2012-02-07 07:02:06 -05:00
|
|
|
#include "milieu.h"
|
2012-02-03 06:08:17 -05:00
|
|
|
#include "softfloat.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Equal' wrapper. This returns 0 if the numbers are equal, or (1 | -1)
|
|
|
|
* otherwise. So we need to invert the output.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __eqsf2(float32 a, float32 b);
|
|
|
|
flag __eqsf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return !float32_eq(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Not Equal' wrapper. This returns -1 or 1 (say, 1!) if the numbers are
|
|
|
|
* not equal, 0 otherwise. However no not equal call is provided, so we have
|
|
|
|
* to use an 'equal' call and invert the result. The result is already
|
|
|
|
* inverted though! Confusing?!
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __nesf2(float32 a, float32 b);
|
|
|
|
flag __nesf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return !float32_eq(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Greater Than' wrapper. This returns 1 if the number is greater, 0
|
|
|
|
* or -1 otherwise. Unfortunately, no such function exists. We have to
|
|
|
|
* instead compare the numbers using the 'less than' calls in order to
|
|
|
|
* make up our mind. This means that we can call 'less than or equal' and
|
|
|
|
* invert the result.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __gtsf2(float32 a, float32 b);
|
|
|
|
flag __gtsf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return !float32_le(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Greater Than or Equal' wrapper. We emulate this by inverting the result
|
|
|
|
* of a 'less than' call.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __gesf2(float32 a, float32 b);
|
|
|
|
flag __gesf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return !float32_lt(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Less Than' wrapper.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __ltsf2(float32 a, float32 b);
|
|
|
|
flag __ltsf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return float32_lt(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'Less Than or Equal' wrapper. A 0 must turn into a 1, and a 1 into a 0.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __lesf2(float32 a, float32 b);
|
|
|
|
flag __lesf2(float32 a, float32 b)
|
2012-02-03 06:08:17 -05:00
|
|
|
{
|
|
|
|
return !float32_le(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Float negate... This isn't provided by the library, but it's hardly the
|
|
|
|
* hardest function in the world to write... :) In fact, because of the
|
|
|
|
* position in the registers of arguments, the double precision version can
|
|
|
|
* go here too ;-)
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __negsf2(float32 x);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __negsf2(float32 x)
|
|
|
|
{
|
|
|
|
return x ^ 0x80000000;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 32-bit operations.
|
|
|
|
*/
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __addsf3(float32 a, float32 b);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __addsf3(float32 a, float32 b)
|
|
|
|
{
|
|
|
|
return float32_add(a, b);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __subsf3(float32 a, float32 b);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __subsf3(float32 a, float32 b)
|
|
|
|
{
|
|
|
|
return float32_sub(a, b);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __mulsf3(float32 a, float32 b);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __mulsf3(float32 a, float32 b)
|
|
|
|
{
|
|
|
|
return float32_mul(a, b);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __divsf3(float32 a, float32 b);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __divsf3(float32 a, float32 b)
|
|
|
|
{
|
|
|
|
return float32_div(a, b);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
float32 __floatsisf(int x);
|
2012-02-03 06:08:17 -05:00
|
|
|
float32 __floatsisf(int x)
|
|
|
|
{
|
|
|
|
return int32_to_float32(x);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
int __fixsfsi(float32 x);
|
2012-02-03 06:08:17 -05:00
|
|
|
int __fixsfsi(float32 x)
|
|
|
|
{
|
|
|
|
return float32_to_int32_round_to_zero(x);
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
unsigned int __fixunssfsi(float32 x);
|
2012-02-03 06:08:17 -05:00
|
|
|
unsigned int __fixunssfsi(float32 x)
|
|
|
|
{
|
|
|
|
return float32_to_int32_round_to_zero(x); // XXX
|
|
|
|
}
|
|
|
|
|
2012-02-07 07:02:06 -05:00
|
|
|
flag __unordsf2(float32 a, float32 b);
|
|
|
|
flag __unordsf2(float32 a, float32 b)
|
2012-02-07 06:52:34 -05:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The comparison is unordered if either input is a NaN.
|
|
|
|
* Test for this by comparing each operand with itself.
|
|
|
|
* We must perform both comparisons to correctly check for
|
|
|
|
* signalling NaNs.
|
|
|
|
*/
|
|
|
|
return 1 ^ (float32_eq(a, a) & float32_eq(b, b));
|
|
|
|
}
|