litex/test/test_axi_lite.py

1003 lines
40 KiB
Python
Raw Normal View History

#
# This file is part of LiteX.
#
# Copyright (c) 2020 Antmicro <www.antmicro.com>
# SPDX-License-Identifier: BSD-2-Clause
import unittest
import random
from migen import *
from litex.soc.interconnect.axi import *
from litex.soc.interconnect import wishbone, csr_bus
# Helpers ------------------------------------------------------------------------------------------
def _int_or_call(int_or_func):
if callable(int_or_func):
return int_or_func()
return int_or_func
@passive
def timeout_generator(ticks):
import os
for i in range(ticks):
if os.environ.get("TIMEOUT_DEBUG", "") == "1":
print("tick {}".format(i))
yield
raise TimeoutError("Timeout after %d ticks" % ticks)
class AXILiteChecker:
def __init__(self, ready_latency=0, response_latency=0, rdata_generator=None):
self.ready_latency = ready_latency
self.response_latency = response_latency
self.rdata_generator = rdata_generator or (lambda adr: 0xbaadc0de)
self.writes = [] # (addr, data, strb)
self.reads = [] # (addr, data)
def delay(self, latency):
for _ in range(_int_or_call(latency)):
yield
def handle_write(self, axi_lite):
# aw
while not (yield axi_lite.aw.valid):
yield
yield from self.delay(self.ready_latency)
addr = (yield axi_lite.aw.addr)
yield axi_lite.aw.ready.eq(1)
yield
yield axi_lite.aw.ready.eq(0)
while not (yield axi_lite.w.valid):
yield
yield from self.delay(self.ready_latency)
# w
data = (yield axi_lite.w.data)
strb = (yield axi_lite.w.strb)
yield axi_lite.w.ready.eq(1)
yield
yield axi_lite.w.ready.eq(0)
yield from self.delay(self.response_latency)
# b
yield axi_lite.b.valid.eq(1)
yield axi_lite.b.resp.eq(RESP_OKAY)
yield
while not (yield axi_lite.b.ready):
yield
yield axi_lite.b.valid.eq(0)
self.writes.append((addr, data, strb))
def handle_read(self, axi_lite):
# ar
while not (yield axi_lite.ar.valid):
yield
yield from self.delay(self.ready_latency)
addr = (yield axi_lite.ar.addr)
yield axi_lite.ar.ready.eq(1)
yield
yield axi_lite.ar.ready.eq(0)
yield from self.delay(self.response_latency)
# r
data = self.rdata_generator(addr)
yield axi_lite.r.valid.eq(1)
yield axi_lite.r.resp.eq(RESP_OKAY)
yield axi_lite.r.data.eq(data)
yield
while not (yield axi_lite.r.ready):
yield
yield axi_lite.r.valid.eq(0)
yield axi_lite.r.data.eq(0)
self.reads.append((addr, data))
@passive
def handler(self, axi_lite):
while True:
if (yield axi_lite.aw.valid):
yield from self.handle_write(axi_lite)
if (yield axi_lite.ar.valid):
yield from self.handle_read(axi_lite)
yield
@passive
def _write_handler(self, axi_lite):
while True:
yield from self.handle_write(axi_lite)
yield
@passive
def _read_handler(self, axi_lite):
while True:
yield from self.handle_read(axi_lite)
yield
def parallel_handlers(self, axi_lite):
return self._write_handler(axi_lite), self._read_handler(axi_lite)
class AXILitePatternGenerator:
def __init__(self, axi_lite, pattern, delay=0):
# patter: (rw, addr, data)
self.axi_lite = axi_lite
self.pattern = pattern
self.delay = delay
self.errors = 0
self.read_errors = []
self.resp_errors = {"w": 0, "r": 0}
def handler(self):
for rw, addr, data in self.pattern:
assert rw in ["w", "r"]
if rw == "w":
strb = 2**len(self.axi_lite.w.strb) - 1
resp = (yield from self.axi_lite.write(addr, data, strb))
else:
rdata, resp = (yield from self.axi_lite.read(addr))
if rdata != data:
self.read_errors.append((rdata, data))
self.errors += 1
if resp != RESP_OKAY:
self.resp_errors[rw] += 1
