mirror of
https://github.com/enjoy-digital/litex.git
synced 2025-01-04 09:52:26 -05:00
software/libbase: use compiler-rt
This commit is contained in:
parent
e115eb08fb
commit
8e03ea26d6
9 changed files with 5 additions and 3717 deletions
|
@ -18,7 +18,10 @@ bios.elf: linker.ld $(OBJECTS) libs
|
|||
bios-rescue.elf: linker-rescue.ld $(OBJECTS) libs
|
||||
|
||||
%.elf:
|
||||
$(LD) $(LDFLAGS) -T $< -N -o $@ $(OBJECTS) -L$(M2DIR)/software/libbase -lbase
|
||||
$(LD) $(LDFLAGS) -T $< -N -o $@ $(OBJECTS) \
|
||||
-L$(M2DIR)/software/libbase \
|
||||
-L$(CRTDIR) \
|
||||
-lbase -lcompiler_rt
|
||||
chmod -x $@
|
||||
|
||||
libs:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
M2DIR=../..
|
||||
include $(M2DIR)/software/common.mak
|
||||
|
||||
OBJECTS=divsi3.o setjmp.o libc.o crc16.o crc32.o console.o timer.o system.o board.o uart.o softfloat.o softfloat-glue.o vsnprintf.o strtod.o
|
||||
OBJECTS=setjmp.o libc.o crc16.o crc32.o console.o timer.o system.o board.o uart.o vsnprintf.o strtod.o
|
||||
|
||||
all: libbase.a
|
||||
|
||||
|
|
|
@ -1,55 +0,0 @@
|
|||
#define divnorm(num, den, sign) \
|
||||
{ \
|
||||
if(num < 0) \
|
||||
{ \
|
||||
num = -num; \
|
||||
sign = 1; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
sign = 0; \
|
||||
} \
|
||||
\
|
||||
if(den < 0) \
|
||||
{ \
|
||||
den = - den; \
|
||||
sign = 1 - sign; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define exitdiv(sign, res) if (sign) { res = - res;} return res;
|
||||
|
||||
long __divsi3 (long numerator, long denominator);
|
||||
long __divsi3 (long numerator, long denominator)
|
||||
{
|
||||
int sign;
|
||||
long dividend;
|
||||
|
||||
divnorm(numerator, denominator, sign);
|
||||
|
||||
dividend = (unsigned int)numerator/(unsigned int)denominator;
|
||||
exitdiv(sign, dividend);
|
||||
}
|
||||
|
||||
long __modsi3 (long numerator, long denominator);
|
||||
long __modsi3 (long numerator, long denominator)
|
||||
{
|
||||
int sign;
|
||||
long res;
|
||||
|
||||
if(numerator < 0) {
|
||||
numerator = -numerator;
|
||||
sign = 1;
|
||||
} else
|
||||
sign = 0;
|
||||
|
||||
if(denominator < 0)
|
||||
denominator = -denominator;
|
||||
|
||||
res = (unsigned int)numerator % (unsigned int)denominator;
|
||||
|
||||
if(sign)
|
||||
return -res;
|
||||
else
|
||||
return res;
|
||||
}
|
|
@ -1,112 +0,0 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Include common integer types and flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define BIGENDIAN
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
| supported by the compiler.
|
||||
*----------------------------------------------------------------------------*/
|
||||
//#define BITS64
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines the most convenient type that holds
|
||||
| integers of at least as many bits as specified. For example, `uint8' should
|
||||
| be the most convenient type that can hold unsigned integers of as many as
|
||||
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
| to the same as `int'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef int flag;
|
||||
typedef int uint8;
|
||||
typedef int int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int uint64;
|
||||
typedef signed long long int int64;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines a type that holds integers
|
||||
| of _exactly_ the number of bits specified. For instance, for most
|
||||
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
| `unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef unsigned char bits8;
|
||||
typedef signed char sbits8;
|
||||
typedef unsigned short int bits16;
|
||||
typedef signed short int sbits16;
|
||||
typedef unsigned int bits32;
|
||||
typedef signed int sbits32;
|
||||
#ifdef BITS64
|
||||
typedef unsigned long long int bits64;
|
||||
typedef signed long long int sbits64;
|
||||
#endif
|
||||
|
||||
#ifdef BITS64
|
||||
/*----------------------------------------------------------------------------
|
||||
| The `LIT64' macro takes as its argument a textual integer literal and
|
||||
| if necessary ``marks'' the literal as having a 64-bit integer type.
