cores/hyperbus: Add initial HyperRAM Register access over CSRs.

Will be used to get HyperRAM characteristics and also to configure latency and enable varialble latency.

Untested yet.
This commit is contained in:
Florent Kermarrec 2024-04-11 17:51:47 +02:00
parent b8ca87ece5
commit 2384d6fbd4
1 changed files with 114 additions and 12 deletions

View File

@ -1,7 +1,7 @@
#
# This file is part of LiteHyperBus
# This file is part of LiteX.
#
# Copyright (c) 2019-2022 Florent Kermarrec <florent@enjoy-digital.fr>
# Copyright (c) 2019-2024 Florent Kermarrec <florent@enjoy-digital.fr>
# Copyright (c) 2019 Antti Lukats <antti.lukats@gmail.com>
# Copyright (c) 2021 Franck Jullien <franck.jullien@collshade.fr>
# SPDX-License-Identifier: BSD-2-Clause
@ -11,6 +11,9 @@ from migen import *
from litex.gen import *
from litex.gen.genlib.misc import WaitTimer
from litex.soc.interconnect.csr import *
from litex.soc.interconnect import stream
from litex.build.io import DifferentialOutput
from litex.soc.interconnect import wishbone
@ -31,6 +34,24 @@ class HyperRAM(LiteXModule):
self.pads = pads
self.bus = bus = wishbone.Interface(data_width=32, address_width=32, addressing="word")
# Register Access CSRs.
self.reg_control = CSRStorage(fields=[
CSRField("write", offset=0, size=1, pulse=True, description="Issue Register Write."),
CSRField("read", offset=1, size=1, pulse=True, description="Issue Register Read."),
CSRField("reg", offset=8, size=4, values=[
("``0``", "Identification Register 0 (Read Only)."),
("``1``", "Identification Register 1 (Read Only)."),
("``2``", "Configuration Register 0."),
("``3``", "Configuration Register 1."),
]),
])
self.reg_status = CSRStatus(fields=[
CSRField("write_done", offset=0, size=1, description="Register Write Done."),
CSRField("read_done", offset=1, size=1, description="Register Read Done."),
])
self.reg_wdata = CSRStorage(16, description="Register Write Data.")
self.reg_rdata = CSRStatus( 16, description="Register Read Data.")
# # #
clk = Signal()
@ -98,13 +119,55 @@ class HyperRAM(LiteXModule):
)
]
# Register Access/Buffer -------------------------------------------------------------------
reg_write_req = Signal()
reg_write_done = Signal()
reg_read_req = Signal()
reg_read_done = Signal()
self.reg_buffer = reg_buffer = stream.SyncFIFO(
layout = [("write", 1), ("read", 1), ("reg", 4), ("data", 16)],
depth = 4,
)
self.comb += [
reg_buffer.sink.valid.eq(self.reg_control.fields.write | self.reg_control.fields.read),
reg_buffer.sink.write.eq(self.reg_control.fields.write),
reg_buffer.sink.read.eq(self.reg_control.fields.read),
reg_buffer.sink.reg.eq(self.reg_control.fields.reg),
reg_buffer.sink.data.eq(self.reg_wdata.storage),
reg_write_req.eq(reg_buffer.source.valid & reg_buffer.source.write),
reg_read_req.eq( reg_buffer.source.valid & reg_buffer.source.read),
]
self.sync += If(reg_buffer.sink.valid,
reg_write_done.eq(0),
reg_read_done.eq(0),
)
self.comb += [
self.reg_status.fields.write_done.eq(reg_write_done),
self.reg_status.fields.read_done.eq(reg_read_done),
]
