Remove ASMI

This commit is contained in:
Sebastien Bourdeauducq 2013-07-16 18:50:50 +02:00
parent faa8b7c49a
commit 5b36f688ea
3 changed files with 0 additions and 604 deletions

View File

@ -1,163 +0,0 @@
from migen.fhdl.std import *
from migen.flow.actor import *
from migen.genlib.buffers import ReorderBuffer
class SequentialReader(Module):
def __init__(self, port):
assert(len(port.slots) == 1)
self.address = Sink([("a", port.hub.aw)])
self.data = Source([("d", port.hub.dw)])
self.busy = Signal()
###
sample = Signal()
data_reg_loaded = Signal()
data_reg = Signal(port.hub.dw)
accept_new = Signal()
# We check that len(port.slots) == 1
# and therefore we can assume that port.ack
# goes low until the data phase.
self.comb += [
self.busy.eq(~data_reg_loaded | ~port.ack),
port.adr.eq(self.address.payload.a),
port.we.eq(0),
accept_new.eq(~data_reg_loaded | self.data.ack),
port.stb.eq(self.address.stb & accept_new),
self.address.ack.eq(port.ack & accept_new),
self.data.stb.eq(data_reg_loaded),
self.data.payload.d.eq(data_reg)
]
self.sync += [
If(self.data.ack, data_reg_loaded.eq(0)),
If(sample,
data_reg_loaded.eq(1),
data_reg.eq(port.dat_r)
),
sample.eq(port.get_call_expression())
]
class OOOReader(Module):
def __init__(self, port):
assert(len(port.slots) > 1)
self.address = Sink([("a", port.hub.aw)])
self.data = Source([("d", port.hub.dw)])
self.busy = Signal() # TODO: drive busy
###
tag_width = flen(port.tag_call)
data_width = port.hub.dw
depth = len(port.slots)
rob = ReorderBuffer(tag_width, data_width, depth)
self.submodules += rob
self.comb += [
port.adr.eq(self.address.payload.a),
port.we.eq(0),
port.stb.eq(self.address.stb & rob.can_issue),
self.address.ack.eq(port.ack & rob.can_issue),
rob.issue.eq(self.address.stb & port.ack),
rob.tag_issue.eq(port.base + port.tag_issue),
rob.data_call.eq(port.dat_r),
self.data.stb.eq(rob.can_read),
rob.read.eq(self.data.ack),
self.data.payload.d.eq(rob.data_read)
]
self.sync += [
# Data is announced one cycle in advance.
# Register the call to synchronize it with the data signal.
rob.call.eq(port.call),
rob.tag_call.eq(port.tag_call)
]
class SequentialWriter(Module):
def __init__(self, port):
assert(len(port.slots) == 1)
self.address_data = Sink([("a", port.hub.aw), ("d", port.hub.dw)])
self.busy = Signal()
###
data_reg = Signal(port.hub.dw)
self.comb += [
port.adr.eq(self.address_data.payload.a),
port.we.eq(1),
port.stb.eq(self.address_data.stb),
self.address_data.ack.eq(port.ack),
port.dat_wm.eq(0)
]
self.sync += [
port.dat_w.eq(0),
If(port.get_call_expression(),
self.busy.eq(0),
port.dat_w.eq(data_reg)
),
If(self.address_data.stb & self.address_data.ack,
self.busy.eq(1),
data_reg.eq(self.address_data.payload.d)
)
]
class _WriteSlot(Module):
def __init__(self, port, load_data, n):
self.busy = Signal()
###
drive_data = Signal()
data_reg = Signal(port.hub.dw)
self.comb += [
If(drive_data, port.dat_w.eq(data_reg)),
port.dat_wm.eq(0)
]
self.sync += [
drive_data.eq(0),
If(port.get_call_expression(n),
self.busy.eq(0),
drive_data.eq(1)
),
If(port.stb & port.ack & (port.tag_issue == n),
self.busy.eq(1),
data_reg.eq(load_data)
),
]
class OOOWriter(Module):
def __init__(self, port):
assert(len(port.slots) > 1)
self.address_data = Sink([("a", port.hub.aw), ("d", port.hub.dw)])
self.busy = Signal()
###
self.comb += [
port.adr.eq(self.address_data.payload.a),
port.we.eq(1),
port.stb.eq(self.address_data.stb),
self.address_data.ack.eq(port.ack)
]
busy = 0
for i in range(len(port.slots)):
write_slot = _WriteSlot(port, self.address_data.payload.d, i)
self.submodules += write_slot
busy = busy | write_slot.busy
self.comb += self.busy.eq(busy)
def Reader(port):
if len(port.slots) == 1:
return SequentialReader(port)
else:
return OOOReader(port)
def Writer(port):
if len(port.slots) == 1:
return SequentialWriter(port)
else:
return OOOWriter(port)

