Merge pull request #2045 from enjoy-digital/hyperbus_io_regs

Improve HyperRAM core to allow IO Reg inference.
This commit is contained in:
enjoy-digital 2024-08-20 19:47:01 +02:00 committed by GitHub
commit 298a004f08
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 244 additions and 169 deletions

View File

@ -7,6 +7,9 @@
# SPDX-License-Identifier: BSD-2-Clause
from migen import *
from migen.fhdl.specials import Tristate
from litex.build.io import SDRTristate
from litex.gen import *
from litex.gen.genlib.misc import WaitTimer
@ -41,7 +44,7 @@ class HyperRAM(LiteXModule):
pads (Record) : Platform pads of HyperRAM.
bus (wishbone.Interface) : Wishbone Interface.
"""
def __init__(self, pads, latency=6, latency_mode="variable", sys_clk_freq=None, with_csr=True):
def __init__(self, pads, latency=6, latency_mode="variable", sys_clk_freq=10e6, with_csr=True):
self.pads = pads
self.bus = bus = wishbone.Interface(data_width=32, address_width=32, addressing="word")
@ -64,6 +67,8 @@ class HyperRAM(LiteXModule):
# Parameters.
# -----------
dw = len(pads.dq) if not hasattr(pads.dq, "oe") else len(pads.dq.o)
assert dw in [8, 16]
assert latency_mode in ["fixed", "variable"]
# Internal Signals.
@ -72,63 +77,104 @@ class HyperRAM(LiteXModule):
clk_phase = Signal(2)
cs = Signal()
ca = Signal(48)
ca_active = Signal()
ca_oe = Signal()
sr = Signal(48)
sr_next = Signal(48)
dq = self.add_tristate(pads.dq) if not hasattr(pads.dq, "oe") else pads.dq
rwds = self.add_tristate(pads.rwds) if not hasattr(pads.rwds, "oe") else pads.rwds
dw = len(pads.dq) if not hasattr(pads.dq, "oe") else len(pads.dq.o)
dq_o = Signal(dw)
dq_oe = Signal()
dq_i = Signal(dw)
rwds_o = Signal(dw//8)
rwds_oe = Signal()
rwds_i = Signal(dw//8)
assert dw in [8, 16]
# Tristates.
# ----------
dq = self.add_tristate(pads.dq, register=False) if not hasattr(pads.dq, "oe") else pads.dq
rwds = self.add_tristate(pads.rwds, register=False) if not hasattr(pads.rwds, "oe") else pads.rwds
self.comb += [
# DQ O/OE.
dq.o.eq( dq_o),
dq.oe.eq(dq_oe),
# RWDS O/OE.
rwds.o.eq( rwds_o),
rwds.oe.eq(rwds_oe),
]
self.sync += [
# DQ I.
dq_i.eq(dq.i),
# RWDS I.
rwds_i.eq(rwds.i)
]
# Drive Control Signals --------------------------------------------------------------------
# Rst.
if hasattr(pads, "rst_n"):
self.comb += pads.rst_n.eq(1 & ~self.conf_rst)
self.sync += pads.rst_n.eq(1 & ~self.conf_rst)
# CSn.
self.comb += pads.cs_n[0].eq(~cs)
assert len(pads.cs_n) <= 2
if len(pads.cs_n) == 2:
self.comb += pads.cs_n[1].eq(1)
pads.cs_n.reset = 2**len(pads.cs_n) - 1
self.sync += pads.cs_n[0].eq(~cs) # Only supporting 1 CS.
# Clk.
pads_clk = Signal()
self.sync += pads_clk.eq(clk)
if hasattr(pads, "clk"):
self.comb += pads.clk.eq(clk)
# Single Ended Clk.
self.comb += pads.clk.eq(pads_clk)