self.errors += 1
for _ in range(_int_or_call(self.delay)):
yield
for _ in range(16):
yield
# TestAXILite --------------------------------------------------------------------------------------
class TestAXILite(unittest.TestCase):
def test_wishbone2axilite2wishbone(self, data_width=32, address_width=32):
class DUT(Module):
def __init__(self):
self.wishbone = wishbone.Interface(
data_width = data_width,
adr_width = address_width - log2_int(data_width // 8),
addressing = "word",
)
# # #
axi_lite = AXILiteInterface(data_width=data_width, address_width=address_width)
wb = wishbone.Interface(
data_width = data_width,
adr_width = address_width - log2_int(data_width // 8),
addressing = "word",
)
wishbone2axi = Wishbone2AXILite(self.wishbone, axi_lite)
axi2wishbone = AXILite2Wishbone(axi_lite, wb)
self.submodules += wishbone2axi, axi2wishbone
sram = wishbone.SRAM(1024, init=[0x12345678, 0xa55aa55a])
self.submodules += sram
self.comb += wb.connect(sram.bus)
def generator(dut):
dut.errors = 0
if (yield from dut.wishbone.read(0)) != 0x12345678:
dut.errors += 1
if (yield from dut.wishbone.read(1)) != 0xa55aa55a:
dut.errors += 1
for i in range(32):
yield from dut.wishbone.write(i, i)
for i in range(32):
if (yield from dut.wishbone.read(i)) != i:
dut.errors += 1
dut = DUT()
run_simulation(dut, [generator(dut)])
self.assertEqual(dut.errors, 0)
def test_wishbone2axilite2wishbone_dw64(self):
return self.test_wishbone2axilite2wishbone(data_width=64)
def test_axilite2axi2mem(self, data_width=32, address_width=32):
class DUT(Module):
def __init__(self, mem_bus="wishbone"):
self.axi_lite = AXILiteInterface(data_width=data_width, address_width=address_width)
axi = AXIInterface(data_width=data_width, address_width=address_width)
self.submodules.axil2axi = AXILite2AXI(self.axi_lite, axi)
interface_cls, converter_cls, sram_cls = {
"wishbone": (wishbone.Interface, AXI2Wishbone, wishbone.SRAM),
"axi_lite": (AXILiteInterface, AXI2AXILite, AXILiteSRAM),
}[mem_bus]
bus_kwargs = {"data_width": data_width}
if mem_bus == "wishbone":
bus_kwargs["adr_width"] = address_width - log2_int(data_width // 8)
bus = interface_cls(**bus_kwargs)
self.submodules += converter_cls(axi, bus)
sram = sram_cls(1024, init=[0x12345678, 0xa55aa55a], bus=bus)
self.submodules += sram
def generator(axi_lite, datas, resps):
dw_bytes = data_width // 8
data, resp = (yield from axi_lite.read(0x00))
resps.append((resp, RESP_OKAY))
datas.append((data, 0x12345678))
data, resp = (yield from axi_lite.read(dw_bytes * 1))
resps.append((resp, RESP_OKAY))
datas.append((data, 0xa55aa55a))
for i in range(32):
resp = (yield from axi_lite.write(dw_bytes * i, i))
resps.append((resp, RESP_OKAY))
for i in range(32):
data, resp = (yield from axi_lite.read(dw_bytes * i))
resps.append((resp, RESP_OKAY))
datas.append((data, i))
for mem_bus in ["wishbone", "axi_lite"]:
with self.subTest(mem_bus=mem_bus):
# to have more verbose error messages store errors in list((actual, expected))
datas = []
resps = []
def actual_expected(results): # split into (list(actual), list(expected))
return list(zip(*results))
dut = DUT(mem_bus)
run_simulation(dut, [generator(dut.axi_lite, datas, resps)])
self.assertEqual(*actual_expected(resps))
msg = "\n".join("0x{:08x} vs 0x{:08x}".format(actual, expected) for actual, expected in datas)
self.assertEqual(*actual_expected(datas), msg="actual vs expected:\n" + msg)
def test_axilite2axi2mem_dw64(self):
return self.test_axilite2axi2mem(data_width=64)