View File

@ -1,304 +0,0 @@
from migen.fhdl.std import *
from migen.fhdl.module import FinalizeError
from migen.genlib.misc import optree
from migen.genlib import roundrobin
from migen.bus.transactions import *
from migen.sim.generic import Proxy
(SLOT_EMPTY, SLOT_PENDING, SLOT_PROCESSING) = range(3)
class Slot(Module):
def __init__(self, aw, time):
self.time = time
self.state = Signal(2)
self.we = Signal()
self.adr = Signal(aw)
if self.time:
self.mature = Signal()
self.allocate = Signal()
self.allocate_we = Signal()
self.allocate_adr = Signal(aw)
self.process = Signal()
self.call = Signal()
###
self.sync += [
If(self.allocate,
self.state.eq(SLOT_PENDING),
self.we.eq(self.allocate_we),
self.adr.eq(self.allocate_adr)
),
If(self.process, self.state.eq(SLOT_PROCESSING)),
If(self.call, self.state.eq(SLOT_EMPTY))
]
if self.time:
counter = Signal(max=self.time+1)
self.comb += self.mature.eq(counter == 0)
self.sync += [
If(self.allocate,
counter.eq(self.time)
).Elif(counter != 0,
counter.eq(counter - 1)
)
]
class Port(Module):
def __init__(self, hub, base, nslots):
self.hub = hub
self.base = base
self.submodules.slots = [Slot(self.hub.aw, self.hub.time) for i in range(nslots)]
# request issuance
self.adr = Signal(self.hub.aw)
self.we = Signal()
self.stb = Signal()
# tag_issue is created by finalize()
self.ack = Signal()
# request completion
self.call = Signal()
# tag_call is created by finalize()
self.dat_r = Signal(self.hub.dw)
self.dat_w = Signal(self.hub.dw)
self.dat_wm = Signal(self.hub.dw//8)
def do_finalize(self):
nslots = len(self.slots)
if nslots > 1:
self.tag_issue = Signal(max=nslots)
self.tag_call = Signal(self.hub.tagbits)
# allocate
for s in self.slots:
self.comb += [
s.allocate_we.eq(self.we),
s.allocate_adr.eq(self.adr)
]
choose_slot = None
needs_tags = len(self.slots) > 1
for n, s in reversed(list(enumerate(self.slots))):
choose_slot = If(s.state == SLOT_EMPTY,
s.allocate.eq(self.stb),
self.tag_issue.eq(n) if needs_tags else None
).Else(choose_slot)
self.comb += choose_slot
self.comb += self.ack.eq(optree("|",
[s.state == SLOT_EMPTY for s in self.slots]))
# call
self.comb += [s.call.eq(self.get_call_expression(n))
for n, s in enumerate(self.slots)]
def get_call_expression(self, slotn=0):
if not self.finalized:
raise FinalizeError
return self.call \
& (self.tag_call == (self.base + slotn))
class Hub(Module):
def __init__(self, aw, dw, time=0):
self.aw = aw
self.dw = dw
self.time = time
self.ports = []
self._next_base = 0
self.tagbits = 0
self.call = Signal()
# tag_call is created by do_finalize()
self.dat_r = Signal(self.dw)
self.dat_w = Signal(self.dw)
self.dat_wm = Signal(self.dw//8)
def get_port(self, nslots=1):
if self.finalized:
raise FinalizeError
new_port = Port(self, self._next_base, nslots)
self._next_base += nslots
self.tagbits = bits_for(self._next_base-1)
self.ports.append(new_port)
self.submodules += new_port
return new_port
def do_finalize(self):
self.tag_call = Signal(self.tagbits)
for port in self.ports:
self.comb += [
port.call.eq(self.call),
port.tag_call.eq(self.tag_call),
port.dat_r.eq(self.dat_r)
]
self.comb += [
self.dat_w.eq(optree("|", [port.dat_w for port in self.ports])),
self.dat_wm.eq(optree("|", [port.dat_wm for port in self.ports]))
]
def get_slots(self):
if not self.finalized:
raise FinalizeError
return sum([port.slots for port in self.ports], [])
class Tap(Module):
def __init__(self, hub, handler=print):
self.hub = hub
self.handler = handler
self.tag_to_transaction = dict()
self.transaction = None
def do_simulation(self, s):
hub = Proxy(s, self.hub)