# Command generation -----------------------------------------------------------------------
ashift = {8:1, 16:0}[dw]
self.comb += [
ca[47].eq(~bus.we), # R/W#
ca[45].eq(1), # Burst Type (Linear)
ca[16:45].eq(bus.adr[3-ashift:]), # Row & Upper Column Address
ca[ashift:3].eq(bus.adr), # Lower Column Address
If(reg_write_req | reg_read_req,
ca[47].eq(reg_buffer.source.read), # R/W#
ca[46].eq(1), # Register Space.
ca[45].eq(1), # Burst Type (Linear)
Case(reg_buffer.source.reg, {
0 : ca[0:40].eq(0x00_00_00_00_00), # Identification Register 0 (Read Only).
1 : ca[0:40].eq(0x00_00_00_00_01), # Identification Register 1 (Read Only).
2 : ca[0:40].eq(0x00_01_00_00_00), # Configuration Register 0.
3 : ca[0:40].eq(0x00_01_00_00_00), # Configuration Register 1.
}),
).Else(
ca[47].eq(~bus.we), # R/W#
ca[46].eq(0), # Memory Space.
ca[45].eq(1), # Burst Type (Linear)
ca[16:45].eq(bus.adr[3-ashift:]), # Row & Upper Column Address
ca[ashift:3].eq(bus.adr), # Lower Column Address
)
]
# Latency count starts from the middle of the command (thus the -4). In fixed latency mode
@ -131,8 +194,8 @@ class HyperRAM(LiteXModule):
self.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
NextValue(first, 1),
If(bus.cyc & bus.stb,
If(clk_phase == 0,
If(clk_phase == 0,
If((bus.cyc & bus.stb) | reg_write_req | reg_read_req,
NextValue(sr, ca),
NextState("SEND-COMMAND-ADDRESS")
)
@ -146,7 +209,37 @@ class HyperRAM(LiteXModule):
dq.oe.eq(1),
# Wait for 6*2 cycles...
If(cycles == (6*2 - 1),
NextState("WAIT-LATENCY")
If(reg_write_req,
NextValue(sr, Cat(Signal(40), self.reg_wdata.storage[:8])),
NextState("REG-WRITE-0")
).Else(
NextState("WAIT-LATENCY")
)
)
)
fsm.act("REG-WRITE-0",
# Set CSn.
cs.eq(1),
# Send Reg on DQ.
ca_active.eq(1),
dq.oe.eq(1),
# Wait for 2 cycles...
If(cycles == (2 - 1),
NextValue(sr, Cat(Signal(40), self.reg_wdata.storage[8:])),
NextState("REG-WRITE-1")
)
)
fsm.act("REG-WRITE-1",
# Set CSn.
cs.eq(1),
# Send Reg on DQ.
ca_active.eq(1),
dq.oe.eq(1),
# Wait for 2 cycles...
If(cycles == (2 - 1),
reg_buffer.source.ready.eq(1),
NextValue(reg_write_done, 1),
NextState("IDLE")
)
)
fsm.act("WAIT-LATENCY",
@ -157,7 +250,9 @@ class HyperRAM(LiteXModule):
# Latch Bus.
bus_latch.eq(1),
# Early Write Ack (to allow bursting).
bus.ack.eq(bus.we),
If(~reg_read_req,
bus.ack.eq(bus.we),
),
NextState("READ-WRITE-DATA0")
)
)
@ -182,7 +277,7 @@ class HyperRAM(LiteXModule):
If(n == (states - 1),
NextValue(first, 0),
# Continue burst when a consecutive access is ready.
If(bus.stb & bus.cyc & (bus.we == bus_we) & (bus.adr == (bus_adr + 1)) & (~burst_timer.done),
If(~reg_read_req & bus.stb & bus.cyc & (bus.we == bus_we) & (bus.adr == (bus_adr + 1)) & (~burst_timer.done),
# Latch Bus.
bus_latch.eq(1),
# Early Write Ack (to allow bursting).
@ -194,7 +289,14 @@ class HyperRAM(LiteXModule):
),
# Read Ack (when dat_r ready).
If((n == 0) & ~first,
bus.ack.eq(~bus_we),
If(reg_read_req,
reg_buffer.source.valid.eq(1),
NextValue(reg_read_done, 1),
NextValue(self.reg_rdata.status, bus.dat_r),
NextState("IDLE"),
).Else(
bus.ack.eq(~bus_we),
)
)
)
)