def test_axilite2csr(self):
@passive
def csr_mem_handler(csr, mem):
while True:
adr = (yield csr.adr)
yield csr.dat_r.eq(mem[adr])
if (yield csr.we):
mem[adr] = (yield csr.dat_w)
yield
class DUT(Module):
def __init__(self):
self.axi_lite = AXILiteInterface(data_width=32)
self.csr = csr_bus.Interface(data_width=32)
self.submodules.axilite2csr = AXILite2CSR(self.axi_lite, self.csr)
self.errors = 0
prng = random.Random(42)
mem_ref = [prng.randrange(255) for i in range(100)]
def generator(dut):
dut.errors = 0
for adr, ref in enumerate(mem_ref):
adr = adr << 2
data, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if data != ref:
dut.errors += 1
write_data = [prng.randrange(255) for _ in mem_ref]
for adr, wdata in enumerate(write_data):
adr = adr << 2
resp = (yield from dut.axi_lite.write(adr, wdata))
self.assertEqual(resp, 0b00)
rdata, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if rdata != wdata:
dut.errors += 1
dut = DUT()
mem = [v for v in mem_ref]
run_simulation(dut, [generator(dut), csr_mem_handler(dut.csr, mem)])
self.assertEqual(dut.errors, 0)
def test_axilite_sram(self):
class DUT(Module):
def __init__(self, size, init):
self.axi_lite = AXILiteInterface()
self.submodules.sram = AXILiteSRAM(size, init=init, bus=self.axi_lite)
self.errors = 0
def generator(dut, ref_init):
for adr, ref in enumerate(ref_init):
adr = adr << 2
data, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if data != ref:
dut.errors += 1
write_data = [prng.randrange(255) for _ in ref_init]
for adr, wdata in enumerate(write_data):
adr = adr << 2
resp = (yield from dut.axi_lite.write(adr, wdata))
self.assertEqual(resp, 0b00)
rdata, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if rdata != wdata:
dut.errors += 1
prng = random.Random(42)
init = [prng.randrange(2**32) for i in range(100)]
dut = DUT(size=len(init)*4, init=[v for v in init])
run_simulation(dut, [generator(dut, init)])
self.assertEqual(dut.errors, 0)
def converter_test(self, width_from, width_to, parallel_rw=False,
write_pattern=None, write_expected=None,
read_pattern=None, read_expected=None):
assert not (write_pattern is None and read_pattern is None)
if write_pattern is None:
write_pattern = []
write_expected = []
elif len(write_pattern[0]) == 2:
# add w.strb
write_pattern = [(adr, data, 2**(width_from//8)-1) for adr, data in write_pattern]
if read_pattern is None:
read_pattern = []
read_expected = []
class DUT(Module):
def __init__(self, width_from, width_to):
self.master = AXILiteInterface(data_width=width_from)
self.slave = AXILiteInterface(data_width=width_to)
self.submodules.converter = AXILiteConverter(self.master, self.slave)
prng = random.Random(42)
def write_generator(axi_lite):
for addr, data, strb in write_pattern or []:
resp = (yield from axi_lite.write(addr, data, strb))
self.assertEqual(resp, RESP_OKAY)
for _ in range(prng.randrange(3)):
yield
for _ in range(16):
yield
def read_generator(axi_lite):
for addr, refdata in read_pattern or []:
data, resp = (yield from axi_lite.read(addr))
self.assertEqual(resp, RESP_OKAY)
self.assertEqual(data, refdata)
for _ in range(prng.randrange(3)):
yield
for _ in range(4):
yield
def sequential_generator(axi_lite):
yield from write_generator(axi_lite)
yield from read_generator(axi_lite)
def rdata_generator(adr):
for a, v in read_expected:
if a == adr:
return v
return 0xbaadc0de
_latency = 0
def latency():
nonlocal _latency
_latency = (_latency + 1) % 3
return _latency
dut = DUT(width_from=width_from, width_to=width_to)