# Pull any data announced in the previous cycle.
if isinstance(self.transaction, TWrite):
self.transaction.data = hub.dat_w
self.transaction.sel = ~hub.dat_wm
self.handler(self.transaction)
self.transaction = None
if isinstance(self.transaction, TRead):
self.transaction.data = hub.dat_r
self.handler(self.transaction)
self.transaction = None
# Tag issue. Transaction objects are created here
# and placed into the tag_to_transaction dictionary.
for tag, slot in enumerate(self.hub.get_slots()):
if s.rd(slot.allocate):
adr = s.rd(slot.allocate_adr)
we = s.rd(slot.allocate_we)
if we:
transaction = TWrite(adr)
else:
transaction = TRead(adr)
transaction.latency = s.cycle_counter
self.tag_to_transaction[tag] = transaction
# Tag call.
if hub.call:
transaction = self.tag_to_transaction[hub.tag_call]
transaction.latency = s.cycle_counter - transaction.latency + 1
self.transaction = transaction
class Initiator(Module):
def __init__(self, generator, port):
self.generator = generator
self.port = port
self.done = False
self._exe = None
def _execute(self, s, generator, port):
while True:
transaction = next(generator)
transaction_start = s.cycle_counter
if transaction is None:
yield
else:
# tag phase
s.wr(port.adr, transaction.address)
if isinstance(transaction, TWrite):
s.wr(port.we, 1)
else:
s.wr(port.we, 0)
s.wr(port.stb, 1)
yield
while not s.rd(port.ack):
yield
if hasattr(port, "tag_issue"):
tag = s.rd(port.tag_issue)
else:
tag = 0
tag += port.base
s.wr(port.stb, 0)
# data phase
while not (s.rd(port.call) and (s.rd(port.tag_call) == tag)):
yield
if isinstance(transaction, TWrite):
s.wr(port.dat_w, transaction.data)
s.wr(port.dat_wm, ~transaction.sel)
yield
s.wr(port.dat_w, 0)
s.wr(port.dat_wm, 0)
else:
yield
transaction.data = s.rd(port.dat_r)
transaction.latency = s.cycle_counter - transaction_start - 1
def do_simulation(self, s):
if not self.done:
if self._exe is None:
self._exe = self._execute(s, self.generator, self.port)
try:
next(self._exe)
except StopIteration:
self.done = True
class TargetModel:
def __init__(self):
self.last_slot = 0
def read(self, address):
return 0
def write(self, address, data, mask):
pass
# Round-robin scheduling.
def select_slot(self, pending_slots):
if not pending_slots:
return -1
self.last_slot += 1
if self.last_slot > max(pending_slots):
self.last_slot = 0
while self.last_slot not in pending_slots:
self.last_slot += 1
return self.last_slot
class Target(Module):
def __init__(self, model, hub):
self.model = model
self.hub = hub
self._calling_tag = -1
self._write_request_d = -1
self._write_request = -1
self._read_request = -1
def do_simulation(self, s):
slots = self.hub.get_slots()
# Data I/O
if self._write_request >= 0:
self.model.write(self._write_request,
s.rd(self.hub.dat_w), s.rd(self.hub.dat_wm))
if self._read_request >= 0:
s.wr(self.hub.dat_r, self.model.read(self._read_request))
# Request pipeline
self._read_request = -1
self._write_request = self._write_request_d
self._write_request_d = -1
# Examine pending slots and possibly choose one.
# Note that we do not use the SLOT_PROCESSING state here.
# Selected slots are immediately called.
pending_slots = set()
for tag, slot in enumerate(slots):
if tag != self._calling_tag and s.rd(slot.state) == SLOT_PENDING:
pending_slots.add(tag)
slot_to_call = self.model.select_slot(pending_slots)
# Call slot.
if slot_to_call >= 0:
slot = slots[slot_to_call]
s.wr(self.hub.call, 1)
s.wr(self.hub.tag_call, slot_to_call)
self._calling_tag = slot_to_call
if s.rd(slot.we):
self._write_request_d = s.rd(slot.adr)
else:
self._read_request = s.rd(slot.adr)
else:
s.wr(self.hub.call, 0)
self._calling_tag = -1

