mirror of
https://github.com/enjoy-digital/litex.git
synced 2025-01-04 09:52:26 -05:00
233 lines
6.9 KiB
Python
233 lines
6.9 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
# Copyright (c) 2014 Guy Hutchison
|
||
|
|
||
|
# Redistribution and use in source and binary forms, with or without modification,
|
||
|
# are permitted provided that the following conditions are met:
|
||
|
|
||
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
# list of conditions and the following disclaimer.
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||
|
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
import migen
|
||
|
import operator
|
||
|
from migen.fhdl.std import *
|
||
|
from migen.fhdl.verilog import convert
|
||
|
|
||
|
|
||
|
# Join two lists a and b, such that redundant terms are removed
|
||
|
def join_lists(a, b):
|
||
|
z = []
|
||
|
for x in a+b:
|
||
|
if x not in z:
|
||
|
z.append(x)
|
||
|
else:
|
||
|
z.remove(x)
|
||
|
return z
|
||
|
|
||
|
|
||
|
def join_operator(list, op):
|
||
|
if len(list) == 0:
|
||
|
return []
|
||
|
elif len(list) == 1:
|
||
|
return list[0]
|
||
|
elif len(list) == 2:
|
||
|
return op(list[0], list[1])
|
||
|
else:
|
||
|
return op(list[0], join_operator(list[1:], op))
|
||
|
|
||
|
|
||
|
def calc_code_bits(data_bits):
|
||
|
m = 1
|
||
|
c = 0
|
||
|
|
||
|
while c < data_bits:
|
||
|
m += 1
|
||
|
c = 2**m - m - 1
|
||
|
return m
|
||
|
|
||
|
|
||
|
# build_seq() is used to create the selection of bits which need
|
||
|
# to be checked for a particular data parity bit.
|
||
|
def build_seq(bnum, out_width):
|
||
|
tmp = []
|
||
|
|
||
|
ptr = 0
|
||
|
cur = 0
|
||
|
skip = 2**bnum-1
|
||
|
if skip == 0:
|
||
|
check = 2**bnum
|
||
|
else:
|
||
|
check = 0
|
||
|
while cur < out_width:
|
||
|
if check > 0:
|
||
|
if (cur != 2**bnum-1):
|
||
|
tmp.append(cur)
|
||
|
ptr += 1
|
||
|
check -= 1
|
||
|
if check == 0:
|
||
|
skip = 2**bnum
|
||
|
else:
|
||
|
skip -= 1
|
||
|
if skip == 0:
|
||
|
check = 2**bnum
|
||
|
cur += 1
|
||
|
|
||
|
return tmp
|
||
|
|
||
|
|
||
|
# build_bits() is used for the generator portion, it combines the
|
||
|
# bit sequences for all input and parity bits which are used and
|
||
|
# removes redundant terms.
|
||
|
def build_bits(in_width, gen_parity=True):
|
||
|
pnum = 1
|
||
|
innum = 0
|
||
|
blist = []
|
||
|
num_code_bits = calc_code_bits(in_width)
|
||
|
out_width = in_width + num_code_bits
|
||
|
v = [list()] * out_width
|
||
|
code_bit_list = []
|
||
|
|
||
|
for b in range(out_width):
|
||
|
if (b+1) == pnum:
|
||
|
pnum = 2*pnum
|
||
|
else:
|
||
|
v[b] = [innum]
|
||
|
innum += 1
|
||
|
|
||
|
for b in range(num_code_bits):
|
||
|
vindex = 2**b-1
|
||
|
blist = build_seq(b, out_width)
|
||
|
for bli in blist:
|
||
|
v[vindex] = join_lists(v[vindex], v[bli])
|
||
|
code_bit_list.append(v[vindex])
|
||
|
|
||
|
# Calculate parity bit
|
||
|
if gen_parity:
|
||
|
pbit = []
|
||
|
for b in v:
|
||
|
pbit = join_lists(pbit, b)
|
||
|
code_bit_list.append(pbit)
|
||
|
return code_bit_list
|
||
|
|
||
|
|
||
|
# xor_tree() takes a signal and a list of bits to be applied from
|
||
|
# the signal and generates a balanced xor tree as output.
|
||
|
def xor_tree(in_signal, in_bits):
|
||
|
if len(in_bits) == 0:
|
||
|
print ("ERROR: in_bits must be > 0")
|
||
|
elif len(in_bits) == 1:
|
||
|
return in_signal[in_bits[0]]
|
||
|
elif len(in_bits) == 2:
|
||
|
return in_signal[in_bits[0]] ^ in_signal[in_bits[1]]
|
||
|
elif len(in_bits) == 3:
|
||
|
return in_signal[in_bits[0]] ^ in_signal[in_bits[1]] ^ in_signal[in_bits[2]]
|
||
|
else:
|
||
|
split = int(len(in_bits)/2)
|
||
|
return xor_tree(in_signal, in_bits[0:split]) ^ xor_tree(in_signal, in_bits[split:])