checker = AXILiteChecker(ready_latency=latency, rdata_generator=rdata_generator)
if parallel_rw:
generators = [write_generator(dut.master), read_generator(dut.master)]
else:
generators = [sequential_generator(dut.master)]
generators += checker.parallel_handlers(dut.slave)
run_simulation(dut, generators)
self.assertEqual(checker.writes, write_expected)
self.assertEqual(checker.reads, read_expected)
def test_axilite_down_converter_32to16(self):
write_pattern = [
(0x00000000, 0x22221111),
(0x00000004, 0x44443333),
(0x00000008, 0x66665555),
(0x00000100, 0x88887777),
]
write_expected = [
(0x00000000, 0x1111, 0b11),
(0x00000002, 0x2222, 0b11),
(0x00000004, 0x3333, 0b11),
(0x00000006, 0x4444, 0b11),
(0x00000008, 0x5555, 0b11),
(0x0000000a, 0x6666, 0b11),
(0x00000100, 0x7777, 0b11),
(0x00000102, 0x8888, 0b11),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
for parallel in [False, True]:
with self.subTest(parallel=parallel):
self.converter_test(width_from=32, width_to=16, parallel_rw=parallel,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_32to8(self):
write_pattern = [
(0x00000000, 0x44332211),
(0x00000004, 0x88776655),
]
write_expected = [
(0x00000000, 0x11, 0b1),
(0x00000001, 0x22, 0b1),
(0x00000002, 0x33, 0b1),
(0x00000003, 0x44, 0b1),
(0x00000004, 0x55, 0b1),
(0x00000005, 0x66, 0b1),
(0x00000006, 0x77, 0b1),
(0x00000007, 0x88, 0b1),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
for parallel in [False, True]:
with self.subTest(parallel=parallel):
self.converter_test(width_from=32, width_to=8, parallel_rw=parallel,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_64to32(self):
write_pattern = [
(0x00000000, 0x2222222211111111),
(0x00000008, 0x4444444433333333),
]
write_expected = [
(0x00000000, 0x11111111, 0b1111),
(0x00000004, 0x22222222, 0b1111),
(0x00000008, 0x33333333, 0b1111),
(0x0000000c, 0x44444444, 0b1111),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
for parallel in [False, True]:
with self.subTest(parallel=parallel):
self.converter_test(width_from=64, width_to=32, parallel_rw=parallel,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_strb(self):
write_pattern = [
(0x00000000, 0x22221111, 0b1100),
(0x00000004, 0x44443333, 0b1111),
(0x00000008, 0x66665555, 0b1011),
(0x00000100, 0x88887777, 0b0011),
]
write_expected = [
(0x00000002, 0x2222, 0b11),
(0x00000004, 0x3333, 0b11),
(0x00000006, 0x4444, 0b11),
(0x00000008, 0x5555, 0b11),
(0x0000000a, 0x6666, 0b10),
(0x00000100, 0x7777, 0b11),
]
self.converter_test(width_from=32, width_to=16,
write_pattern=write_pattern, write_expected=write_expected)
def test_axilite_up_converter_16to32(self):
write_pattern = [
(0x00000000, 0x1111),
(0x00000002, 0x2222),
(0x00000006, 0x3333),
(0x00000004, 0x4444),
(0x00000102, 0x5555),
]
write_expected = [
(0x00000000, 0x00001111, 0b0011),
(0x00000000, 0x22220000, 0b1100),
(0x00000004, 0x33330000, 0b1100),
(0x00000004, 0x00004444, 0b0011),
(0x00000100, 0x55550000, 0b1100),
]
read_pattern = write_pattern
read_expected = [
(0x00000000, 0x22221111),
(0x00000000, 0x22221111),
(0x00000004, 0x33334444),
(0x00000004, 0x33334444),
(0x00000100, 0x55550000),
]
for parallel in [False, True]:
with self.subTest(parallel=parallel):
self.converter_test(width_from=16, width_to=32, parallel_rw=parallel,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_up_converter_8to32(self):
write_pattern = [
(0x00000000, 0x11),
(0x00000001, 0x22),
(0x00000003, 0x33),
(0x00000002, 0x44),
(0x00000101, 0x55),