View File

@ -1,137 +0,0 @@
from migen.fhdl.std import *
from migen.bus import wishbone
from migen.genlib.fsm import FSM, NextState
from migen.genlib.misc import split, displacer, chooser
from migen.genlib.record import Record, layout_len
# cachesize (in 32-bit words) is the size of the data store, must be a power of 2
class WB2ASMI:
def __init__(self, cachesize, asmiport):
self.wishbone = wishbone.Interface()
self.cachesize = cachesize
self.asmiport = asmiport
if len(self.asmiport.slots) != 1:
raise ValueError("ASMI port must have 1 slot")
if self.asmiport.hub.dw <= 32:
raise ValueError("ASMI data width must be strictly larger than 32")
if (self.asmiport.hub.dw % 32) != 0:
raise ValueError("ASMI data width must be a multiple of 32")
def get_fragment(self):
comb = []
sync = []
aaw = self.asmiport.hub.aw
adw = self.asmiport.hub.dw
# Split address:
# TAG | LINE NUMBER | LINE OFFSET
offsetbits = log2_int(adw//32)
addressbits = aaw + offsetbits
linebits = log2_int(self.cachesize) - offsetbits
tagbits = addressbits - linebits
adr_offset, adr_line, adr_tag = split(self.wishbone.adr, offsetbits, linebits, tagbits)
# Data memory
data_mem = Memory(adw, 2**linebits)
data_port = data_mem.get_port(write_capable=True, we_granularity=8)
write_from_asmi = Signal()
write_to_asmi = Signal()
adr_offset_r = Signal(offsetbits)
comb += [
data_port.adr.eq(adr_line),
If(write_from_asmi,
data_port.dat_w.eq(self.asmiport.dat_r),
data_port.we.eq(Replicate(1, adw//8))
).Else(
data_port.dat_w.eq(Replicate(self.wishbone.dat_w, adw//32)),
If(self.wishbone.cyc & self.wishbone.stb & self.wishbone.we & self.wishbone.ack,
displacer(self.wishbone.sel, adr_offset, data_port.we, 2**offsetbits, reverse=True)
)
),
If(write_to_asmi, self.asmiport.dat_w.eq(data_port.dat_r)),
self.asmiport.dat_wm.eq(0),
chooser(data_port.dat_r, adr_offset_r, self.wishbone.dat_r, reverse=True)
]
sync += [
adr_offset_r.eq(adr_offset)
]
# Tag memory
tag_layout = [("tag", tagbits), ("dirty", 1)]
tag_mem = Memory(layout_len(tag_layout), 2**linebits)
tag_port = tag_mem.get_port(write_capable=True)
tag_do = Record(tag_layout)
tag_di = Record(tag_layout)
comb += [
tag_do.raw_bits().eq(tag_port.dat_r),
tag_port.dat_w.eq(tag_di.raw_bits())
]
comb += [
tag_port.adr.eq(adr_line),
tag_di.tag.eq(adr_tag),
self.asmiport.adr.eq(Cat(adr_line, tag_do.tag))
]
# Control FSM
write_to_asmi_pre = Signal()
sync.append(write_to_asmi.eq(write_to_asmi_pre))
fsm = FSM()
fsm.act("IDLE",
If(self.wishbone.cyc & self.wishbone.stb, NextState("TEST_HIT"))
)
fsm.act("TEST_HIT",
If(tag_do.tag == adr_tag,
self.wishbone.ack.eq(1),
If(self.wishbone.we,
tag_di.dirty.eq(1),
tag_port.we.eq(1)
),
NextState("IDLE")
).Else(
If(tag_do.dirty,
NextState("EVICT_ISSUE")
).Else(
NextState("REFILL_WRTAG")
)
)
)
fsm.act("EVICT_ISSUE",
self.asmiport.stb.eq(1),
self.asmiport.we.eq(1),
If(self.asmiport.ack, NextState("EVICT_WAIT"))
)
fsm.act("EVICT_WAIT",
# Data is actually sampled by the memory controller in the next state.
# But since the data memory has one cycle latency, it gets the data
# at the address given during this cycle.
If(self.asmiport.get_call_expression(),
write_to_asmi_pre.eq(1),
NextState("REFILL_WRTAG")
)
)
fsm.act("REFILL_WRTAG",
# Write the tag first to set the ASMI address
tag_port.we.eq(1),
NextState("REFILL_ISSUE")
)
fsm.act("REFILL_ISSUE",
self.asmiport.stb.eq(1),
If(self.asmiport.ack, NextState("REFILL_WAIT"))
)
fsm.act("REFILL_WAIT",
If(self.asmiport.get_call_expression(), NextState("REFILL_COMPLETE"))
)
fsm.act("REFILL_COMPLETE",
write_from_asmi.eq(1),
NextState("TEST_HIT")
)
return Fragment(comb, sync, specials={data_mem, tag_mem, data_port, tag_port}) \
+ fsm.get_fragment()