|
||||
| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
|
||||
| appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
| defined as the identity macro: `#define LIT64( a ) a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define LIT64( a ) a##LL
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `INLINE' can be used before functions that should be inlined. If
|
||||
| a compiler does not support explicit inlining, this macro should be defined
|
||||
| to be `static'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define INLINE extern inline
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Symbolic Boolean literals.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
FALSE = 0,
|
||||
TRUE = 1
|
||||
};
|
||||
|
|
@ -1,274 +0,0 @@
|
|||
/* $NetBSD: fplib_glue.c,v 1.2 2000/02/22 01:18:28 mycroft Exp $ */
|
||||
|
||||
/*-
|
||||
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This code is derived from software contributed to The NetBSD Foundation
|
||||
* by Neil A. Carson and Mark Brinicombe
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the NetBSD
|
||||
* Foundation, Inc. and its contributors.
|
||||
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "milieu.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
int __eqsf2(float32 a,float32 b);
|
||||
int __eqdf2(float64 a,float64 b);
|
||||
int __nesf2(float32 a,float32 b);
|
||||
int __nedf2(float64 a,float64 b);
|
||||
int __gtsf2(float32 a,float32 b);
|
||||
int __gtdf2(float64 a,float64 b);
|
||||
int __gesf2(float32 a,float32 b);
|
||||
int __gedf2(float64 a,float64 b);
|
||||
int __ltsf2(float32 a,float32 b);
|
||||
int __ltdf2(float64 a,float64 b);
|
||||
int __lesf2(float32 a,float32 b);
|
||||
int __ledf2(float64 a,float64 b);
|
||||
float32 __negsf2(float32 a);
|
||||
float64 __negdf2(float64 a);
|
||||
|
||||
/********************************* COMPARISONS ********************************/
|
||||
|
||||
/*
|
||||
* 'Equal' wrapper. This returns 0 if the numbers are equal, or (1 | -1)
|
||||
* otherwise. So we need to invert the output.
|
||||
*/
|
||||
|
||||
int __eqsf2(float32 a,float32 b) {
|
||||
return float32_eq(a,b)?0:1;
|
||||
}
|
||||
|
||||
int __eqdf2(float64 a,float64 b) {
|
||||
return float64_eq(a,b)?0:1;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'Not Equal' wrapper. This returns -1 or 1 (say, 1!) if the numbers are
|
||||
* not equal, 0 otherwise. However no not equal call is provided, so we have
|
||||
* to use an 'equal' call and invert the result. The result is already
|
||||
* inverted though! Confusing?!
|
||||
*/
|
||||
int __nesf2(float32 a,float32 b) {
|
||||
return float32_eq(a,b)?0:-1;
|
||||
}
|
||||
|
||||
int __nedf2(float64 a,float64 b) {
|
||||
return float64_eq(a,b)?0:-1;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'Greater Than' wrapper. This returns 1 if the number is greater, 0
|
||||
* or -1 otherwise. Unfortunately, no such function exists. We have to
|
||||
* instead compare the numbers using the 'less than' calls in order to
|
||||
* make up our mind. This means that we can call 'less than or equal' and
|
||||
* invert the result.
|
||||
*/
|
||||
int __gtsf2(float32 a,float32 b) {
|
||||
return float32_le(a,b)?0:1;
|
||||
}
|
||||
|
||||
int __gtdf2(float64 a,float64 b) {
|
||||
return float64_le(a,b)?0:1;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'Greater Than or Equal' wrapper. We emulate this by inverting the result
|
||||
* of a 'less than' call.
