is true, the
|
||
|
difference is negated before being returned. `zSign' is ignored if the
|
||
|
result is a NaN. The subtraction is performed according to the IEC/IEEE
|
||
|
Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
|
||
|
{
|
||
|
int16 aExp, bExp, zExp;
|
||
|
bits32 aSig, bSig, zSig;
|
||
|
int16 expDiff;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
bSig = extractFloat32Frac( b );
|
||
|
bExp = extractFloat32Exp( b );
|
||
|
expDiff = aExp - bExp;
|
||
|
aSig <<= 7;
|
||
|
bSig <<= 7;
|
||
|
if ( 0 < expDiff ) goto aExpBigger;
|
||
|
if ( expDiff < 0 ) goto bExpBigger;
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
aExp = 1;
|
||
|
bExp = 1;
|
||
|
}
|
||
|
if ( bSig < aSig ) goto aBigger;
|
||
|
if ( aSig < bSig ) goto bBigger;
|
||
|
return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
|
||
|
bExpBigger:
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
return packFloat32( zSign ^ 1, 0xFF, 0 );
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
++expDiff;
|
||
|
}
|
||
|
else {
|
||
|
aSig |= 0x40000000;
|
||
|
}
|
||
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
||
|
bSig |= 0x40000000;
|
||
|
bBigger:
|
||
|
zSig = bSig - aSig;
|
||
|
zExp = bExp;
|
||
|
zSign ^= 1;
|
||
|
goto normalizeRoundAndPack;
|
||
|
aExpBigger:
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
||
|
return a;
|
||
|
}
|
||
|
if ( bExp == 0 ) {
|
||
|
--expDiff;
|
||
|
}
|
||
|
else {
|
||
|
bSig |= 0x40000000;
|
||
|
}
|
||
|
shift32RightJamming( bSig, expDiff, &bSig );
|
||
|
aSig |= 0x40000000;
|
||
|
aBigger:
|
||
|
zSig = aSig - bSig;
|
||
|
zExp = aExp;
|
||
|
normalizeRoundAndPack:
|
||
|
--zExp;
|
||
|
return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of adding the single-precision floating-point values `a'
|
||
|
and `b'. The operation is performed according to the IEC/IEEE Standard for
|
||
|
Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_add( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign == bSign ) {
|
||
|
return addFloat32Sigs( a, b, aSign );
|
||
|
}
|
||
|
else {
|
||
|
return subFloat32Sigs( a, b, aSign );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of subtracting the single-precision floating-point values
|
||
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
||
|
for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_sub( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign == bSign ) {
|
||
|
return subFloat32Sigs( a, b, aSign );
|
||
|
}
|
||
|
else {
|
||
|
return addFloat32Sigs( a, b, aSign );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of multiplying the single-precision floating-point values
|
||
|
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
||
|
for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_mul( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign, zSign;
|
||
|
int16 aExp, bExp, zExp;
|
||
|
bits32 aSig, bSig, zSig0, zSig1;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSig = extractFloat32Frac( b );
|
||
|
bExp = extractFloat32Exp( b );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
zSign = aSign ^ bSign;
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
||
|
return propagateFloat32NaN( a, b );
|
||
|
}
|
||
|
if ( ( bExp | bSig ) == 0 ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
return packFloat32( zSign, 0xFF, 0 );
|
||
|
}
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
if ( ( aExp | aSig ) == 0 ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
return packFloat32( zSign, 0xFF, 0 );
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
||
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||
|
}
|
||
|
if ( bExp == 0 ) {
|
||
|
if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
|
||
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
||
|
}
|
||
|
zExp = aExp + bExp - 0x7F;
|
||
|
aSig = ( aSig | 0x00800000 )<<7;
|
||
|
bSig = ( bSig | 0x00800000 )<<8;
|
||
|
mul32To64( aSig, bSig, &zSig0, &zSig1 );
|
||
|
zSig0 |= ( zSig1 != 0 );
|
||
|
if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
|
||
|
zSig0 <<= 1;
|
||
|
--zExp;
|
||
|
}
|
||
|
