SPI hardware bitbanging from SD CARD

This commit is contained in:
rob-ng15 2020-03-17 09:51:11 +00:00 committed by GitHub
parent d45dda731a
commit 27720409ce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 586 additions and 1 deletions

View File

@ -2,7 +2,7 @@ include ../include/generated/variables.mak
include $(SOC_DIRECTORY)/software/common.mak
OBJECTS=exception.o libc.o errno.o crc16.o crc32.o console.o \
system.o id.o uart.o time.o qsort.o strtod.o spiflash.o strcasecmp.o mdio.o
system.o id.o uart.o time.o qsort.o strtod.o spiflash.o spi.o strcasecmp.o mdio.o
all: crt0-$(CPU)-ctr.o crt0-$(CPU)-xip.o libbase.a libbase-nofloat.a

View File

@ -0,0 +1,585 @@
// SD CARD bitbanging code for loading files from a FAT16 forrmatted partition into memory
//
// Code is known to work on a de10nano with MiSTer SDRAM and IO Boards - IO Board has a secondary SD CARD interface connected to GPIO pins
// SPI signals CLK, CS and MOSI are configured as GPIO output pins, and MISO is configued as GPIO input pins
//
// Protocol details developed from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/
//
// FAT16 details developed from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/ and https://codeandlife.com/2012/04/07/simple-fat-and-sd-tutorial-part-2/
// Import LiteX SoC details that are generated each time the SoC is compiled for the FPGA
// csr defines the SPI Control registers
// soc defines the clock CONFIG_CLOCK_FREQUENCY (50MHz for the VexRiscV processor on the MiSTer FPGA
// mem defines the addresses for the SDRAM MAIN_RAM_BASE and MAIN_RAM_SIZE
#include <generated/csr.h>
#include <generated/soc.h>
#include <generated/mem.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#ifdef CSR_SPI_BASE
// Import prototypes for the functions
#include <spi.h>
// SPI
// cs line - high to indicate DESELECT
// - low to indicate SELECT
#define CS_HIGH 0x00
#define CS_LOW 0x01
// control register values
// onebyte to indicate 1 byte being transferred
// spi_start to indicate START of transfer
// spi_done to indicate transfer DONE
#define ONEBYTE 0x0800
#define SPI_START 0x01
#define SPI_DONE 0x01
// Return values
#define SUCCESS 0x01
#define FAILURE 0x00
// spi_write_byte
// Send a BYTE (8bits) to the SD CARD
// Seqeunce
// Set MOSI
// Set START bit and LENGTH=8
// Await DONE
//
// No return values
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "SD Commands"
void spi_write_byte(unsigned char char_to_send);
void spi_write_byte(unsigned char char_to_send)
{
// Place data into MOSI register
// Pulse the START bit and set LENGTH=8
spi_mosi_write(char_to_send);
spi_control_write(ONEBYTE | SPI_START);
// Wait for DONE
while( (spi_status_read() != SPI_DONE)) {}
// Signal end of transfer
spi_control_write( 0x00 );
}
// spi_read_rbyte
// Read a command response from the SD CARD - Equivalent to and R1 response or first byte of an R7 response
// Sequence
// Read MISO
// If MSB != 0 then send dsummy byte and re-read MISO
//
// Return value is the response from the SD CARD
// If the MSB is not 0, this would represent an ERROR
// Calling function to determine if the correct response has been received
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "SD Commands"
unsigned char spi_read_rbyte(void);
unsigned char spi_read_rbyte(void)
{
int timeout=32;
unsigned char r=0;
// Check if MISO is 0x0xxxxxxx as MSB=0 indicates valid response
r = spi_miso_read();
while( ((r&0x80)!=0) && timeout>0) {
spi_mosi_write( 0xff );
spi_control_write(ONEBYTE | SPI_START);
while( (spi_status_read() != SPI_DONE)) {}
