Merge pull request #77 from xobs/debug-vexriscv-enjoy

Enable support for vexriscv debugging
This commit is contained in:
enjoy-digital 2018-07-05 16:46:24 +02:00 committed by GitHub
commit 6068f6ce9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 172 additions and 11 deletions

View File

@ -3,18 +3,176 @@ import os
from migen import * from migen import *
from litex.soc.interconnect import wishbone from litex.soc.interconnect import wishbone
from litex.soc.interconnect.csr import AutoCSR, CSRStatus, CSRStorage
class VexRiscv(Module): class VexRiscv(Module, AutoCSR):
def __init__(self, platform, cpu_reset_address): def __init__(self, platform, cpu_reset_address, cpu_debugging=False):
self.ibus = i = wishbone.Interface() self.ibus = i = wishbone.Interface()
self.dbus = d = wishbone.Interface() self.dbus = d = wishbone.Interface()
self.interrupt = Signal(32) self.interrupt = Signal(32)
# Output reset signal -- set to 1 when CPU reset is asserted
self.debug_reset = Signal()
i_debug_bus_cmd_payload_wr = Signal()
i_debug_bus_cmd_payload_address = Signal(8)
i_debug_bus_cmd_payload_data = Signal(32)
o_debug_bus_cmd_ready = Signal()
o_debug_bus_rsp_data = Signal(32)
debug_start_cmd = Signal()
# If debugging is requested, create a bus that contains four registers:
# DEBUG_CORE: The contents of the debug core register
# DEBUG_DATA: Write an instruction into the pipeline, or read the result.
# DEBUG_REFRESH: Write 0x00 or 0x04 here to update either CORE or DATA
# DEBUG_COUNT: An incrementing value that can be used to detect packet loss.
# Updated on a successful WRITE to CORE, DATA, or REFRESH.
if cpu_debugging:
debug_update_pending = Signal()
debug_write_pending = Signal()
self.debug_core_reg = CSRStorage(
32, name="debug_core", write_from_dev=True)
self.debug_data_reg = CSRStorage(
32, name="debug_data", write_from_dev=True)
self.debug_refresh_reg = CSRStorage(8, name="debug_refresh")
self.debug_packet_counter = CSRStatus(
32, name="debug_counter")
# OR the global reset together with the result of debug_resetOut.
debug_resetOut = Signal()
debug_resetCounter = Signal(16)
i_reset = Signal()
# A bit to indicate whether we're REFRESHing the CORE or DATA register
refreshing_data = Signal()
self.sync += [
# If the core asserts resetOut, set debug_reset for 65535 cycles.
If(debug_resetOut, debug_resetCounter.eq(
0), self.debug_reset.eq(1))
.Elif(debug_resetCounter < 65534, debug_resetCounter.eq(debug_resetCounter + 1))
.Else(self.debug_reset.eq(0)),
# Reset the CPU if debug_reset is asserted and none of the
# Wishbone buses are in use
i_reset.eq((~i.cyc & ~d.cyc & ~d.stb & ~i.stb &
self.debug_reset) | ResetSignal()),
# If there's a Wishbone write on the CORE register, write to
# debug register address 0.
If(self.debug_core_reg.re,
i_debug_bus_cmd_payload_address.eq(0x00),
i_debug_bus_cmd_payload_data.eq(self.debug_core_reg.storage),
i_debug_bus_cmd_payload_wr.eq(1),
debug_start_cmd.eq(1),
debug_write_pending.eq(1),
self.debug_core_reg.we.eq(0),
self.debug_data_reg.we.eq(0)
# Or, if there's a write to the DATA register, write to
# debug register address 4.
).Elif(self.debug_data_reg.re,
i_debug_bus_cmd_payload_address.eq(0x04),
i_debug_bus_cmd_payload_data.eq(self.debug_data_reg.storage),
i_debug_bus_cmd_payload_wr.eq(1),
debug_start_cmd.eq(1),
debug_write_pending.eq(1),
self.debug_core_reg.we.eq(0),
self.debug_data_reg.we.eq(0)
# A write to the REFRESH register indicates which register
# (DATA or CORE) we want to update from the CPU.
).Elif(self.debug_refresh_reg.re,
If(self.debug_refresh_reg.storage == 0,
refreshing_data.eq(0),
i_debug_bus_cmd_payload_address.eq(0)
).Else(
refreshing_data.eq(1),