]
write_expected = [
(0x00000000, 0x00000011, 0b0001),
(0x00000000, 0x00002200, 0b0010),
(0x00000000, 0x33000000, 0b1000),
(0x00000000, 0x00440000, 0b0100),
(0x00000100, 0x00005500, 0b0010),
]
read_pattern = write_pattern
read_expected = [
(0x00000000, 0x33442211),
(0x00000000, 0x33442211),
(0x00000000, 0x33442211),
(0x00000000, 0x33442211),
(0x00000100, 0x00005500),
]
for parallel in [False, True]:
with self.subTest(parallel=parallel):
self.converter_test(width_from=8, width_to=32, parallel_rw=parallel,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_up_converter_strb(self):
write_pattern = [
(0x00000000, 0x1111, 0b10),
(0x00000002, 0x2222, 0b11),
(0x00000006, 0x3333, 0b11),
(0x00000004, 0x4444, 0b01),
(0x00000102, 0x5555, 0b01),
]
write_expected = [
(0x00000000, 0x00001111, 0b0010),
(0x00000000, 0x22220000, 0b1100),
(0x00000004, 0x33330000, 0b1100),
(0x00000004, 0x00004444, 0b0001),
(0x00000100, 0x55550000, 0b0100),
]
self.converter_test(width_from=16, width_to=32,
write_pattern=write_pattern, write_expected=write_expected)
# TestAXILiteInterconnet ---------------------------------------------------------------------------
class TestAXILiteInterconnect(unittest.TestCase):
def test_interconnect_p2p(self):
class DUT(Module):
def __init__(self):
self.master = master = AXILiteInterface()
self.slave = slave = AXILiteInterface()
self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave)
pattern = [
("w", 0x00000004, 0x11111111),
("w", 0x0000000c, 0x22222222),
("r", 0x00000010, 0x33333333),
("r", 0x00000018, 0x44444444),
]
def rdata_generator(adr):
for rw, a, v in pattern:
if rw == "r" and a == adr:
return v
return 0xbaadc0de
dut = DUT()
checker = AXILiteChecker(rdata_generator=rdata_generator)
generators = [
AXILitePatternGenerator(dut.master, pattern).handler(),
checker.handler(dut.slave),
]
run_simulation(dut, generators)
self.assertEqual(checker.writes, [(addr, data, 0b1111) for rw, addr, data in pattern if rw == "w"])
self.assertEqual(checker.reads, [(addr, data) for rw, addr, data in pattern if rw == "r"])
def test_timeout(self):
class DUT(Module):
def __init__(self):
self.master = master = AXILiteInterface()
self.slave = slave = AXILiteInterface()
self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave)
self.submodules.timeout = AXILiteTimeout(master, 16)
def generator(axi_lite):
resp = (yield from axi_lite.write(0x00001000, 0x11111111))
self.assertEqual(resp, RESP_OKAY)
resp = (yield from axi_lite.write(0x00002000, 0x22222222))
self.assertEqual(resp, RESP_SLVERR)
data, resp = (yield from axi_lite.read(0x00003000))
self.assertEqual(resp, RESP_SLVERR)
self.assertEqual(data, 0xffffffff)
yield
def checker(axi_lite):
for _ in range(16):
yield
yield axi_lite.aw.ready.eq(1)
yield axi_lite.w.ready.eq(1)
yield
yield axi_lite.aw.ready.eq(0)
yield axi_lite.w.ready.eq(0)
yield axi_lite.b.valid.eq(1)
yield
while not (yield axi_lite.b.ready):
yield
yield axi_lite.b.valid.eq(0)
dut = DUT()
generators = [
generator(dut.master),
checker(dut.slave),
timeout_generator(300),
]
run_simulation(dut, generators)
def test_arbiter_order(self):
class DUT(Module):
def __init__(self, n_masters):
self.masters = [AXILiteInterface() for _ in range(n_masters)]
self.slave = AXILiteInterface()
self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave)
def generator(n, axi_lite, delay=0):
def gen(i):
return 100*n + i
for i in range(4):
resp = (yield from axi_lite.write(gen(i), gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for i in range(4):