r = spi_miso_read();
spi_control_write( 0x00 );
timeout--;
}
// printf("Done\n");
return r;
}
// spi_read_byte
// Sequence
// Send dummy byte
// Read MISO
//
// Read subsequenct bytes from the SD CARD - MSB first
// NOTE different from the spi_read_rbyte as no need to await an intial 0 bit as card is already responsing
// Used to read additional response bytes, or data bytes from the SD CARD
//
// Return value is the byte read
// NOTE no error status as assumed bytes are read via CLK pulses
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "SD Commands"
unsigned char spi_read_byte(void);
unsigned char spi_read_byte(void)
{
unsigned char r=0;
spi_write_byte( 0xff );
r = spi_miso_read();
return r;
}
// SETSPIMODE
// Signal the SD CARD to switch to SPI mode
// Pulse the CLK line HIGH/LOW repeatedly with MOSI and CS_N HIGH
// Drop CS_N LOW and pulse the CLK
// Check MISO for HIGH
// Return 0 success, 1 failure
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "Initializing the SD Card"
unsigned char spi_setspimode(void);
unsigned char spi_setspimode(void)
{
unsigned int i, r, timeout=32;
// Initialise SPI mode
// set CS to HIGH
// Send pulses
do {
// set CS HIGH and send pulses
spi_cs_write(CS_HIGH);
for (i=0; i<10; i++) {
spi_write_byte( 0xff );
}
// set CS LOW and send pulses
spi_cs_write(CS_LOW);
r = spi_read_rbyte();
timeout--;
} while ( (timeout>0) && (r==0) );
if(timeout==0) return FAILURE;
return SUCCESS;
}
// SPI_SDCARD_GOIDLE
// Function exposed to BIOS to initialise SPI mode
//
// Sequence
// Set 100KHz timer mode
// Send CLK pulses to set SD CARD to SPI mode
// Send CMD0 - Software RESET - force SD CARD IDLE
// Send CMD8 - Check SD CARD type
// Send CMD55+ACMD41 - Force SD CARD READY
// Send CMD58 - Read SD CARD OCR (status register)
// Send CMD16 - Set SD CARD block size to 512 - Sector Size for the SD CARD
// NOTE - Each command is prefixed with a dummy set of CLK pulses to prepare SD CARD to receive a command
// Return 0 success, 1 failure
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "Initializing the SD Card"
unsigned char spi_sdcard_goidle(void)
{
unsigned char r; // Response from SD CARD
int i, timeout; // TIMEOUT loop to send CMD55+ACMD41 repeatedly
r = spi_setspimode(); // Set SD CARD to SPI mode
if( r != 0x01 ) return FAILURE;
// CMD0 - Software reset - SD CARD IDLE
// Command Sequence is DUMMY=0xff CMD0=0x40 0x00 0x00 0x00 0x00 CRC=0x95
// Expected R1 response is 0x01 indicating SD CARD is IDLE
spi_write_byte( 0xff ); spi_write_byte( 0x40 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x95 );
r = spi_read_rbyte();
if(r!=0x01) return FAILURE;
// CMD8 - Check SD CARD type
// Command sequence is DUMMY=0xff CMD8=0x48 0x00 0x00 0x01 0xaa CRC=0x87
// Expected R7 response is 0x01 followed by 0x00 0x00 0x01 0xaa (these trailing 4 bytes not currently checked)
spi_write_byte( 0xff ); spi_write_byte( 0x48 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x01 ); spi_write_byte( 0xaa ); spi_write_byte( 0x87 );
r = spi_read_rbyte();
if(r!=0x01) return FAILURE;
// Receive the trailing 4 bytes for R7 response - FIXME should check for 0x00 0x00 0x01 0xaa
for(i=0; i<4; i++)
r=spi_read_byte();
// CMD55+ACMD41 - Force SD CARD READY - prepare card for reading/writing
// Command sequence is CMD55 followed by ACMD41
// Send commands repeatedly until SD CARD indicates READY 0x00
// CMD55 Sequence is DUMMY=0xff CMD55=0x77 0x00 0x00 0x00 0x00 CRC=0x00
// ACMD41 Sequence is DUMMY=0xff ACMD41=0x69 0x40 0x00 0x00 0x00 CRC=0x00
