software/bios/libsdcard: add initial boot from sdcard with litescard, rename spisdcardboot command to sdcardboot.

This commit is contained in:
Florent Kermarrec 2020-06-03 20:03:18 +02:00
parent b30e3353b5
commit 4b3c5203ed
7 changed files with 357 additions and 17 deletions

View file

@ -29,6 +29,7 @@
#include <libliteeth/tftp.h>
#include <liblitesdcard/spisdcard.h>
#include <liblitesdcard/sdcard.h>
extern void boot_helper(unsigned long r1, unsigned long r2, unsigned long r3, unsigned long addr);
@ -532,16 +533,22 @@ void romboot(void)
}
#endif
// SPI HARDWARE BITBANG
#ifdef CSR_SPISDCARD_BASE
#if defined(CSR_SPISDCARD_BASE) || defined(CSR_SDCORE_BASE)
void spisdcardboot(void)
void sdcardboot(void)
{
printf("SD Card via SPI Initialising\n");
printf("Booting from SDCard...\n");
#ifdef CSR_SPISDCARD_BASE
printf("Initializing SDCard in SPI-Mode...\n");
if(spi_sdcard_goidle() == 0) {
printf("SD Card Timeout\n");
return;
}
#endif
#ifdef CSR_SDCORE_BASE
printf("Initializing SDCard in SD-Mode...\n");
sdcard_init(); // FIXME : check returned value
#endif
if(spi_sdcard_readMBR() == 0) {
printf("SD Card MBR Timeout\n");

View file

@ -5,9 +5,6 @@ int serialboot(void);
void netboot(void);
void flashboot(void);
void romboot(void);
#ifdef CSR_SPISDCARD_BASE
void spisdcardboot(void);
#endif
void sdcardboot(void);
#endif /* __BOOT_H */

View file

@ -16,7 +16,7 @@
*
*/
#ifdef FLASH_BOOT_ADDRESS
define_command(flashboot, flashboot, "Boot from flash", BOOT_CMDS);
define_command(flashboot, flashboot, "Boot from Flash", BOOT_CMDS);
#endif
/**
@ -26,7 +26,7 @@ define_command(flashboot, flashboot, "Boot from flash", BOOT_CMDS);
*
*/
#ifdef ROM_BOOT_ADDRESS
define_command(romboot, romboot, "Boot from embedded rom", BOOT_CMDS);
define_command(romboot, romboot, "Boot from ROM", BOOT_CMDS);
#endif
/**
@ -35,7 +35,7 @@ define_command(romboot, romboot, "Boot from embedded rom", BOOT_CMDS);
* Boot software from serial interface
*
*/
define_command(serialboot, serialboot, "Boot via SFL", BOOT_CMDS);
define_command(serialboot, serialboot, "Boot from Serial (SFL)", BOOT_CMDS);
/**
* Command "netboot"
@ -44,7 +44,7 @@ define_command(serialboot, serialboot, "Boot via SFL", BOOT_CMDS);
*
*/
#ifdef CSR_ETHMAC_BASE
define_command(netboot, netboot, "Boot via TFTP", BOOT_CMDS);
define_command(netboot, netboot, "Boot via Ethernet (TFTP)", BOOT_CMDS);
#endif
/**
@ -53,7 +53,7 @@ define_command(netboot, netboot, "Boot via TFTP", BOOT_CMDS);
* Boot software from SDcard
*
*/
#ifdef CSR_SPISDCARD_BASE
define_command(spisdcardboot, spisdcardboot, "Boot from SDCard via SPI hardware bitbang", BOOT_CMDS);
#if defined(CSR_SPISDCARD_BASE) || defined(CSR_SDCORE_BASE)
define_command(sdcardboot, sdcardboot, "Boot from SDCard", BOOT_CMDS);
#endif

View file

@ -55,8 +55,9 @@ static void boot_sequence(void)
#ifdef ROM_BOOT_ADDRESS
romboot();
#endif
#ifdef CSR_SPISDCARD_BASE
spisdcardboot();
//#if defined(CSR_SPISDCARD_BASE) || defined(CSR_SDCORE_BASE)
#if defined(CSR_SPISDCARD_BASE) // FIXME
sdcardboot();
#endif
#ifdef CSR_ETHMAC_BASE
#ifdef CSR_ETHPHY_MODE_DETECTION_MODE_ADDR