elif hasattr(pads, "clk_p"):
# Differential Clk.
self.specials += DifferentialOutput(pads_clk, pads.clk_p, pads.clk_n)
else:
self.specials += DifferentialOutput(clk, pads.clk_p, pads.clk_n)
raise ValueError
# Burst Timer ------------------------------------------------------------------------------
sys_clk_freq = 10e6 if sys_clk_freq is None else sys_clk_freq
burst_timer = WaitTimer(sys_clk_freq*self.tCSM)
self.burst_timer = burst_timer
self.burst_timer = burst_timer = WaitTimer(sys_clk_freq * self.tCSM)
# Clock Generation (sys_clk/4) -------------------------------------------------------------
self.sync += clk_phase.eq(clk_phase + 1)
cases = {}
cases[1] = clk.eq(cs) # Set pads clk on 90° (if cs is set)
cases[3] = clk.eq(0) # Clear pads clk on 270°
self.sync += Case(clk_phase, cases)
# Data Shift-In Register -------------------------------------------------------------------
dqi = Signal(dw)
self.sync += dqi.eq(dq.i) # Sample on 90° and 270°
self.comb += [
sr_next.eq(Cat(dqi, sr[:-dw])),
If(ca_active,
sr_next.eq(Cat(dqi[:8], sr[:-8])) # Only 8-bit during Command/Address.
self.sync += [
If(cs,
# Increment Clk Phase on CS.
clk_phase.eq(clk_phase + 1)
).Else(
# Else set Clk Phase to default value.
clk_phase.eq(0b00)
)
]
self.sync += If(clk_phase[0] == 0, sr.eq(sr_next)) # Shift on 0° and 180°
cases = {
0b00 : clk.eq(0), # 0°
0b01 : clk.eq(cs), # 90° / Set Clk.
0b10 : clk.eq(cs), # 180°
0b11 : clk.eq(0), # 270° / Clr Clk.
}
self.comb += Case(clk_phase, cases)
# Data Shift-In Register -------------------------------------------------------------------
self.comb += [
# Command/Address: On 8-bit, so 8-bit shift and no input.
If(ca_oe,
sr_next[8:].eq(sr),
# Data: On dw-bit, so dw-bit shift.
).Else(
sr_next[:dw].eq(dq_i),
sr_next[dw:].eq(sr),
)
]
self.sync += If(clk_phase[0] == 0, sr.eq(sr_next)) # Shift on 0°/180° (and sampled on 90°/270°).
# Data Shift-Out Register ------------------------------------------------------------------
self.comb += [
bus.dat_r.eq(sr_next),
If(dq.oe,
dq.o.eq(sr[-dw:]),
If(ca_active,
dq.o.eq(sr[-8:]) # Only 8-bit during Command/Address.
If(dq_oe,
# Command/Address: 8-bit.
If(ca_oe,
dq_o.eq(sr[-8:]),
# Data: dw-bit.
).Else(
dq_o.eq(sr[-dw:]),
)
)
]
@ -198,19 +244,15 @@ class HyperRAM(LiteXModule):
self.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
NextValue(first, 1),
If(clk_phase == 0,
If((bus.cyc & bus.stb) | reg_write_req | reg_read_req,
NextValue(sr, ca),
NextState("SEND-COMMAND-ADDRESS")
)
)
)
fsm.act("SEND-COMMAND-ADDRESS",
# Set CSn.
cs.eq(1),
# Send Command on DQ.
ca_active.eq(1),
dq.oe.eq(1),
ca_oe.eq(1),
dq_oe.eq(1),
# Wait for 6*2 cycles...
If(cycles == (6*2 - 1),
If(reg_write_req,
@ -218,17 +260,15 @@ class HyperRAM(LiteXModule):