|
||||
*/
|
||||
int __gesf2(float32 a,float32 b) {
|
||||
return float32_lt(a,b)?-1:0;
|
||||
}
|
||||
|
||||
int __gedf2(float64 a,float64 b) {
|
||||
return float64_lt(a,b)?-1:0;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'Less Than' wrapper. A 1 from the ARM code needs to be turned into -1.
|
||||
*/
|
||||
int __ltsf2(float32 a,float32 b) {
|
||||
return float32_lt(a,b)?-1:0;
|
||||
}
|
||||
|
||||
int __ltdf2(float64 a,float64 b) {
|
||||
return float64_lt(a,b)?-1:0;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'Less Than or Equal' wrapper. A 0 must turn into a 1, and a 1 into a 0.
|
||||
*/
|
||||
int __lesf2(float32 a,float32 b) {
|
||||
return float32_le(a,b)?0:1;
|
||||
}
|
||||
|
||||
int __ledf2(float64 a,float64 b) {
|
||||
return float64_le(a,b)?0:1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Float negate... This isn't provided by the library, but it's hardly the
|
||||
* hardest function in the world to write... :) In fact, because of the
|
||||
* position in the registers of arguments, the double precision version can
|
||||
* go here too ;-)
|
||||
*/
|
||||
float32 __negsf2(float32 a) {
|
||||
return (a ^ 0x80000000);
|
||||
}
|
||||
|
||||
float64 __negdf2(float64 a) {
|
||||
a.high ^= 0x80000000;
|
||||
return a;
|
||||
}
|
||||
|
||||
/*
|
||||
* 32-bit operations. This is not BSD code.
|
||||
*/
|
||||
float32 __addsf3(float32 a, float32 b);
|
||||
float32 __addsf3(float32 a, float32 b)
|
||||
{
|
||||
return float32_add(a, b);
|
||||
}
|
||||
|
||||
float32 __subsf3(float32 a, float32 b);
|
||||
float32 __subsf3(float32 a, float32 b)
|
||||
{
|
||||
return float32_sub(a, b);
|
||||
}
|
||||
|
||||
float32 __mulsf3(float32 a, float32 b);
|
||||
float32 __mulsf3(float32 a, float32 b)
|
||||
{
|
||||
return float32_mul(a, b);
|
||||
}
|
||||
|
||||
float32 __divsf3(float32 a, float32 b);
|
||||
float32 __divsf3(float32 a, float32 b)
|
||||
{
|
||||
return float32_div(a, b);
|
||||
}
|
||||
|
||||
float32 __floatsisf(int32 x);
|
||||
float32 __floatsisf(int32 x)
|
||||
{
|
||||
return int32_to_float32(x);
|
||||
}
|
||||
|
||||
float32 __floatunsisf(int32 x);
|
||||
float32 __floatunsisf(int32 x)
|
||||
{
|
||||
return int32_to_float32(x); // XXX
|
||||
}
|
||||
|
||||
int32 __fixsfsi(float32 x);
|
||||
int32 __fixsfsi(float32 x)
|
||||
{
|
||||
return float32_to_int32_round_to_zero(x);
|
||||
}
|
||||
|
||||
uint32 __fixunssfsi(float32 x);
|
||||
uint32 __fixunssfsi(float32 x)
|
||||
{
|
||||
return float32_to_int32_round_to_zero(x); // XXX
|
||||
}
|
||||
|
||||
flag __unordsf2(float32 a, float32 b);
|
||||
flag __unordsf2(float32 a, float32 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return 1 ^ (float32_eq(a, a) & float32_eq(b, b));
|
||||
}
|
||||
|
||||
/*
|
||||
* 64-bit operations. This is not BSD code.
