Merge pull request #2018 from motec-research/add_i2c_master

Add i2c master
This commit is contained in:
enjoy-digital 2024-07-21 09:32:48 +02:00 committed by GitHub
commit 4301293b21
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 517 additions and 0 deletions

291
litex/soc/cores/i2c.py Normal file
View file

@ -0,0 +1,291 @@
#
# This file is part of MiSoC and has been adapted/modified for Litex.
#
# Copyright 2007-2023 / M-Labs Ltd
# Copyright 2012-2015 / Enjoy-Digital
# Copyright from Misoc LICENCE file added above
#
# Copyright 2023 Andrew Dennison <andrew@motec.com.au>
#
# SPDX-License-Identifier: BSD-2-Clause
from migen import *
from litex.gen import *
from litex.soc.interconnect import wishbone
from litex.soc.interconnect.csr_eventmanager import *
# I2C-----------------------------------------------------------------------------------------------
__all__ = [
"I2CMaster",
"I2C_XFER_ADDR", "I2C_CONFIG_ADDR",
"I2C_ACK", "I2C_READ", "I2C_WRITE", "I2C_STOP", "I2C_START", "I2C_IDLE",
]
class I2CClockGen(LiteXModule):
def __init__(self, width):
self.load = Signal(width)
self.clk2x = Signal()
cnt = Signal.like(self.load)
self.comb += [
self.clk2x.eq(cnt == 0),
]
self.sync += [
If(self.clk2x,
cnt.eq(self.load),
).Else(
cnt.eq(cnt - 1),
),
]
class I2CMasterMachine(LiteXModule):
def __init__(self, clock_width):
self.scl_o = Signal(reset=1)
self.sda_o = Signal(reset=1)
self.sda_i = Signal()
self.cg = CEInserter()(I2CClockGen(clock_width))
self.idle = Signal()
self.start = Signal()
self.stop = Signal()
self.write = Signal()
self.read = Signal()
self.ack = Signal()
self.data = Signal(8)
###
busy = Signal()
bits = Signal(4)
fsm = CEInserter()(FSM("IDLE"))
self.fsm = fsm
fsm.act("IDLE",
# Valid combinations (lowest to highest priority):
# stop: lowest priority
# read (& optional stop with automatic NACK)
# write (& optional stop)
# start (indicates start or restart)
# start & write (& optional stop)
# start & write & read (& optional stop)
# lowest priority
# *** TODO: support compound commands with I2CMaster ***
If(self.stop & ~self.scl_o,
# stop is only valid after an ACK
NextState("STOP0"),
),
If(self.read,
# post decrement so read first bit and shift in 7
NextValue(bits, 8-1),
NextState("READ0"),
),
If(self.write,
NextValue(bits, 8),
NextState("WRITE0"),
),
# start could be requesting a restart
If(self.start,
NextState("RESTART0"),
),
# highest priority: start only if scl is high
If(self.start & self.scl_o,
NextState("START0"),
),
)
fsm.act("START0",
# Always entered with scl_o = 1
NextValue(self.sda_o, 0),
NextState("IDLE"))
fsm.act("RESTART0",
# Only entered from IDLE with scl_o = 0
NextValue(self.sda_o, 1),
NextState("RESTART1"))
fsm.act("RESTART1",
NextValue(self.scl_o, 1),
NextState("START0"))
fsm.act("STOP0",
# Only entered from IDLE with scl_o = 0
NextValue(self.sda_o, 0),
NextState("STOP1"))
fsm.act("STOP1",
NextValue(self.scl_o, 1),
NextState("STOP2"))
fsm.act("STOP2",