NextState("REG-WRITE-0")
).Else(
# Sample RWDS to know if 1X/2X Latency should be used (Refresh).
NextValue(refresh, rwds.i | (latency_mode in ["fixed"])),
NextValue(refresh, rwds_i | (latency_mode in ["fixed"])),
NextState("WAIT-LATENCY")
)
)
)
fsm.act("REG-WRITE-0",
# Set CSn.
cs.eq(1),
# Send Reg on DQ.
ca_active.eq(1),
dq.oe.eq(1),
ca_oe.eq(1),
dq_oe.eq(1),
# Wait for 2 cycles...
If(cycles == (2 - 1),
NextValue(sr, Cat(Signal(40), self.reg_write_data[:8])),
@ -236,11 +276,9 @@ class HyperRAM(LiteXModule):
)
)
fsm.act("REG-WRITE-1",
# Set CSn.
cs.eq(1),
# Send Reg on DQ.
ca_active.eq(1),
dq.oe.eq(1),
ca_oe.eq(1),
dq_oe.eq(1),
# Wait for 2 cycles...
If(cycles == (2 - 1),
reg_ep.ready.eq(1),
@ -249,8 +287,6 @@ class HyperRAM(LiteXModule):
)
)
fsm.act("WAIT-LATENCY",
# Set CSn.
cs.eq(1),
# Wait for 1X or 2X Latency cycles... (-4 since count start in the middle of the command).
If(((cycles == 2*(self.conf_latency * 4) - 4 - 1) & refresh) | # 2X Latency (No DRAM refresh required).
((cycles == 1*(self.conf_latency * 4) - 4 - 1) & ~refresh) , # 1X Latency ( DRAM refresh required).
@ -268,14 +304,12 @@ class HyperRAM(LiteXModule):
fsm.act(f"READ-WRITE-DATA{n}",
# Enable Burst Timer.
burst_timer.wait.eq(1),
# Set CSn.
cs.eq(1),
ca_active.eq(reg_read_req),
ca_oe.eq(reg_read_req),
# Send Data on DQ/RWDS (for write).
If(bus_we,
dq.oe.eq(1),
rwds.oe.eq(1),
*[rwds.o[dw//8-1-i].eq(~bus_sel[4-1-n*dw//8-i]) for i in range(dw//8)],
dq_oe.eq(1),
rwds_oe.eq(1),
*[rwds_o[dw//8-1-i].eq(~bus_sel[4-1-n*dw//8-i]) for i in range(dw//8)],
),
# Wait for 2 cycles (since HyperRAM's Clk = sys_clk/4).
If(cycles == (2 - 1),
@ -308,13 +342,38 @@ class HyperRAM(LiteXModule):
)
)
)
# CS --------------------------------------------------------------------------------------
self.comb += If(~fsm.ongoing("IDLE"), cs.eq(1)) # CS when not in IDLE state.
self.comb += If(fsm.before_leaving("IDLE"), cs.eq(1)) # Early Set.
self.comb += If(fsm.before_entering("IDLE"), cs.eq(0)) # Early Clr.
# FSM Cycles -------------------------------------------------------------------------------
fsm.finalize()
self.sync += cycles.eq(cycles + 1)
self.sync += If(fsm.next_state != fsm.state, cycles.eq(0))
def add_tristate(self, pad):
t = TSTriple(len(pad))
self.specials += t.get_tristate(pad)
def add_tristate(self, pad, register=False):
class TristatePads:
def __init__(self, width):
self.o = Signal(len(pad))
self.oe = Signal()
self.i = Signal(len(pad))
t = TristatePads(len(pad))
if register:
for n in range(len(pad)):
self.specials += SDRTristate(pad[n],
o = t.o[n],
oe = t.oe,
i = t.i[n],
clk = ClockSignal("sys"),
)
else:
self.specials += Tristate(pad,
o = t.o,
oe = t.oe,
i = t.i,
)
return t
def add_csr(self, default_latency=6):