// Expected R1 response is 0x00 indicating SD CARD is READY
timeout=32;
do {
spi_write_byte( 0xff ); spi_write_byte( 0x77 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 );
r = spi_read_rbyte();
spi_write_byte( 0xff ); spi_write_byte( 0x69 ); spi_write_byte( 0x40 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 );
r = spi_read_rbyte();
timeout--;
} while ((r != 0x00) && (timeout>0));
if(r!=0x00) return FAILURE;
// CMD58 - Read SD CARD OCR (status register)
// FIXME - Find details on expected response from CMD58 to allow accurate checking of SD CARD R3 response
// Command sequence is DUMMY=0xff CMD58=0x7a 0x00 0x00 0x01 0xaa CRC=0xff
// Expected R3 response is 0x00 OR 0x01 followed by 4 (unchecked) trailing bytes
spi_write_byte( 0xff ); spi_write_byte( 0x7a ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0xff );
r = spi_read_rbyte();
if(r>0x01) return FAILURE;
// // Receive the trailing 4 bytes for R3 response
for(i=0; i<4; i++)
r=spi_read_byte();
// CMD16 - Set SD CARD block size to 512 - Sector Size for the SD CARD
// Command Sequence is DUMMY=0xff (512 as unsigned long = 0x00000200) 0x00 0x00 0x02 0x00 CRC=0xff
// Expected R1 response is 0x00 indicating SD CARD is READY
spi_write_byte( 0xff ); spi_write_byte( 0x50 ); spi_write_byte( 0x00 ); spi_write_byte( 0x00 ); spi_write_byte( 0x02 ); spi_write_byte( 0x00 ); spi_write_byte( 0xff );
r=spi_read_rbyte();
if(r!=0x00) return FAILURE;
return SUCCESS;
}
// READSECTOR
// Read a 512 byte sector from the SD CARD
// Given SECTORNUMBER and memory STORAGE
//
// Sequence
// Send CMD17 - Read Block
// Command Sequence is DUMMY=0xff CMD17=0x51 SECTORNUMBER (32bit UNSIGNED as bits 32-25,24-17, 16-9, 8-1) CRC=0xff
// Wait for SD CARD to send 0x00 indicating SD CARD is processing
// Wait for SD CARD to send 0xfe indicating SD CARD BLOCK START
// Read 512 bytes
// Read 8 DUMMY bytes
// Return 0 success, 1 failure
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "Read/Write SD Card"
unsigned char readSector(unsigned int sectorNumber, unsigned char *storage);
unsigned char readSector(unsigned int sectorNumber, unsigned char *storage)
{
unsigned int n,timeout; // Number of bytes loop, timeout loop awaiting response bytes
unsigned char r; // Response bytes from SD CARD
// CMD17 - Read Block
// Command Sequence is DUMMY=0xff CMD17=0x51 SECTORNUMBER (32bit UNSIGNED as bits 32-25,24-17, 16-9, 8-1) CRC=0xff
// Expected R1 response is 0x00 indicating SD CARD is processing
spi_write_byte( 0xff ); spi_write_byte( 0x51 ); spi_write_byte( (sectorNumber>>24)&0xff ); spi_write_byte( (sectorNumber>>16)&0xff ); spi_write_byte( (sectorNumber>>8)&0xff ); spi_write_byte( (sectorNumber)&0xff ); spi_write_byte( 0xff );
r=spi_read_rbyte();
if( r!=0x00 ) return FAILURE;
// Await 0xfe to indicate BLOCK START
r=spi_read_byte();
timeout=16384;
while( (r!=0xfe) && (timeout>0) ) {
r=spi_read_byte();
timeout--;
}
if( r!=0xfe ) return FAILURE;
// Read 512 bytes into storage
for(n=0; n<512; n++)
storage[n]=spi_read_byte();
// Read 8 dummy bytes
for(n=0; n<8; n++)
r=spi_read_byte();
return SUCCESS;
}
// FAT16 Specific code starts here
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
// Structure to store SD CARD partition table
typedef struct {
unsigned char first_byte;
unsigned char start_chs[3];
unsigned char partition_type;
unsigned char end_chs[3];
unsigned long start_sector;
unsigned long length_sectors;
} __attribute((packed)) PartitionTable;
PartitionTable sdCardPartition;
// Structure to store SD CARD FAT16 Boot Sector (boot code is ignored, provides layout of the FAT16 partition on the SD CARD)