View file

@ -707,4 +707,335 @@ int sdcard_test(unsigned int blocks)
#endif
return 0;
}
// Return values
#define SUCCESS 0x01
#define FAILURE 0x00
// READSECTOR
// Read a 512 byte sector from the SD CARD
// Given SECTORNUMBER and memory STORAGE
//
// Sequence
// Send CMD17 - Read Block
// Command Sequence is DUMMY=0xff CMD17=0x51 SECTORNUMBER (32bit UNSIGNED as bits 32-25,24-17, 16-9, 8-1) CRC=0xff
// Wait for SD CARD to send 0x00 indicating SD CARD is processing
// Wait for SD CARD to send 0xfe indicating SD CARD BLOCK START
// Read 512 bytes
// Read 8 DUMMY bytes
// Return 0 success, 1 failure
//
// Details from https://openlabpro.com/guide/interfacing-microcontrollers-with-sd-card/ section "Read/Write SD Card"
uint8_t readSector(uint32_t sectorNumber, uint8_t *storage);
uint8_t readSector(uint32_t sectorNumber, uint8_t *storage)
{
int n;
// FIXME: handle errors.
sdcard_read(sectorNumber, 1);
for(n=0; n<512; n++)
storage[n] = sdread_buf[n];
return SUCCESS;
}
// FAT16 Specific code starts here
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
// Structure to store SD CARD partition table
typedef struct {
uint8_t first_byte;
uint8_t start_chs[3];
uint8_t partition_type;
uint8_t end_chs[3];
uint32_t start_sector;
uint32_t length_sectors;
} __attribute((packed)) PartitionTable;
PartitionTable sdCardPartition;
// Structure to store SD CARD FAT16 Boot Sector (boot code is ignored, provides layout of the FAT16 partition on the SD CARD)
typedef struct {
uint8_t jmp[3];
uint8_t oem[8];
uint16_t sector_size;
uint8_t sectors_per_cluster;
uint16_t reserved_sectors;
uint8_t number_of_fats;
uint16_t root_dir_entries;
uint16_t total_sectors_short; // if zero, later field is used
uint8_t media_descriptor;
uint16_t fat_size_sectors;
uint16_t sectors_per_track;
uint16_t number_of_heads;
uint32_t hidden_sectors;
uint32_t total_sectors_long;
uint8_t drive_number;
uint8_t current_head;
uint8_t boot_signature;
uint32_t volume_id;
uint8_t volume_label[11];
uint8_t fs_type[8];
uint8_t boot_code[448];
uint16_t boot_sector_signature;
} __attribute((packed)) Fat16BootSector;
Fat16BootSector sdCardFatBootSector;
// Structure to store SD CARD FAT16 Root Directory Entries
// Allocated to MAIN RAM - hence pointer
typedef struct {
uint8_t filename[8];
uint8_t ext[3];
uint8_t attributes;
uint8_t reserved[10];
uint16_t modify_time;
uint16_t modify_date;
uint16_t starting_cluster;
uint32_t file_size;
} __attribute((packed)) Fat16Entry;
Fat16Entry *sdCardFat16RootDir;
// Structure to store SD CARD FAT16 Entries
// Array of uint16_tS (16bit integers)
uint16_t *sdCardFatTable;
// Calculated sector numbers on the SD CARD for the FAT16 Entries and ROOT DIRECTORY
uint32_t fatSectorStart, rootDirSectorStart;
// Storage for SECTOR read from SD CARD
uint8_t sdCardSector[512];
// SPI_SDCARD_READMBR
// Function exposed to BIOS to retrieve FAT16 partition details, FAT16 Entry Table, FAT16 Root Directory
// MBR = Master Boot Record - Sector 0x00000000 on SD CARD - Contains Partition 1 details at 0x1be
//
// FIXME only checks partition 1 out of 4
//
// Return 0 success, 1 failure
//
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
uint8_t spi_sdcard_readMBR(void)
{
int i, n;