i_debug_bus_cmd_payload_address.eq(4)
),
# Data can be anything, since it's a "read"
i_debug_bus_cmd_payload_data.eq(0),
# Start a "Read" command with the "Write" bit set to 0
i_debug_bus_cmd_payload_wr.eq(0),
debug_start_cmd.eq(1),
# The data will be ready when o_debug_bus_cmd_ready == 1,
# so set the pending bit to look for it on future cycles.
debug_update_pending.eq(1),
self.debug_core_reg.we.eq(0),
self.debug_data_reg.we.eq(0)
# If the pending bit is set, check to see if the cmd_ready
# bit from the debug bus is 1, indicating the CPU has finished
# its operation and is in the idle state.
).Elif(debug_update_pending == 1,
If(o_debug_bus_cmd_ready == 1,
i_debug_bus_cmd_payload_wr.eq(0),
debug_update_pending.eq(0),
debug_write_pending.eq(0),
debug_start_cmd.eq(0),
self.debug_packet_counter.status.eq(
self.debug_packet_counter.status + 1),
# Depending on whether we were asked to update the CORE
# or DATA register, copy the response data to the correct CSR.
If(refreshing_data == 0,
self.debug_core_reg.dat_w.eq(o_debug_bus_rsp_data),
self.debug_core_reg.we.eq(1),
self.debug_data_reg.we.eq(0)
).Else(
self.debug_data_reg.dat_w.eq(o_debug_bus_rsp_data),
self.debug_core_reg.we.eq(0),
self.debug_data_reg.we.eq(1)
)
)
# If there's a pending write to CORE or DATA, increment the
# packet counter once the operation has finished.
).Elif(debug_write_pending == 1,
If(o_debug_bus_cmd_ready == 1,
# When o_debug_bus_cmd_ready goes 1,
self.debug_packet_counter.status.eq(
self.debug_packet_counter.status + 1),
debug_update_pending.eq(0),
debug_write_pending.eq(0),
debug_start_cmd.eq(0),
self.debug_data_reg.we.eq(0),
self.debug_core_reg.we.eq(0)
)
# Otherwise, ensure the Write Enable bits on the registers
# are 0, so we're not constantly loading floating values.
).Else(
self.debug_core_reg.we.eq(0),
self.debug_data_reg.we.eq(0)
)
]
kwargs = {
'i_debugReset': ResetSignal(),
'i_debug_bus_cmd_valid': debug_start_cmd,
'i_debug_bus_cmd_payload_wr': i_debug_bus_cmd_payload_wr,
'i_debug_bus_cmd_payload_address': i_debug_bus_cmd_payload_address,
'i_debug_bus_cmd_payload_data': i_debug_bus_cmd_payload_data,
'o_debug_bus_cmd_ready': o_debug_bus_cmd_ready,
'o_debug_bus_rsp_data': o_debug_bus_rsp_data,
'o_debug_resetOut': debug_resetOut
}
source_file = "VexRiscv-Debug.v"
else:
kwargs = {}
source_file = "VexRiscv.v"
# Ordinarily this is a reset signal. However, in debug mode,
# this is ORed with the output of debug_resetOut as well.
i_reset = ResetSignal()
self.comb += self.debug_reset.eq(0)
self.specials += Instance("VexRiscv", self.specials += Instance("VexRiscv",
i_clk=ClockSignal(), i_clk=ClockSignal(),
i_reset=ResetSignal(), i_reset=i_reset,
i_externalResetVector=cpu_reset_address, i_externalResetVector=cpu_reset_address,
i_externalInterruptArray=self.interrupt, i_externalInterruptArray=self.interrupt,
@ -42,13 +200,14 @@ class VexRiscv(Module):
o_dBusWishbone_BTE=d.bte, o_dBusWishbone_BTE=d.bte,
i_dBusWishbone_DAT_MISO=d.dat_r, i_dBusWishbone_DAT_MISO=d.dat_r,
i_dBusWishbone_ACK=d.ack, i_dBusWishbone_ACK=d.ack,
i_dBusWishbone_ERR=d.err) i_dBusWishbone_ERR=d.err,
**kwargs)
# add verilog sources # add verilog sources
self.add_sources(platform) self.add_sources(platform, source_file)
@staticmethod @staticmethod
def add_sources(platform): def add_sources(platform, source_file):
vdir = os.path.join(os.path.abspath(os.path.dirname(__file__)), "verilog") vdir = os.path.join(os.path.abspath(os.path.dirname(__file__)), "verilog")
platform.add_sources(os.path.join(vdir), "VexRiscv.v") platform.add_sources(os.path.join(vdir), source_file)
platform.add_verilog_include_path(vdir) platform.add_verilog_include_path(vdir)