typedef struct {
unsigned char jmp[3];
char oem[8];
unsigned short sector_size;
unsigned char sectors_per_cluster;
unsigned short reserved_sectors;
unsigned char number_of_fats;
unsigned short root_dir_entries;
unsigned short total_sectors_short; // if zero, later field is used
unsigned char media_descriptor;
unsigned short fat_size_sectors;
unsigned short sectors_per_track;
unsigned short number_of_heads;
unsigned long hidden_sectors;
unsigned long total_sectors_long;
unsigned char drive_number;
unsigned char current_head;
unsigned char boot_signature;
unsigned long volume_id;
char volume_label[11];
char fs_type[8];
char boot_code[448];
unsigned short boot_sector_signature;
} __attribute((packed)) Fat16BootSector;
Fat16BootSector sdCardFatBootSector;
// Structure to store SD CARD FAT16 Root Directory Entries
// Allocated to MAIN RAM - hence pointer
typedef struct {
unsigned char filename[8];
unsigned char ext[3];
unsigned char attributes;
unsigned char reserved[10];
unsigned short modify_time;
unsigned short modify_date;
unsigned short starting_cluster;
unsigned long file_size;
} __attribute((packed)) Fat16Entry;
Fat16Entry *sdCardFat16RootDir;
// Structure to store SD CARD FAT16 Entries
// Array of UNSIGNED SHORTS (16bit integers)
unsigned short *sdCardFatTable;
// Calculated sector numbers on the SD CARD for the FAT16 Entries and ROOT DIRECTORY
unsigned int fatSectorStart, rootDirSectorStart;
// Storage for SECTOR read from SD CARD
unsigned char sdCardSector[512];
// SPI_SDCARD_READMBR
// Function exposed to BIOS to retrieve FAT16 partition details, FAT16 Entry Table, FAT16 Root Directory
// MBR = Master Boot Record - Sector 0x00000000 on SD CARD - Contains Partition 1 details at 0x1be
//
// FIXME only checks partition 1 out of 4
//
// Return 0 success, 1 failure
//
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
unsigned char spi_sdcard_readMBR(void)
{
int i, n;
// Read Sector 0x00000000
printf("Reading MBR\n");
if( readSector(0x00000000, sdCardSector)==SUCCESS ) {
// Copy Partition 1 Entry from byte 0x1be
// FIXME should check 0x55 0xaa at end of sector
memcpy(&sdCardPartition, &sdCardSector[0x1be], sizeof(PartitionTable));
// Check Partition 1 is valid, FIRST_BYTE=0x00 or 0x80
// Check Partition 1 has type 4, 6 or 14 (FAT16 of various sizes)
printf("Partition 1 Information: Active=0x%02x, Type=0x%02x, LBAStart=0x%08x\n", sdCardPartition.first_byte, sdCardPartition.partition_type, sdCardPartition.start_sector);
if( (sdCardPartition.first_byte!=0x80) && (sdCardPartition.first_byte!=0x00) ) {
printf("Partition 1 Not Valid\n");
return FAILURE;
}
if( (sdCardPartition.partition_type==4) || (sdCardPartition.partition_type==6) || (sdCardPartition.partition_type==14) ) {
printf("Partition 1 is FAT16\n");
}
else {
printf("Partition 1 Not FAT16\n");
return FAILURE;
}
}
else {
printf("Failed to read MBR\n");
return FAILURE;
}
// Read Parition 1 Boot Sector - Found from Partion Table
printf("\nRead FAT16 Boot Sector\n");
if( readSector(sdCardPartition.start_sector, sdCardSector)==SUCCESS ) {
memcpy(&sdCardFatBootSector, &sdCardSector, sizeof(Fat16BootSector));
}
else {
printf("Failed to read FAT16 Boot Sector\n");
return FAILURE;
}
// Print details of Parition 1
printf(" Jump Code: 0x%02x 0x%02x 0x%02x\n",sdCardFatBootSector.jmp[0],sdCardFatBootSector.jmp[1],sdCardFatBootSector.jmp[2]);
printf(" OEM Code: [");
for(n=0; n<8; n++)
printf("%c",sdCardFatBootSector.oem[n]);
printf("]\n");
printf(" Sector Size: %d\n",sdCardFatBootSector.sector_size);