|
||
|
|
||
|
|
||
|
# Base class for Hamming code generator/checker.
|
||
|
|
||
|
|
||
|
# Hamming code generator class
|
||
|
|
||
|
# The class constructor takes a single required input, which is the number of
|
||
|
# bits of the input data. The module creates a single output, which is a set
|
||
|
# of code check bits and a parity bit.
|
||
|
|
||
|
# This generator and its corresponding checker will only generate a single-
|
||
|
# error correct, double-error detect code. If double-error detection is
|
||
|
# not desired, the most-significant code_out bit can be left unconnected.
|
||
|
|
||
|
# If generated as a top-level module, contains its suggested module name
|
||
|
# in self.name and list of ports in self.ports
|
||
|
class HammingGenerator(Module):
|
||
|
def __init__(self, input_size):
|
||
|
self.input_size = input_size
|
||
|
self.data_in = Signal(input_size)
|
||
|
self.code_out = Signal(calc_code_bits(input_size)+1)
|
||
|
|
||
|
xor_bits = build_bits(self.input_size)
|
||
|
for b in range(len(xor_bits)):
|
||
|
self.comb += self.code_out[b].eq(xor_tree(self.data_in, xor_bits[b]))
|
||
|
|
||
|
|
||
|
# Hamming code checker class
|
||
|
|
||
|
# Constructor takes two parameters:
|
||
|
# input_size (bits of data bus, not counting check bits)
|
||
|
# correct (boolean, True if output data should be corrected)
|
||
|
|
||
|
# If used as a check/correct module, the module creates an
|
||
|
# enable input which can dynamically turn off error correction
|
||
|
# for debug.
|
||
|
|
||
|
# If double-bit detection is not desired, the most-significant
|
||
|
# code_in bit can be tied to 0, and the dberr output port left
|
||
|
# unconnected.
|
||
|
|
||
|
# If generated as a top-level module, contains its suggested module name
|
||
|
# in self.name and list of ports in self.ports
|
||
|
class HammingChecker(Module):
|
||
|
def __init__(self, input_size, correct=True, gen_parity=True):
|
||
|
self.input_size = input_size
|
||
|
self.correct = correct
|
||
|
self.data_in = Signal(input_size)
|
||
|
self.code_bits = calc_code_bits(input_size)
|
||
|
self.code_in = Signal(self.code_bits+1)
|
||
|
self.code_out = Signal(self.code_bits)
|
||
|
self.sberr = Signal()
|
||
|
if gen_parity:
|
||
|
self.dberr = Signal()
|
||
|
|
||
|
# vector of which interleaved bit position represents a particular
|
||
|
# data bit, used for error correction
|
||
|
dbits = []
|
||
|
|
||
|
# Create interleaved vector of code bits and data bits with code bits
|
||
|
# in power-of-two positions
|
||
|
pnum = 0
|
||
|
dnum = 0
|
||
|
self.par_vec = Signal(input_size+self.code_bits)
|
||
|
for b in range(input_size+calc_code_bits(input_size)):
|
||
|
if b+1 == 2**pnum:
|
||
|
self.comb += self.par_vec[b].eq(self.code_in[pnum])
|
||
|
pnum += 1
|
||
|
else:
|
||
|
self.comb += self.par_vec[b].eq(self.data_in[dnum])
|
||
|
dbits.append(b)
|
||
|
dnum += 1
|
||
|
|
||
|
if correct:
|
||
|
self.enable = Signal()
|
||
|
self.correct_out = Signal(input_size)
|
||
|
self.data_out = Signal(input_size, name='data_out')
|
||
|
for b in range(input_size):
|
||
|
self.comb += self.correct_out[b].eq((self.code_out == (dbits[b]+1)) ^ self.data_in[b])
|
||
|
self.comb += If(self.enable, self.data_out.eq(self.correct_out)).Else(self.data_out.eq(self.data_in))
|
||
|
|
||
|
self.comb += self.sberr.eq(self.code_out != 0)
|
||
|
if gen_parity:
|
||
|
parity = Signal()
|
||
|
self.comb += parity.eq(xor_tree(self.data_in, range(input_size)) ^ xor_tree(self.code_in, range(self.code_bits+1)))
|
||
|
self.comb += self.dberr.eq(~parity)
|
||
|
|
||
|
for b in range(calc_code_bits(self.input_size)):
|
||
|
bits = [2**b-1]
|
||
|
bits += build_seq(b, self.input_size+calc_code_bits(self.input_size))
|
||
|
self.comb += self.code_out[b].eq(xor_tree(self.par_vec, bits))
|