return roundAndPackFloat32( zSign, zExp, zSig0 );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the result of dividing the single-precision floating-point value `a'
|
||
|
by the corresponding value `b'. The operation is performed according to
|
||
|
the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_div( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign, zSign;
|
||
|
int16 aExp, bExp, zExp;
|
||
|
bits32 aSig, bSig, zSig;
|
||
|
bits32 rem0, rem1;
|
||
|
bits32 term0, term1;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSig = extractFloat32Frac( b );
|
||
|
bExp = extractFloat32Exp( b );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
zSign = aSign ^ bSign;
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig ) return propagateFloat32NaN( a, b );
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
return packFloat32( zSign, 0xFF, 0 );
|
||
|
}
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
return packFloat32( zSign, 0, 0 );
|
||
|
}
|
||
|
if ( bExp == 0 ) {
|
||
|
if ( bSig == 0 ) {
|
||
|
if ( ( aExp | aSig ) == 0 ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
float_raise( float_flag_divbyzero );
|
||
|
return packFloat32( zSign, 0xFF, 0 );
|
||
|
}
|
||
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
||
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||
|
}
|
||
|
zExp = aExp - bExp + 0x7D;
|
||
|
aSig = ( aSig | 0x00800000 )<<7;
|
||
|
bSig = ( bSig | 0x00800000 )<<8;
|
||
|
if ( bSig <= ( aSig + aSig ) ) {
|
||
|
aSig >>= 1;
|
||
|
++zExp;
|
||
|
}
|
||
|
zSig = estimateDiv64To32( aSig, 0, bSig );
|
||
|
if ( ( zSig & 0x3F ) <= 2 ) {
|
||
|
mul32To64( bSig, zSig, &term0, &term1 );
|
||
|
sub64( aSig, 0, term0, term1, &rem0, &rem1 );
|
||
|
while ( (sbits32) rem0 < 0 ) {
|
||
|
--zSig;
|
||
|
add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
||
|
}
|
||
|
zSig |= ( rem1 != 0 );
|
||
|
}
|
||
|
return roundAndPackFloat32( zSign, zExp, zSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the remainder of the single-precision floating-point value `a'
|
||
|
with respect to the corresponding value `b'. The operation is performed
|
||
|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_rem( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign, zSign;
|
||
|
int16 aExp, bExp, expDiff;
|
||
|
bits32 aSig, bSig;
|
||
|
bits32 q, alternateASig;
|
||
|
sbits32 sigMean;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSig = extractFloat32Frac( b );
|
||
|
bExp = extractFloat32Exp( b );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
||
|
return propagateFloat32NaN( a, b );
|
||
|
}
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
if ( bExp == 0xFF ) {
|
||
|
if ( bSig ) return propagateFloat32NaN( a, b );
|
||
|
return a;
|
||
|
}
|
||
|
if ( bExp == 0 ) {
|
||
|
if ( bSig == 0 ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
if ( aSig == 0 ) return a;
|
||
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||
|
}
|
||
|
expDiff = aExp - bExp;
|
||
|
aSig = ( aSig | 0x00800000 )<<8;
|
||
|
bSig = ( bSig | 0x00800000 )<<8;
|
||
|
if ( expDiff < 0 ) {
|
||
|
if ( expDiff < -1 ) return a;
|
||
|
aSig >>= 1;
|
||
|
}
|
||
|
q = ( bSig <= aSig );
|
||
|
if ( q ) aSig -= bSig;
|
||
|
expDiff -= 32;
|
||
|
while ( 0 < expDiff ) {
|
||
|
q = estimateDiv64To32( aSig, 0, bSig );
|
||
|
q = ( 2 < q ) ? q - 2 : 0;
|
||
|
aSig = - ( ( bSig>>2 ) * q );
|
||
|
expDiff -= 30;
|
||
|
}
|
||
|
expDiff += 32;
|
||
|
if ( 0 < expDiff ) {
|
||
|
q = estimateDiv64To32( aSig, 0, bSig );
|
||
|
q = ( 2 < q ) ? q - 2 : 0;
|
||
|
q >>= 32 - expDiff;
|
||
|
bSig >>= 2;
|
||
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
||
|
}
|
||
|
else {
|
||
|
aSig >>= 2;
|
||
|
bSig >>= 2;
|
||
|
}
|
||
|
do {
|
||
|
alternateASig = aSig;
|
||
|
++q;
|
||
|
aSig -= bSig;
|
||
|
} while ( 0 <= (sbits32) aSig );
|
||
|
sigMean = aSig + alternateASig;
|
||
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
||
|
aSig = alternateASig;
|
||
|
}
|
||
|
zSign = ( (sbits32) aSig < 0 );
|
||
|
if ( zSign ) aSig = - aSig;
|
||
|
return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns the square root of the single-precision floating-point value `a'.