data, resp = (yield from axi_lite.read(gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for _ in range(8):
yield
n_masters = 3
# with no delay each master will do all transfers at once
with self.subTest(delay=0):
dut = DUT(n_masters)
checker = AXILiteChecker()
generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
# with some delay, the round-robin arbiter will iterate over masters
with self.subTest(delay=1):
dut = DUT(n_masters)
checker = AXILiteChecker()
generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
def test_arbiter_holds_grant_until_response(self):
class DUT(Module):
def __init__(self, n_masters):
self.masters = [AXILiteInterface() for _ in range(n_masters)]
self.slave = AXILiteInterface()
self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave)
def generator(n, axi_lite, delay=0):
def gen(i):
return 100*n + i
for i in range(4):
resp = (yield from axi_lite.write(gen(i), gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for i in range(4):
data, resp = (yield from axi_lite.read(gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for _ in range(8):
yield
n_masters = 3
# with no delay each master will do all transfers at once
with self.subTest(delay=0):
dut = DUT(n_masters)
checker = AXILiteChecker(response_latency=lambda: 3)
generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
# with some delay, the round-robin arbiter will iterate over masters
with self.subTest(delay=1):
dut = DUT(n_masters)
checker = AXILiteChecker(response_latency=lambda: 3)
generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
def address_decoder(self, i, size=0x100, python=False):
# bytes to 32-bit words aligned
_size = (size) >> 2
_origin = (size * i) >> 2
if python: # for python integers
shift = log2_int(_size)
return lambda a: ((a >> shift) == (_origin >> shift))
# for migen signals
return lambda a: (a[log2_int(_size):] == (_origin >> log2_int(_size)))
def decoder_test(self, n_slaves, pattern, generator_delay=0):
class DUT(Module):
def __init__(self, decoders):
self.master = AXILiteInterface()
self.slaves = [AXILiteInterface() for _ in range(len(decoders))]
slaves = list(zip(decoders, self.slaves))
self.submodules.decoder = AXILiteDecoder(self.master, slaves)
def rdata_generator(adr):
for rw, a, v in pattern:
if rw == "r" and a == adr:
return v
return 0xbaadc0de
dut = DUT([self.address_decoder(i) for i in range(n_slaves)])
checkers = [AXILiteChecker(rdata_generator=rdata_generator) for _ in dut.slaves]
generators = [AXILitePatternGenerator(dut.master, pattern, delay=generator_delay).handler()]
generators += [checker.handler(slave) for (slave, checker) in zip(dut.slaves, checkers)]
generators += [timeout_generator(300)]
run_simulation(dut, generators)
return checkers
def test_decoder_write(self):
for delay in [0, 1, 0]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("w", 0x010, 1),
("w", 0x110, 2),
("w", 0x210, 3),
("w", 0x011, 1),
("w", 0x012, 1),
("w", 0x111, 2),
("w", 0x112, 2),
("w", 0x211, 3),
("w", 0x212, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].writes), [0x010, 0x011, 0x012])
self.assertEqual(addr(slaves[1].writes), [0x110, 0x111, 0x112])
self.assertEqual(addr(slaves[2].writes), [0x210, 0x211, 0x212])
for slave in slaves:
self.assertEqual(slave.reads, [])
def test_decoder_read(self):
for delay in [0, 1]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("r", 0x010, 1),
("r", 0x110, 2),
("r", 0x210, 3),
("r", 0x011, 1),