printf(" Sectors Per Cluster: %d\n",sdCardFatBootSector.sectors_per_cluster);
printf(" Reserved Sectors: %d\n",sdCardFatBootSector.reserved_sectors);
printf(" Number of Fats: %d\n",sdCardFatBootSector.number_of_fats);
printf(" Root Dir Entries: %d\n",sdCardFatBootSector.root_dir_entries);
printf(" Total Sectors Short: %d\n",sdCardFatBootSector.total_sectors_short);
printf(" Media Descriptor: 0x%02x\n",sdCardFatBootSector.media_descriptor);
printf(" Fat Size Sectors: %d\n",sdCardFatBootSector.fat_size_sectors);
printf(" Sectors Per Track: %d\n",sdCardFatBootSector.sectors_per_track);
printf(" Number of Heads: %d\n",sdCardFatBootSector.number_of_heads);
printf(" Hidden Sectors: %d\n",sdCardFatBootSector.hidden_sectors);
printf(" Total Sectors Long: %d\n",sdCardFatBootSector.total_sectors_long);
printf(" Drive Number: 0x%02x\n",sdCardFatBootSector.drive_number);
printf(" Current Head: 0x%02x\n",sdCardFatBootSector.current_head);
printf(" Boot Signature: 0x%02x\n",sdCardFatBootSector.boot_signature);
printf(" Volume ID: 0x%08x\n",sdCardFatBootSector.volume_id);
printf(" Volume Label: [");
for(n=0; n<11; n++)
printf("%c",sdCardFatBootSector.volume_label[n]);
printf("]\n");
printf(" Volume Label: [");
for(n=0; n<8; n++)
printf("%c",sdCardFatBootSector.fs_type[n]);
printf("]\n");
printf(" Boot Sector Signature: 0x%04x\n\n",sdCardFatBootSector.boot_sector_signature);
// Check Partition 1 is valid, not 0 length
if(sdCardFatBootSector.total_sectors_long==0) {
printf("Error reading FAT16 Boot Sector\n");
return FAILURE;
}
// Read in FAT16 File Allocation Table, array of 16bit unsinged integers
// Calculate Storage from TOP of MAIN RAM
sdCardFatTable = (unsigned short *)(MAIN_RAM_BASE+MAIN_RAM_SIZE-sdCardFatBootSector.sector_size*sdCardFatBootSector.fat_size_sectors);
printf("sdCardFatTable = 0x%08x Reading Fat16 Table (%d Sectors Long)\n\n",sdCardFatTable,sdCardFatBootSector.fat_size_sectors);
// Calculate Start of FAT16 File Allocation Table (start of partition plus reserved sectors)
fatSectorStart=sdCardPartition.start_sector+sdCardFatBootSector.reserved_sectors;
for(n=0; n<sdCardFatBootSector.fat_size_sectors; n++) {
if( readSector(fatSectorStart+n, (unsigned char *)((unsigned char*)sdCardFatTable)+sdCardFatBootSector.sector_size*n)==FAILURE ) {
printf("Error reading FAT16 table - sector %d\n",n);
return FAILURE;
}
}
// Read in FAT16 Root Directory
// Calculate Storage from TOP of MAIN RAM
sdCardFat16RootDir= (Fat16Entry *)(MAIN_RAM_BASE+MAIN_RAM_SIZE-sdCardFatBootSector.sector_size*sdCardFatBootSector.fat_size_sectors-sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry));
printf("sdCardFat16RootDir = 0x%08x Reading Root Directory (%d Sectors Long)\n\n",sdCardFat16RootDir,sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry)/sdCardFatBootSector.sector_size);
// Calculate Start of FAT ROOT DIRECTORY (start of partition plues reserved sectors plus size of File Allocation Table(s))
rootDirSectorStart=sdCardPartition.start_sector+sdCardFatBootSector.reserved_sectors+sdCardFatBootSector.number_of_fats*sdCardFatBootSector.fat_size_sectors;
for(n=0; n<sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry)/sdCardFatBootSector.sector_size; n++) {
if( readSector(rootDirSectorStart+n, (unsigned char *)(sdCardFatBootSector.sector_size*n+(unsigned char *)(sdCardFat16RootDir)))==FAILURE ) {
printf("Error reading Root Dir - sector %d\n",n);
return FAILURE;
}
}
// Print out Root Directory
// Alternates between valid and invalid directory entries for SIMPLE 8+3 file names, extended filenames in other entries