View File

@ -38,6 +38,7 @@
#include <libbase/spiflash.h>
#include <libbase/uart.h>
#include <libbase/i2c.h>
#include <libbase/hyperram.h>
#include <liblitedram/sdram.h>
#include <liblitedram/utils.h>
@ -175,86 +176,8 @@ __attribute__((__used__)) int main(int i, char **c)
sdr_ok = 1;
#ifdef CSR_HYPERRAM_BASE /* FIXME: Move to libbase/hyperram.h/c? */
/* Helper Functions */
printf("HyperRAM init...\n");
void hyperram_write_reg(uint16_t reg_addr, uint16_t data) {
/* Write data to the register */
hyperram_reg_wdata_write(data);
hyperram_reg_control_write(
1 << CSR_HYPERRAM_REG_CONTROL_WRITE_OFFSET |
0 << CSR_HYPERRAM_REG_CONTROL_READ_OFFSET |
reg_addr << CSR_HYPERRAM_REG_CONTROL_ADDR_OFFSET
);
/* Wait for write to complete */
while ((hyperram_reg_status_read() & (1 << CSR_HYPERRAM_REG_STATUS_WRITE_DONE_OFFSET)) == 0);
}
uint16_t hyperram_read_reg(uint16_t reg_addr) {
/* Read data from the register */
hyperram_reg_control_write(
0 << CSR_HYPERRAM_REG_CONTROL_WRITE_OFFSET |
1 << CSR_HYPERRAM_REG_CONTROL_READ_OFFSET |
reg_addr << CSR_HYPERRAM_REG_CONTROL_ADDR_OFFSET
);
/* Wait for read to complete */
while ((hyperram_reg_status_read() & (1 << CSR_HYPERRAM_REG_STATUS_READ_DONE_OFFSET)) == 0);
return hyperram_reg_rdata_read();
}
/* Configuration and Utility Functions */
uint16_t hyperram_get_core_latency_setting(uint32_t clk_freq) {
/* Raw clock latency settings for the HyperRAM core */
if (clk_freq <= 85000000) return 3; /* 3 Clock Latency */
if (clk_freq <= 104000000) return 4; /* 4 Clock Latency */
if (clk_freq <= 133000000) return 5; /* 5 Clock Latency */
if (clk_freq <= 166000000) return 6; /* 6 Clock Latency */
if (clk_freq <= 250000000) return 7; /* 7 Clock Latency */
return 7; /* Default to highest latency for safety */
}
uint16_t hyperram_get_chip_latency_setting(uint32_t clk_freq) {
/* LUT/Translated settings for the HyperRAM chip */
if (clk_freq <= 85000000) return 0b1110; /* 3 Clock Latency */
if (clk_freq <= 104000000) return 0b1111; /* 4 Clock Latency */
if (clk_freq <= 133000000) return 0b0000; /* 5 Clock Latency */
if (clk_freq <= 166000000) return 0b0001; /* 6 Clock Latency */
if (clk_freq <= 250000000) return 0b0010; /* 7 Clock Latency */
return 0b0010; /* Default to highest latency for safety */
}
void hyperram_configure_latency(void) {
uint16_t config_reg_0 = 0x8f2f;
uint16_t core_latency_setting;
uint16_t chip_latency_setting;
/* Compute Latency settings */
core_latency_setting = hyperram_get_core_latency_setting(CONFIG_CLOCK_FREQUENCY/4);
chip_latency_setting = hyperram_get_chip_latency_setting(CONFIG_CLOCK_FREQUENCY/4);
/* Write Latency to HyperRAM Core */
printf("HyperRAM Core Latency: %d CK (X1).\n", core_latency_setting);
hyperram_config_write(core_latency_setting << CSR_HYPERRAM_CONFIG_LATENCY_OFFSET);
/* Enable Variable Latency on HyperRAM Chip */
if (hyperram_status_read() & 0x1)
config_reg_0 &= ~(0b1 << 3); /* Enable Variable Latency */
/* Update Latency on HyperRAM Chip */
config_reg_0 &= ~(0b1111 << 4);
config_reg_0 |= chip_latency_setting << 4;
/* Write Configuration Register 0 to HyperRAM Chip */
hyperram_write_reg(2, config_reg_0);
/* Read current configuration */
config_reg_0 = hyperram_read_reg(2);
printf("HyperRAM Configuration Register 0: %08x\n", config_reg_0);
}
hyperram_configure_latency();
printf("\n");
#ifdef CSR_HYPERRAM_BASE
hyperram_init();
#endif
#if defined(CSR_ETHMAC_BASE) || defined(MAIN_RAM_BASE) || defined(CSR_SPIFLASH_CORE_BASE)

View File

@ -11,7 +11,8 @@ OBJECTS = \
uart.o \
spiflash.o \
i2c.o \
isr.o
isr.o \
hyperram.o
all: libbase.a