("r", 0x012, 1),
("r", 0x111, 2),
("r", 0x112, 2),
("r", 0x211, 3),
("r", 0x212, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].reads), [0x010, 0x011, 0x012])
self.assertEqual(addr(slaves[1].reads), [0x110, 0x111, 0x112])
self.assertEqual(addr(slaves[2].reads), [0x210, 0x211, 0x212])
for slave in slaves:
self.assertEqual(slave.writes, [])
def test_decoder_read_write(self):
for delay in [0, 1]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("w", 0x010, 1),
("w", 0x110, 2),
("r", 0x111, 2),
("r", 0x011, 1),
("r", 0x211, 3),
("w", 0x210, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].writes), [0x010])
self.assertEqual(addr(slaves[0].reads), [0x011])
self.assertEqual(addr(slaves[1].writes), [0x110])
self.assertEqual(addr(slaves[1].reads), [0x111])
self.assertEqual(addr(slaves[2].writes), [0x210])
self.assertEqual(addr(slaves[2].reads), [0x211])
def test_decoder_stall(self):
with self.assertRaises(TimeoutError):
self.decoder_test(n_slaves=3, pattern=[
("w", 0x300, 1),
])
with self.assertRaises(TimeoutError):
self.decoder_test(n_slaves=3, pattern=[
("r", 0x300, 1),
])
def interconnect_test(self, master_patterns, slave_decoders,
master_delay=0, slave_ready_latency=0, slave_response_latency=0,
disconnected_slaves=None, timeout=300, interconnect=AXILiteInterconnectShared,
**kwargs):
# number of masters/slaves is defined by the number of patterns/decoders
# master_patterns: list of patterns per master, pattern = list(tuple(rw, addr, data))
# slave_decoders: list of address decoders per slave
# delay/latency: control the speed of masters/slaves
# disconnected_slaves: list of slave numbers that shouldn't respond to any transactions
class DUT(Module):
def __init__(self, n_masters, decoders, **kwargs):
self.masters = [AXILiteInterface(name="master") for _ in range(n_masters)]
self.slaves = [AXILiteInterface(name="slave") for _ in range(len(decoders))]
slaves = list(zip(decoders, self.slaves))
self.submodules.interconnect = interconnect(self.masters, slaves, **kwargs)
class ReadDataGenerator:
# Generates data based on decoded addresses and data defined in master_patterns
def __init__(self, patterns):
self.mem = {}
for pattern in patterns:
for rw, addr, val in pattern:
if rw == "r":
assert addr not in self.mem
self.mem[addr] = val
def getter(self, n):
# on miss will give default data depending on slave n
return lambda addr: self.mem.get(addr, 0xbaad0000 + n)
def new_checker(rdata_generator):
return AXILiteChecker(ready_latency=slave_ready_latency,
response_latency=slave_response_latency,
rdata_generator=rdata_generator)
# perpare test
dut = DUT(len(master_patterns), slave_decoders, **kwargs)
rdata_generator = ReadDataGenerator(master_patterns)
checkers = [new_checker(rdata_generator.getter(i)) for i, _ in enumerate(master_patterns)]
pattern_generators = [AXILitePatternGenerator(dut.masters[i], pattern, delay=master_delay)
for i, pattern in enumerate(master_patterns)]
# run simulator
generators = [gen.handler() for gen in pattern_generators]
generators += [checker.handler(slave)
for i, (slave, checker) in enumerate(zip(dut.slaves, checkers))
if i not in (disconnected_slaves or [])]
generators += [timeout_generator(timeout)]
run_simulation(dut, generators)
return pattern_generators, checkers
def test_interconnect_shared_basic(self):
master_patterns = [
[("w", 0x000, 0), ("w", 0x101, 0), ("w", 0x202, 0)],
[("w", 0x010, 0), ("w", 0x111, 0), ("w", 0x112, 0)],
[("w", 0x220, 0), ("w", 0x221, 0), ("w", 0x222, 0)],