// Read Sector 0x00000000
printf("Reading MBR\n");
if( readSector(0x00000000, sdCardSector)==SUCCESS ) {
// Copy Partition 1 Entry from byte 0x1be
// FIXME should check 0x55 0xaa at end of sector
memcpy(&sdCardPartition, &sdCardSector[0x1be], sizeof(PartitionTable));
// Check Partition 1 is valid, FIRST_BYTE=0x00 or 0x80
// Check Partition 1 has type 4, 6 or 14 (FAT16 of various sizes)
printf("Partition 1 Information: Active=0x%02x, Type=0x%02x, LBAStart=0x%08x\n", sdCardPartition.first_byte, sdCardPartition.partition_type, sdCardPartition.start_sector);
if( (sdCardPartition.first_byte!=0x80) && (sdCardPartition.first_byte!=0x00) ) {
printf("Partition 1 Not Valid\n");
return FAILURE;
}
if( (sdCardPartition.partition_type==4) || (sdCardPartition.partition_type==6) || (sdCardPartition.partition_type==14) ) {
printf("Partition 1 is FAT16\n");
}
else {
printf("Partition 1 Not FAT16\n");
return FAILURE;
}
}
else {
printf("Failed to read MBR\n");
return FAILURE;
}
// Read Parition 1 Boot Sector - Found from Partion Table
printf("\nRead FAT16 Boot Sector\n");
sdCardPartition.start_sector = sdCardPartition.start_sector/512;
if( readSector(sdCardPartition.start_sector, sdCardSector)==SUCCESS ) {
memcpy(&sdCardFatBootSector, &sdCardSector, sizeof(Fat16BootSector));
}
else {
printf("Failed to read FAT16 Boot Sector\n");
return FAILURE;
}
// Print details of Parition 1
printf(" Jump Code: 0x%02x 0x%02x 0x%02x\n",sdCardFatBootSector.jmp[0],sdCardFatBootSector.jmp[1],sdCardFatBootSector.jmp[2]);
printf(" OEM Code: [");
for(n=0; n<8; n++)
printf("%c",sdCardFatBootSector.oem[n]);
printf("]\n");
printf(" Sector Size: %d\n",sdCardFatBootSector.sector_size);
printf(" Sectors Per Cluster: %d\n",sdCardFatBootSector.sectors_per_cluster);
printf(" Reserved Sectors: %d\n",sdCardFatBootSector.reserved_sectors);
printf(" Number of Fats: %d\n",sdCardFatBootSector.number_of_fats);
printf(" Root Dir Entries: %d\n",sdCardFatBootSector.root_dir_entries);
printf(" Total Sectors Short: %d\n",sdCardFatBootSector.total_sectors_short);
printf(" Media Descriptor: 0x%02x\n",sdCardFatBootSector.media_descriptor);
printf(" Fat Size Sectors: %d\n",sdCardFatBootSector.fat_size_sectors);
printf(" Sectors Per Track: %d\n",sdCardFatBootSector.sectors_per_track);
printf(" Number of Heads: %d\n",sdCardFatBootSector.number_of_heads);
printf(" Hidden Sectors: %d\n",sdCardFatBootSector.hidden_sectors);
printf(" Total Sectors Long: %d\n",sdCardFatBootSector.total_sectors_long);
printf(" Drive Number: 0x%02x\n",sdCardFatBootSector.drive_number);
printf(" Current Head: 0x%02x\n",sdCardFatBootSector.current_head);
printf(" Boot Signature: 0x%02x\n",sdCardFatBootSector.boot_signature);
printf(" Volume ID: 0x%08x\n",sdCardFatBootSector.volume_id);
printf(" Volume Label: [");
for(n=0; n<11; n++)
printf("%c",sdCardFatBootSector.volume_label[n]);
printf("]\n");
printf(" Volume Label: [");
for(n=0; n<8; n++)
printf("%c",sdCardFatBootSector.fs_type[n]);
printf("]\n");
printf(" Boot Sector Signature: 0x%04x\n\n",sdCardFatBootSector.boot_sector_signature);
// Check Partition 1 is valid, not 0 length
if(sdCardFatBootSector.total_sectors_long==0) {
printf("Error reading FAT16 Boot Sector\n");