View File

@ -0,0 +1,93 @@
// This file is Copyright (c) 2024 Florent Kermarrec <florent@enjoy-digital.fr>
// License: BSD
#include <stdio.h>
#include <libbase/hyperram.h>
#include <generated/csr.h>
#ifdef CSR_HYPERRAM_BASE
static void hyperram_write_reg(uint16_t reg_addr, uint16_t data) {
/* Write data to the register */
hyperram_reg_wdata_write(data);
hyperram_reg_control_write(
1 << CSR_HYPERRAM_REG_CONTROL_WRITE_OFFSET |
0 << CSR_HYPERRAM_REG_CONTROL_READ_OFFSET |
reg_addr << CSR_HYPERRAM_REG_CONTROL_ADDR_OFFSET
);
/* Wait for write to complete */
while ((hyperram_reg_status_read() & (1 << CSR_HYPERRAM_REG_STATUS_WRITE_DONE_OFFSET)) == 0);
}
static uint16_t hyperram_read_reg(uint16_t reg_addr) {
/* Read data from the register */
hyperram_reg_control_write(
0 << CSR_HYPERRAM_REG_CONTROL_WRITE_OFFSET |
1 << CSR_HYPERRAM_REG_CONTROL_READ_OFFSET |
reg_addr << CSR_HYPERRAM_REG_CONTROL_ADDR_OFFSET
);
/* Wait for read to complete */
while ((hyperram_reg_status_read() & (1 << CSR_HYPERRAM_REG_STATUS_READ_DONE_OFFSET)) == 0);
return hyperram_reg_rdata_read();
}
/* Configuration and Utility Functions */
static uint16_t hyperram_get_core_latency_setting(uint32_t clk_freq) {
/* Raw clock latency settings for the HyperRAM core */
if (clk_freq <= 85000000) return 3; /* 3 Clock Latency */
if (clk_freq <= 104000000) return 4; /* 4 Clock Latency */
if (clk_freq <= 133000000) return 5; /* 5 Clock Latency */
if (clk_freq <= 166000000) return 6; /* 6 Clock Latency */
if (clk_freq <= 250000000) return 7; /* 7 Clock Latency */
return 7; /* Default to highest latency for safety */
}
static uint16_t hyperram_get_chip_latency_setting(uint32_t clk_freq) {
/* LUT/Translated settings for the HyperRAM chip */
if (clk_freq <= 85000000) return 0b1110; /* 3 Clock Latency */
if (clk_freq <= 104000000) return 0b1111; /* 4 Clock Latency */
if (clk_freq <= 133000000) return 0b0000; /* 5 Clock Latency */
if (clk_freq <= 166000000) return 0b0001; /* 6 Clock Latency */
if (clk_freq <= 250000000) return 0b0010; /* 7 Clock Latency */
return 0b0010; /* Default to highest latency for safety */
}
static void hyperram_configure_latency(void) {
uint16_t config_reg_0 = 0x8f2f;
uint16_t core_latency_setting;
uint16_t chip_latency_setting;
/* Compute Latency settings */
core_latency_setting = hyperram_get_core_latency_setting(CONFIG_CLOCK_FREQUENCY/4);
chip_latency_setting = hyperram_get_chip_latency_setting(CONFIG_CLOCK_FREQUENCY/4);
/* Write Latency to HyperRAM Core */
printf("HyperRAM Core Latency: %d CK (X1).\n", core_latency_setting);
hyperram_config_write(core_latency_setting << CSR_HYPERRAM_CONFIG_LATENCY_OFFSET);
/* Enable Variable Latency on HyperRAM Chip */
if (hyperram_status_read() & 0x1)
config_reg_0 &= ~(0b1 << 3); /* Enable Variable Latency */
/* Update Latency on HyperRAM Chip */
config_reg_0 &= ~(0b1111 << 4);
config_reg_0 |= chip_latency_setting << 4;
/* Write Configuration Register 0 to HyperRAM Chip */
hyperram_write_reg(2, config_reg_0);
/* Read current configuration */
config_reg_0 = hyperram_read_reg(2);
printf("HyperRAM Configuration Register 0: %08x\n", config_reg_0);
}
void hyperram_init(void) {
printf("HyperRAM init...\n");
hyperram_configure_latency();
printf("\n");
}
#endif

View File

@ -0,0 +1,17 @@
// This file is Copyright (c) 2024 Florent Kermarrec <florent@enjoy-digital.fr>
// License: BSD
#ifndef __HYPERRAM_H
#define __HYPERRAM_H
#ifdef __cplusplus
extern "C" {
#endif
void hyperram_init(void);
#ifdef __cplusplus
}
#endif
#endif /* __HYPERRAM_H */