NextValue(self.sda_o, 1),
NextState("IDLE"))
fsm.act("WRITE0",
NextValue(self.scl_o, 0),
If(bits == 0,
NextValue(self.sda_o, 1),
NextState("READACK0"),
).Else(
NextValue(self.sda_o, self.data[7]),
NextState("WRITE1"),
)
)
fsm.act("WRITE1",
NextValue(self.scl_o, 1),
NextValue(self.data[1:], self.data[:-1]),
NextValue(bits, bits - 1),
NextState("WRITE0"),
)
fsm.act("READACK0",
NextValue(self.scl_o, 1),
NextState("READACK1"),
)
fsm.act("READACK1",
# ACK => IDLE always with scl_o = 0
NextValue(self.scl_o, 0),
NextValue(self.ack, ~self.sda_i),
NextState("IDLE")
)
fsm.act("READ0",
# ACK => IDLE => READ0 always with scl_o = 0
NextValue(self.scl_o, 1),
NextState("READ1"),
)
fsm.act("READ1",
NextValue(self.data[0], self.sda_i),
NextValue(self.scl_o, 0),
If(bits == 0,
NextValue(self.sda_o, ~self.ack),
NextState("WRITEACK0"),
).Else(
#NextValue(self.sda_o, 1), must already be high
NextState("READ2"),
)
)
fsm.act("READ2",
NextValue(self.scl_o, 1),
NextValue(self.data[1:], self.data[:-1]),
NextValue(bits, bits - 1),
NextState("READ1"),
)
fsm.act("WRITEACK0",
NextValue(self.scl_o, 1),
NextState("WRITEACK1"),
)
fsm.act("WRITEACK1",
# ACK => IDLE always with scl_o = 0
NextValue(self.scl_o, 0),
NextValue(self.sda_o, 1),
NextState("IDLE")
)
run = Signal()
self.comb += [
run.eq(self.start | self.stop | self.write | self.read),
self.idle.eq(~run & fsm.ongoing("IDLE")),
self.cg.ce.eq(~self.idle),
fsm.ce.eq(run | self.cg.clk2x),
]
# Registers:
# config = Record([
# ("div", 20),
# ])
# xfer = Record([
# ("data", 8),
# ("ack", 1),
# ("read", 1),
# ("write", 1),
# ("start", 1),
# ("stop", 1),
# ("idle", 1),
# ])
class I2CMaster(LiteXModule):
def __init__(self, pads, bus=None):
if bus is None:
bus = wishbone.Interface(data_width=32)
self.bus = bus
###
# Wishbone
self.i2c = i2c = I2CMasterMachine(
clock_width=20)
self.sync += [
# read
If(bus.adr[0],
bus.dat_r.eq(i2c.cg.load),
).Else(
bus.dat_r.eq(Cat(i2c.data, i2c.ack, C(0, 4), i2c.idle)),
),
# write
i2c.read.eq(0),
i2c.write.eq(0),
i2c.start.eq(0),
i2c.stop.eq(0),
bus.ack.eq(0),
If(bus.cyc & bus.stb & ~bus.ack,
bus.ack.eq(1),
If(bus.we,
If(bus.adr[0],
i2c.cg.load.eq(bus.dat_w),
).Else(
i2c.data.eq(bus.dat_w[0:8]),
i2c.ack.eq(bus.dat_w[8]),
i2c.read.eq(bus.dat_w[9]),
i2c.write.eq(bus.dat_w[10]),
i2c.start.eq(bus.dat_w[11]),
i2c.stop.eq(bus.dat_w[12]),
)
)
)
]
# I/O
self.scl_t = TSTriple()
self.scl_tristate = self.scl_t.get_tristate(pads.scl)
self.comb += [
self.scl_t.oe.eq(~i2c.scl_o),
self.scl_t.o.eq(0),
]
self.sda_t = TSTriple()
self.sda_tristate = self.sda_t.get_tristate(pads.sda)
self.scl_i_n = Signal() # previous scl_t.i
self.sda_oe_n = Signal() # previous sda_t.oe
self.sync += [
self.scl_i_n.eq(self.scl_t.i),
self.sda_oe_n.eq(self.sda_t.oe),
]
self.comb += [
self.sda_t.oe.eq(self.sda_oe_n),
# only change SDA when SCL is stable
If(self.scl_i_n == i2c.scl_o,
self.sda_t.oe.eq(~i2c.sda_o),
),
self.sda_t.o.eq(0),
i2c.sda_i.eq(self.sda_t.i),
]