return FAILURE;
}
// Read in FAT16 File Allocation Table, array of 16bit unsinged integers
// Calculate Storage from TOP of MAIN RAM
sdCardFatTable = (uint16_t *)(MAIN_RAM_BASE+MAIN_RAM_SIZE-sdCardFatBootSector.sector_size*sdCardFatBootSector.fat_size_sectors);
printf("sdCardFatTable = 0x%08x Reading Fat16 Table (%d Sectors Long)\n\n",sdCardFatTable,sdCardFatBootSector.fat_size_sectors);
// Calculate Start of FAT16 File Allocation Table (start of partition plus reserved sectors)
fatSectorStart=sdCardPartition.start_sector+sdCardFatBootSector.reserved_sectors;
for(n=0; n<sdCardFatBootSector.fat_size_sectors; n++) {
if( readSector(fatSectorStart+n, (uint8_t *)((uint8_t*)sdCardFatTable)+sdCardFatBootSector.sector_size*n)==FAILURE ) {
printf("Error reading FAT16 table - sector %d\n",n);
return FAILURE;
}
}
// Read in FAT16 Root Directory
// Calculate Storage from TOP of MAIN RAM
sdCardFat16RootDir= (Fat16Entry *)(MAIN_RAM_BASE+MAIN_RAM_SIZE-sdCardFatBootSector.sector_size*sdCardFatBootSector.fat_size_sectors-sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry));
printf("sdCardFat16RootDir = 0x%08x Reading Root Directory (%d Sectors Long)\n\n",sdCardFat16RootDir,sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry)/sdCardFatBootSector.sector_size);
// Calculate Start of FAT ROOT DIRECTORY (start of partition plues reserved sectors plus size of File Allocation Table(s))
rootDirSectorStart=sdCardPartition.start_sector+sdCardFatBootSector.reserved_sectors+sdCardFatBootSector.number_of_fats*sdCardFatBootSector.fat_size_sectors;
for(n=0; n<sdCardFatBootSector.root_dir_entries*sizeof(Fat16Entry)/sdCardFatBootSector.sector_size; n++) {
if( readSector(rootDirSectorStart+n, (uint8_t *)(sdCardFatBootSector.sector_size*n+(uint8_t *)(sdCardFat16RootDir)))==FAILURE ) {
printf("Error reading Root Dir - sector %d\n",n);
return FAILURE;
}
}
// Print out Root Directory
// Alternates between valid and invalid directory entries for SIMPLE 8+3 file names, extended filenames in other entries
// Only print valid characters
printf("\nRoot Directory\n");
for(n=0; n<sdCardFatBootSector.root_dir_entries; n++) {
if( (sdCardFat16RootDir[n].filename[0]!=0) && (sdCardFat16RootDir[n].file_size>0)) {
printf(" File %d [",n);
for( i=0; i<8; i++) {
if( (sdCardFat16RootDir[n].filename[i]>31) && (sdCardFat16RootDir[n].filename[i]<127) )
printf("%c",sdCardFat16RootDir[n].filename[i]);
else
printf(" ");
}
printf(".");
for( i=0; i<3; i++) {
if( (sdCardFat16RootDir[n].ext[i]>31) && (sdCardFat16RootDir[n].ext[i]<127) )
printf("%c",sdCardFat16RootDir[n].ext[i]);
else
printf(" ");
}
printf("] @ Cluster %d for %d bytes\n",sdCardFat16RootDir[n].starting_cluster,sdCardFat16RootDir[n].file_size);
}
}
printf("\n");
return SUCCESS;
}
// SPI_SDCARD_READFILE
// Function exposed to BIOS to retrieve FILENAME+EXT into ADDRESS
//
// FIXME only checks UPPERCASE 8+3 filenames
//
// Return 0 success, 1 failure
//
// Details from https://codeandlife.com/2012/04/02/simple-fat-and-sd-tutorial-part-1/
uint8_t spi_sdcard_readFile(char *filename, char *ext, unsigned long address)
{
int i, n, sector;
uint16_t fileClusterStart;
uint32_t fileLength, bytesRemaining, clusterSectorStart;
uint16_t nameMatch;