// Only print valid characters
printf("\nRoot Directory\n");
for(n=0; n<sdCardFatBootSector.root_dir_entries; n++) {
if( (sdCardFat16RootDir[n].filename[0]!=0) && (sdCardFat16RootDir[n].file_size>0)) {
printf(" File %d [",n);
for( i=0; i<8; i++) {
if( (sdCardFat16RootDir[n].filename[i]>31) && (sdCardFat16RootDir[n].filename[i]<127) )
printf("%c",sdCardFat16RootDir[n].filename[i]);
else
printf(" ");
}
printf(".");
for( i=0; i<3; i++) {
if( (sdCardFat16RootDir[n].ext[i]>31) && (sdCardFat16RootDir[n].ext[i]<127) )
printf("%c",sdCardFat16RootDir[n].ext[i]);
else
printf(" ");
}
printf("] @ Cluster %d for %d bytes\n",sdCardFat16RootDir[n].starting_cluster,sdCardFat16RootDir[n].file_size);
}
}
printf("\n");
return SUCCESS;
}
// SPI_SDCARD_READFILE
// Function exposed to BIOS to retrieve FILENAME+EXT into ADDRESS
//
// FIXME only checks UPPERCASE 8+3 filenames
//
// Return 0 success, 1 failure
//
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
unsigned char spi_sdcard_readFile(char *filename, char *ext, unsigned long address)
{
int i, n, sector;
unsigned short fileClusterStart;
unsigned long fileLength, bytesRemaining, clusterSectorStart;
unsigned short nameMatch;
printf("Reading File [%s.%s] into 0x%08x : ",filename, ext, address);
// Find FILENAME+EXT in Root Directory
// Indicate FILE found by setting the starting cluster number
fileClusterStart=0; n=0;
while( (fileClusterStart==0) && (n<sdCardFatBootSector.root_dir_entries) ) {
nameMatch=0;
if( sdCardFat16RootDir[n].filename[0]!=0 ) {
nameMatch=1;
for(i=0; i<strlen(filename); i++)
if(sdCardFat16RootDir[n].filename[i]!=filename[i]) nameMatch=0;
for(i=0; i<strlen(ext); i++)
if(sdCardFat16RootDir[n].ext[i]!=ext[i]) nameMatch=0;
}
if(nameMatch==1) {
fileClusterStart=sdCardFat16RootDir[n].starting_cluster;
fileLength=sdCardFat16RootDir[n].file_size;
} else {
n++;
}
}
// If starting cluster number is still 0 then file not found
if(fileClusterStart==0) {
printf("File not found\n");
return FAILURE;
}
printf("File starts at Cluster %d length %d\n",fileClusterStart,fileLength);
// ZERO Length file are automatically assumed to have been read SUCCESS
if( fileLength==0 ) return SUCCESS;
// Read each cluster sector by sector, i being number of clusters
bytesRemaining=fileLength;
printf("Clusters: ");
// Calculate number of clusters (always >1)
for(i=0; i<1+((fileLength/sdCardFatBootSector.sectors_per_cluster)/sdCardFatBootSector.sector_size); i++) {
printf("%d ",fileClusterStart);
// Locate start of cluster on SD CARD and read appropraite number of sectors
clusterSectorStart=rootDirSectorStart+(fileClusterStart-1)*sdCardFatBootSector.sectors_per_cluster;
for(sector=0; sector<sdCardFatBootSector.sectors_per_cluster; sector++) {
// Read Sector from SD CARD
// If whole sector to be read, read directly into memory
// Otherwise, read to sdCardSector buffer and transfer appropriate number of bytes
if(bytesRemaining>sdCardFatBootSector.sector_size) {
if( readSector(clusterSectorStart+sector,(unsigned char *)address) == FAILURE ) {
printf("Read Error\n");
return FAILURE;
}
bytesRemaining=bytesRemaining-sdCardFatBootSector.sector_size;
address=address+sdCardFatBootSector.sector_size;
} else {
if( readSector(clusterSectorStart+sector,sdCardSector) == FAILURE ) {
printf("Read Error\n");
return FAILURE;
}
memcpy((unsigned char *)address, sdCardSector, bytesRemaining);
bytesRemaining=0;
}
}
// Move to next cluster
fileClusterStart=sdCardFatTable[fileClusterStart];
}
printf("\n\n");
return SUCCESS;
}
#endif