|
||
|
The operation is performed according to the IEC/IEEE Standard for Binary
|
||
|
Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
float32 float32_sqrt( float32 a )
|
||
|
{
|
||
|
flag aSign;
|
||
|
int16 aExp, zExp;
|
||
|
bits32 aSig, zSig;
|
||
|
bits32 rem0, rem1;
|
||
|
bits32 term0, term1;
|
||
|
|
||
|
aSig = extractFloat32Frac( a );
|
||
|
aExp = extractFloat32Exp( a );
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
if ( aExp == 0xFF ) {
|
||
|
if ( aSig ) return propagateFloat32NaN( a, 0 );
|
||
|
if ( ! aSign ) return a;
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
if ( aSign ) {
|
||
|
if ( ( aExp | aSig ) == 0 ) return a;
|
||
|
float_raise( float_flag_invalid );
|
||
|
return float32_default_nan;
|
||
|
}
|
||
|
if ( aExp == 0 ) {
|
||
|
if ( aSig == 0 ) return 0;
|
||
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||
|
}
|
||
|
zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
||
|
aSig = ( aSig | 0x00800000 )<<8;
|
||
|
zSig = estimateSqrt32( aExp, aSig ) + 2;
|
||
|
if ( ( zSig & 0x7F ) <= 5 ) {
|
||
|
if ( zSig < 2 ) {
|
||
|
zSig = 0xFFFFFFFF;
|
||
|
}
|
||
|
else {
|
||
|
aSig >>= aExp & 1;
|
||
|
mul32To64( zSig, zSig, &term0, &term1 );
|
||
|
sub64( aSig, 0, term0, term1, &rem0, &rem1 );
|
||
|
while ( (sbits32) rem0 < 0 ) {
|
||
|
--zSig;
|
||
|
shortShift64Left( 0, zSig, 1, &term0, &term1 );
|
||
|
term1 |= 1;
|
||
|
add64( rem0, rem1, term0, term1, &rem0, &rem1 );
|
||
|
}
|
||
|
zSig |= ( ( rem0 | rem1 ) != 0 );
|
||
|
}
|
||
|
}
|
||
|
shift32RightJamming( zSig, 1, &zSig );
|
||
|
return roundAndPackFloat32( 0, zExp, zSig );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is equal to the
|
||
|
corresponding value `b', and 0 otherwise. The comparison is performed
|
||
|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_eq( float32 a, float32 b )
|
||
|
{
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is less than or
|
||
|
equal to the corresponding value `b', and 0 otherwise. The comparison is
|
||
|
performed according to the IEC/IEEE Standard for Binary Floating-point
|
||
|
Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_le( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return 0;
|
||
|
}
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
||
|
return ( a == b ) || ( aSign ^ ( a < b ) );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is less than
|
||
|
the corresponding value `b', and 0 otherwise. The comparison is performed
|
||
|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_lt( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return 0;
|
||
|
}
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
||
|
return ( a != b ) && ( aSign ^ ( a < b ) );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is equal to the
|
||
|
corresponding value `b', and 0 otherwise. The invalid exception is raised
|
||
|
if either operand is a NaN. Otherwise, the comparison is performed
|
||
|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_eq_signaling( float32 a, float32 b )
|
||
|
{
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
return 0;
|
||
|
}
|
||
|
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is less than or
|
||
|
equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
||
|
cause an exception. Otherwise, the comparison is performed according to the
|
||
|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_le_quiet( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
||
|
return ( a == b ) || ( aSign ^ ( a < b ) );
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
-------------------------------------------------------------------------------
|
||
|
Returns 1 if the single-precision floating-point value `a' is less than
|
||
|
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
||
|
exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
||
|
Standard for Binary Floating-point Arithmetic.
|
||
|
-------------------------------------------------------------------------------
|
||
|
*/
|
||
|
flag float32_lt_quiet( float32 a, float32 b )
|
||
|
{
|
||
|
flag aSign, bSign;
|
||
|
|
||
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
||
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
||
|
) {
|
||
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
||
|
float_raise( float_flag_invalid );
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
aSign = extractFloat32Sign( a );
|
||
|
bSign = extractFloat32Sign( b );
|
||
|
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
||
|
return ( a != b ) && ( aSign ^ ( a < b ) );
|
||
|
|
||
|
}
|
||
|
|