# Event Manager.
self.ev = EventManager()
self.ev.idle = EventSourceProcess(edge="rising")
self.ev.finalize()
self.comb += self.ev.idle.trigger.eq(i2c.idle)
I2C_XFER_ADDR, I2C_CONFIG_ADDR = range(2)
(
I2C_ACK,
I2C_READ,
I2C_WRITE,
I2C_START,
I2C_STOP,
I2C_IDLE,
) = (1 << i for i in range(8, 14))

226
test/test_i2c.py Executable file
View file

@ -0,0 +1,226 @@
#!/usr/bin/env python3
#
# This file is part of MiSoC and has been adapted/modified for Litex.
#
# Copyright 2007-2023 / M-Labs Ltd
# Copyright 2012-2015 / Enjoy-Digital
# Copyright from Misoc LICENCE file added above
#
# Copyright 2023 Andrew Dennison <andrew@motec.com.au>
#
# SPDX-License-Identifier: BSD-2-Clause
import unittest
from migen import *
from migen.fhdl.specials import Tristate
from litex.soc.cores.i2c import *
class _MockPads:
def __init__(self):
self.scl = Signal()
self.sda = Signal()
class _MockTristateImpl(Module):
def __init__(self, t):
t.i_mock = Signal(reset=True)
self.comb += [
If(t.oe,
t.target.eq(t.o),
t.i.eq(t.o),
).Else(
t.target.eq(t.i_mock),
t.i.eq(t.i_mock),
),
]
class _MockTristate:
"""A mock `Tristate` for simulation
This simulation ensures the TriState input (_i) tracks the output (_o) when output enable
(_oe) = 1. A new i_mock `Signal` is added - this can be written to in the simulation to represent
input from the external device.
Example usage:
class TestMyModule(unittest.TestCase):
def test_mymodule(self):
dut = MyModule()
io = Signal()
dut.io_t = TSTriple()
self.io_tristate = self.io_t.get_tristate(io)
dut.comb += [
dut.io_t.oe.eq(signal_for_oe),
dut.io_t.o.eq(signal_for_o),
signal_for_i.eq(dut.io_t.i),
]
def generator()
yield dut.io_tristate.i_mock.eq(some_value)
if (yield dut.io_t.oe):
self.assertEqual((yield dut.scl_t.i), (yield dut.io_t.o))
else:
self.assertEqual((yield dut.scl_t.i), some_value)
"""
@staticmethod
def lower(t):
return _MockTristateImpl(t)
class TestI2C(unittest.TestCase):
def test_i2c(self):
pads = _MockPads()
dut = I2CMaster(pads)
def check_trans(scl, sda, msg=""):
scl, sda = int(scl), int(sda)
scl_init, sda_init = (yield dut.scl_t.i), (yield dut.sda_t.i)
timeout = 0
while True:
scl_now, sda_now = (yield dut.scl_t.i), (yield dut.sda_t.i)
if scl_now == scl and sda_now == sda:
return
timeout += 1
self.assertLess(timeout, 20,
f"\n*** {msg} timeout. Waiting for: " +
f"scl:{scl_now} checking:{scl_init}=>{scl} " +
f"sda:{sda_now} checking:{sda_init}=>{sda} ***"
)
yield
def wait_idle(do=lambda: ()):
timeout = 0
while True:
timeout += 1
self.assertLess(timeout, 20)
idle = ((yield from dut.bus.read(I2C_XFER_ADDR)) & I2C_IDLE) != 0
if idle:
return
yield
def write_bit(value):
# print(f"write_bit:{value}")
yield from check_trans(scl=False, sda=value)
yield from check_trans(scl=True, sda=value)
def write_ack(value):
# print(f"write_ack:{value}")
yield from check_trans(scl=False, sda=not value)
yield from check_trans(scl=True, sda=not value)
yield from wait_idle()
def read_bit(value):
print(f"read_bit:{value}")
yield dut.sda_tristate.i_mock.eq(value)
yield from check_trans(scl=True, sda=value)
yield from check_trans(scl=False, sda=value)
yield dut.sda_tristate.i_mock.eq(True)
def read_ack(value):
#print(f"read_ack:{value}")