@ -1 +1 @@
Subproject commit 4811a12127eef5dfaaa8df47a59e58a1e561b0eb Subproject commit 395c5ee2868ffbe36db290a4a4ec0eabc0f5c2b5

View File

@ -61,7 +61,7 @@ class SoCCore(Module):
"csr": 0x60000000, # (default shadow @0xe0000000) "csr": 0x60000000, # (default shadow @0xe0000000)
} }
def __init__(self, platform, clk_freq, def __init__(self, platform, clk_freq,
cpu_type="lm32", cpu_reset_address=0x00000000, cpu_variant=None, cpu_type="lm32", cpu_reset_address=0x00000000, cpu_variant=None, cpu_debugging=False,
integrated_rom_size=0, integrated_rom_init=[], integrated_rom_size=0, integrated_rom_init=[],
integrated_sram_size=4096, integrated_sram_size=4096,
integrated_main_ram_size=0, integrated_main_ram_init=[], integrated_main_ram_size=0, integrated_main_ram_init=[],
@ -81,6 +81,7 @@ class SoCCore(Module):
if integrated_rom_size: if integrated_rom_size:
cpu_reset_address = self.mem_map["rom"] cpu_reset_address = self.mem_map["rom"]
self.cpu_reset_address = cpu_reset_address self.cpu_reset_address = cpu_reset_address
self.cpu_debugging = cpu_debugging
self.config["CPU_RESET_ADDR"] = self.cpu_reset_address self.config["CPU_RESET_ADDR"] = self.cpu_reset_address
self.integrated_rom_size = integrated_rom_size self.integrated_rom_size = integrated_rom_size
@ -111,7 +112,7 @@ class SoCCore(Module):
elif cpu_type == "picorv32": elif cpu_type == "picorv32":
self.add_cpu_or_bridge(picorv32.PicoRV32(platform, self.cpu_reset_address, self.cpu_variant)) self.add_cpu_or_bridge(picorv32.PicoRV32(platform, self.cpu_reset_address, self.cpu_variant))
elif cpu_type == "vexriscv": elif cpu_type == "vexriscv":
self.add_cpu_or_bridge(vexriscv.VexRiscv(platform, self.cpu_reset_address)) self.add_cpu_or_bridge(vexriscv.VexRiscv(platform, self.cpu_reset_address, cpu_debugging=self.cpu_debugging))
else: else:
raise ValueError("Unsupported CPU type: {}".format(cpu_type)) raise ValueError("Unsupported CPU type: {}".format(cpu_type))
self.add_wb_master(self.cpu_or_bridge.ibus) self.add_wb_master(self.cpu_or_bridge.ibus)
@ -147,7 +148,8 @@ class SoCCore(Module):
self.submodules.uart = uart.UARTStub() self.submodules.uart = uart.UARTStub()
else: else:
self.submodules.uart_phy = uart.RS232PHY(platform.request(uart_name), clk_freq, uart_baudrate) self.submodules.uart_phy = uart.RS232PHY(platform.request(uart_name), clk_freq, uart_baudrate)
self.submodules.uart = uart.UART(self.uart_phy) self.submodules.uart = ResetInserter()(uart.UART(self.uart_phy))
#else: #else:
# del self.soc_interrupt_map["uart"] # del self.soc_interrupt_map["uart"]