View File

@ -45,8 +45,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "002000048d0000000000000000000000000000000000000000deadbeef000000"
rwds_oe = "__________________________________________________--------______"
rwds_o = "____________________________________________________----________"
for i in range(3):
yield
for i in range(len(clk)):
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
self.assertEqual(c2bool(cs_n[i]), (yield dut.pads.cs_n))
@ -71,8 +69,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "002000048d000000000000000000000000000000000000000000000000deadbeef000000"
rwds_oe = "__________________________________________________________--------______"
rwds_o = "____________________________________________________________----________"
for i in range(3):
yield
for i in range(len(clk)):
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
self.assertEqual(c2bool(cs_n[i]), (yield dut.pads.cs_n))
@ -97,8 +93,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "002000048d00000000000000000000000000000000000000000000000000000000deadbeef000000"
rwds_oe = "__________________________________________________________________--------______"
rwds_o = "____________________________________________________________________----________"
for i in range(3):
yield
for i in range(len(clk)):
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
self.assertEqual(c2bool(cs_n[i]), (yield dut.pads.cs_n))
@ -123,8 +117,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "002000048d0000000000000000000000000000deadbeef000000"
rwds_oe = "______________________________________--------______"
rwds_o = "________________________________________----________"
for i in range(3):
yield
for i in range(len(clk)):
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
self.assertEqual(c2bool(cs_n[i]), (yield dut.pads.cs_n))
@ -151,8 +143,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "00a000048d0000000000000000000000000000000000000000000000000000000000000000"
dq_i = "00000000000000000000000000000000000000000000000000deadbeefcafefade00000000"
rwds_oe = "__________________________________________________________________________"
for i in range(3):
yield
for i in range(len(clk)):
yield dut.pads.dq.i.eq(int(dq_i[2*(i//2):2*(i//2)+2], 16))
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
@ -179,8 +169,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "00a000048d000000000000000000000000000000000000000000000000000000000000000000000000"
dq_i = "0000000000000000000000000000000000000000000000000000000000deadbeefcafefade00000000"
rwds_oe = "__________________________________________________________________________________"
for i in range(3):
yield
for i in range(len(clk)):
yield dut.pads.dq.i.eq(int(dq_i[2*(i//2):2*(i//2)+2], 16))
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
@ -207,8 +195,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "00a000048d00000000000000000000000000000000000000000000000000000000000000000000000000000000"
dq_i = "000000000000000000000000000000000000000000000000000000000000000000deadbeefcafefade00000000"
rwds_oe = "__________________________________________________________________________________________"
for i in range(3):
yield
for i in range(len(clk)):
yield dut.pads.dq.i.eq(int(dq_i[2*(i//2):2*(i//2)+2], 16))
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
@ -235,8 +221,6 @@ class TestHyperBus(unittest.TestCase):
dq_o = "00a000048d0000000000000000000000000000000000000000000000000000"
dq_i = "00000000000000000000000000000000000000deadbeefcafefade00000000"
rwds_oe = "______________________________________________________________"
for i in range(3):
yield
for i in range(len(clk)):
yield dut.pads.dq.i.eq(int(dq_i[2*(i//2):2*(i//2)+2], 16))
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
@ -261,14 +245,12 @@ class TestHyperBus(unittest.TestCase):
yield
def hyperram_gen(dut):
clk = "___--__--__--__--___________"
cs_n = "--________________----------"
dq_oe = "__----------------__________"
dq_o = "0060000100000012340000000000"
rwds_oe = "____________________________"
rwds_o = "____________________________"
for i in range(3):
yield
clk = "_____--__--__--__--___________"
cs_n = "----________________----------"
dq_oe = "____----------------__________"
dq_o = "000060000100000012340000000000"
rwds_oe = "______________________________"
rwds_o = "______________________________"
for i in range(len(clk)):
self.assertEqual(c2bool(clk[i]), (yield dut.pads.clk))
self.assertEqual(c2bool(cs_n[i]), (yield dut.pads.cs_n))