printf("Reading File [%s.%s] into 0x%08x : ",filename, ext, address);
// Find FILENAME+EXT in Root Directory
// Indicate FILE found by setting the starting cluster number
fileClusterStart=0; n=0;
while( (fileClusterStart==0) && (n<sdCardFatBootSector.root_dir_entries) ) {
nameMatch=0;
if( sdCardFat16RootDir[n].filename[0]!=0 ) {
nameMatch=1;
for(i=0; i<strlen(filename); i++)
if(sdCardFat16RootDir[n].filename[i]!=filename[i]) nameMatch=0;
for(i=0; i<strlen(ext); i++)
if(sdCardFat16RootDir[n].ext[i]!=ext[i]) nameMatch=0;
}
if(nameMatch==1) {
fileClusterStart=sdCardFat16RootDir[n].starting_cluster;
fileLength=sdCardFat16RootDir[n].file_size;
} else {
n++;
}
}
// If starting cluster number is still 0 then file not found
if(fileClusterStart==0) {
printf("File not found\n");
return FAILURE;
}
printf("File starts at Cluster %d length %d\n",fileClusterStart,fileLength);
// ZERO Length file are automatically assumed to have been read SUCCESS
if( fileLength==0 ) return SUCCESS;
// Read each cluster sector by sector, i being number of clusters
bytesRemaining=fileLength;
// Calculate number of clusters (always >1)
for(i=0; i<1+((fileLength/sdCardFatBootSector.sectors_per_cluster)/sdCardFatBootSector.sector_size); i++) {
printf("\rCluster: %d",fileClusterStart);
// Locate start of cluster on SD CARD and read appropraite number of sectors
clusterSectorStart=rootDirSectorStart+(fileClusterStart-1)*sdCardFatBootSector.sectors_per_cluster;
for(sector=0; sector<sdCardFatBootSector.sectors_per_cluster; sector++) {
// Read Sector from SD CARD
// If whole sector to be read, read directly into memory
// Otherwise, read to sdCardSector buffer and transfer appropriate number of bytes
if(bytesRemaining>sdCardFatBootSector.sector_size) {
if( readSector(clusterSectorStart+sector,(uint8_t *)address) == FAILURE ) {
printf("\nRead Error\n");
return FAILURE;
}
bytesRemaining=bytesRemaining-sdCardFatBootSector.sector_size;
address=address+sdCardFatBootSector.sector_size;
} else {
if( readSector(clusterSectorStart+sector,sdCardSector) == FAILURE ) {
printf("\nRead Error\n");
return FAILURE;
}
memcpy((uint8_t *)address, sdCardSector, bytesRemaining);
bytesRemaining=0;
}
}
// Move to next cluster
fileClusterStart=sdCardFatTable[fileClusterStart];
}
printf("\n\n");
return SUCCESS;
}
#endif /* CSR_SDCORE_BASE */

View file

@ -108,6 +108,10 @@ int sdcard_sddatawriter_wait(void);
int sdcard_sddatareader_wait(void);
int sdcard_test(unsigned int blocks);
/* FAT16 (FIXME: avoid duplication with spisdcard) */
uint8_t spi_sdcard_readMBR(void);
uint8_t spi_sdcard_readFile(char *, char *, unsigned long);
#endif /* CSR_SDCORE_BASE */
#endif /* __SDCARD_H */

View file

@ -459,6 +459,7 @@ uint8_t spi_sdcard_readMBR(void)
divider=2;
printf("Reclocking from %dKHz to %dKHz\n\n", CONFIG_CLOCK_FREQUENCY/(int)spisdcard_clk_divider_read()/1000, CONFIG_CLOCK_FREQUENCY/divider/1000);
spisdcard_clk_divider_write(divider);
#endif
// Read in FAT16 File Allocation Table, array of 16bit unsinged integers
// Calculate Storage from TOP of MAIN RAM
@ -473,7 +474,6 @@ uint8_t spi_sdcard_readMBR(void)
return FAILURE;
}
}
#endif
// Read in FAT16 Root Directory
// Calculate Storage from TOP of MAIN RAM