]
slave_decoders = [self.address_decoder(i) for i in range(3)]
generators, checkers = self.interconnect_test(master_patterns, slave_decoders,
master_delay=1)
for gen in generators:
self.assertEqual(gen.errors, 0)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(checkers[0].writes), [0x000, 0x010])
self.assertEqual(addr(checkers[1].writes), [0x101, 0x111, 0x112])
self.assertEqual(addr(checkers[2].writes), [0x220, 0x221, 0x202, 0x222])
self.assertEqual(addr(checkers[0].reads), [])
self.assertEqual(addr(checkers[1].reads), [])
self.assertEqual(addr(checkers[2].reads), [])
def interconnect_stress_test(self, timeout=1000, **kwargs):
prng = random.Random(42)
n_masters = 3
n_slaves = 3
pattern_length = 64
slave_region_size = 0x10000000
# for testing purpose each master will access only its own region of a slave
master_region_size = 0x1000
assert n_masters*master_region_size < slave_region_size
def gen_pattern(n, length):
assert length < master_region_size
for i_access in range(length):
rw = "w" if prng.randint(0, 1) == 0 else "r"
i_slave = prng.randrange(n_slaves)
addr = i_slave*slave_region_size + n*master_region_size + i_access
data = addr
yield rw, addr, data
master_patterns = [list(gen_pattern(i, pattern_length)) for i in range(n_masters)]
slave_decoders = [self.address_decoder(i, size=slave_region_size) for i in range(n_slaves)]
slave_decoders_py = [self.address_decoder(i, size=slave_region_size, python=True)
for i in range(n_slaves)]
generators, checkers = self.interconnect_test(master_patterns, slave_decoders,
timeout=timeout, **kwargs)
for gen in generators:
read_errors = [" 0x{:08x} vs 0x{:08x}".format(v, ref) for v, ref in gen.read_errors]
msg = "\ngen.resp_errors = {}\ngen.read_errors = \n{}".format(
gen.resp_errors, "\n".join(read_errors))
if not kwargs.get("disconnected_slaves", None):
self.assertEqual(gen.errors, 0, msg=msg)
else: # when some slaves are disconnected we should have some errors
self.assertNotEqual(gen.errors, 0, msg=msg)
# make sure all the accesses at slave side are in correct address region
for i_slave, (checker, decoder) in enumerate(zip(checkers, slave_decoders_py)):
for addr in (entry[0] for entry in checker.writes + checker.reads):
# compensate for the fact that decoders work on word-aligned addresses
self.assertNotEqual(decoder(addr >> 2), 0)
def test_interconnect_shared_stress_no_delay(self):
self.interconnect_stress_test(timeout=1000,
master_delay=0,
slave_ready_latency=0,
slave_response_latency=0)
def test_interconnect_shared_stress_rand_short(self):
prng = random.Random(42)
rand = lambda: prng.randrange(4)
self.interconnect_stress_test(timeout=2000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand)
def test_interconnect_shared_stress_rand_long(self):
prng = random.Random(42)
rand = lambda: prng.randrange(16)
self.interconnect_stress_test(timeout=4000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand)
def test_interconnect_shared_stress_timeout(self):
self.interconnect_stress_test(timeout=4000,
disconnected_slaves=[1],
timeout_cycles=50)
def test_crossbar_stress_no_delay(self):
self.interconnect_stress_test(timeout=1000,
master_delay=0,
slave_ready_latency=0,
slave_response_latency=0,
interconnect=AXILiteCrossbar)
def test_crossbar_stress_rand(self):
prng = random.Random(42)
rand = lambda: prng.randrange(4)
self.interconnect_stress_test(timeout=2000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand,
interconnect=AXILiteCrossbar)