yield from check_trans(scl=False, sda=True)
yield dut.sda_tristate.i_mock.eq(not value)
yield from check_trans(scl=True, sda=not value)
yield from wait_idle()
yield dut.sda_tristate.i_mock.eq(True)
ack = ((yield from dut.bus.read(I2C_XFER_ADDR)) & I2C_ACK) != 0
self.assertEqual(ack, value)
def i2c_restart():
yield from check_trans(scl=False, sda=True, msg="checking restart precondition")
yield from dut.bus.write(I2C_XFER_ADDR, I2C_START)
yield from check_trans(scl=False, sda=True, msg="checking restart0")
yield from check_trans(scl=True, sda=True, msg="checking restart1")
yield from check_trans(scl=True, sda=False, msg="checking start0")
yield from wait_idle()
def i2c_start():
yield from check_trans(scl=True, sda=True, msg="checking start precondition")
yield from dut.bus.write(I2C_XFER_ADDR, I2C_START)
yield from check_trans(scl=True, sda=False, msg="checking start0")
yield from wait_idle()
def i2c_stop():
yield from check_trans(scl=False, sda=True, msg="checking stop after read or write")
yield from dut.bus.write(I2C_XFER_ADDR, I2C_STOP)
yield from check_trans(scl=False, sda=False, msg="checking STOP0")
yield from check_trans(scl=True, sda=False, msg="checking STOP1")
yield from check_trans(scl=True, sda=True, msg="checking STOP2")
yield from wait_idle()
def i2c_write(value, ack=True):
value = int(value)
test_bin = "{0:08b}".format(value)
# print(f"I2C_WRITE | {hex(value)}:0x{test_bin}")
yield from dut.bus.write(I2C_XFER_ADDR, I2C_WRITE | value)
for i in list(test_bin):
yield from write_bit(int(i))
yield from read_ack(True)
def i2c_read(value, ack=True):
value = int(value)
test_bin = "{0:08b}".format(value)
print(f"I2C_READ | {hex(value)}:0x{test_bin}")
yield from dut.bus.write(I2C_XFER_ADDR, I2C_READ | (I2C_ACK if ack else 0))
for i in list(test_bin):
yield from read_bit(int(i))
yield dut.sda_tristate.i_mock.eq(True)
data = (yield from dut.bus.read(I2C_XFER_ADDR)) & 0xFF
self.assertEqual(data, value)
yield from write_ack(ack)
def check():
yield from dut.bus.write(I2C_CONFIG_ADDR, 4)
data = (yield from dut.bus.read(I2C_CONFIG_ADDR)) & 0xFF
self.assertEqual(data, 4)
print("write 1 byte 0x18 to address 0x41")
yield from i2c_start()
yield from i2c_write(0x41 << 1 | 0)
yield from i2c_write(0x18, ack=False)
yield from i2c_stop()
print("read 1 byte from address 0x41")
yield from i2c_start()
yield from i2c_write(0x41 << 1 | 1)
yield from i2c_read(0x18, ack=False)
print("write 2 bytes 0x10 0x00 to address 0x11")
yield from i2c_restart()
yield from i2c_write(0x11 << 1 | 0)
yield from i2c_write(0x10, ack=True)
yield from i2c_write(0x00, ack=False)
yield from i2c_stop()
print("read 1 byte from address 0x11")
yield from i2c_start()
yield from i2c_write(0x11 << 1 | 1)
yield from i2c_read(0x81, ack=False)
print("read 2 bytes from address 0x55")
yield from i2c_restart()
yield from i2c_write(0x55 << 1 | 1)
yield from i2c_read(0xDE, ack=True)
yield from i2c_read(0xAD, ack=False)
yield from i2c_stop()
clocks = {
"sys": 10,
"async": (10, 3),
}
generators = {
"sys": [
check(),
],
}
run_simulation(dut, generators, clocks, special_overrides={Tristate: _MockTristate}, vcd_name="i2c.vcd")
if __name__ == "__main__":
unittest.main()