|
||||
*/
|
||||
float64 __adddf3(float64 a, float64 b);
|
||||
float64 __adddf3(float64 a, float64 b)
|
||||
{
|
||||
return float64_add(a, b);
|
||||
}
|
||||
|
||||
float64 __subdf3(float64 a, float64 b);
|
||||
float64 __subdf3(float64 a, float64 b)
|
||||
{
|
||||
return float64_sub(a, b);
|
||||
}
|
||||
|
||||
float64 __muldf3(float64 a, float64 b);
|
||||
float64 __muldf3(float64 a, float64 b)
|
||||
{
|
||||
return float64_mul(a, b);
|
||||
}
|
||||
|
||||
float64 __divdf3(float64 a, float64 b);
|
||||
float64 __divdf3(float64 a, float64 b)
|
||||
{
|
||||
return float64_div(a, b);
|
||||
}
|
||||
|
||||
float64 __floatsidf(int32 x);
|
||||
float64 __floatsidf(int32 x)
|
||||
{
|
||||
return int32_to_float64(x);
|
||||
}
|
||||
|
||||
float64 __floatunsidf(int32 x);
|
||||
float64 __floatunsidf(int32 x)
|
||||
{
|
||||
return int32_to_float64(x); // XXX
|
||||
}
|
||||
|
||||
int32 __fixdfsi(float64 x);
|
||||
int32 __fixdfsi(float64 x)
|
||||
{
|
||||
return float64_to_int32_round_to_zero(x);
|
||||
}
|
||||
|
||||
uint32 __fixunsdfsi(float64 x);
|
||||
uint32 __fixunsdfsi(float64 x)
|
||||
{
|
||||
return float64_to_int32_round_to_zero(x); // XXX
|
||||
}
|
||||
|
||||
flag __unorddf2(float64 a, float64 b);
|
||||
flag __unorddf2(float64 a, float64 b)
|
||||
{
|
||||
/*
|
||||
* The comparison is unordered if either input is a NaN.
|
||||
* Test for this by comparing each operand with itself.
|
||||
* We must perform both comparisons to correctly check for
|
||||
* signalling NaNs.
|
||||
*/
|
||||
return 1 ^ (float64_eq(a, a) & float64_eq(b, b));
|
||||
}
|
|
@ -1,627 +0,0 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
| than 64, the result will be 0. The result is broken into two 32-bit pieces
|
||||
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift64Right(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
| are ``jammed'' into the least significant bit of the result by setting the
|
||||
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
| in particular, if `count' is greater than 64, the result will be either 0
|
||||
| or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
| nonzero. The result is broken into two 32-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift64RightJamming(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z0, z1;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
| by 32 _plus_ the number of bits given in `count'. The shifted result is
|
||||
| at most 64 nonzero bits; these are broken into two 32-bit pieces which are
|
||||
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
| off form a third 32-bit result as follows: The _last_ bit shifted off is
|
||||
| the most-significant bit of the extra result, and the other 31 bits of the
|
||||
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
| were all zero. This extra result is stored in the location pointed to by
|
||||
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
| fixed-point value is shifted right by the number of bits given in `count',
|
||||
| and the integer part of the result is returned at the locations pointed to
|
||||
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
| corrupted as described above, and is returned at the location pointed to by
|
||||
| `z2Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 31;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 32 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 32 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 64 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 31 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' must be less than 32. The result is broken into two 32-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift64Left(
|
||||
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
| by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
| The value of `count' must be less than 32. The result is broken into three
|
||||
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift96Left(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
int16 count,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 31 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
|
||||
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
|
||||
| any carry out is lost. The result is broken into two 32-bit pieces which
|
||||
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits32 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
| 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
| modulo 2^96, so any carry out is lost. The result is broken into three
|
||||
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
|
||||
| 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
| 2^64, so any borrow out (carry out) is lost. The result is broken into two
|
||||
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
| `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub64(
|
||||
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
|
||||
| the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
|
||||
| is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
|
||||
| into three 32-bit pieces which are stored at the locations pointed to by
|
||||
| `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 a2,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 b2,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
|
||||
| into two 32-bit pieces which are stored at the locations pointed to by
|
||||
| `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
|
||||
{
|
||||
bits16 aHigh, aLow, bHigh, bLow;
|
||||
bits32 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>16;
|
||||
bLow = b;
|
||||
bHigh = b>>16;
|
||||
z1 = ( (bits32) aLow ) * bLow;
|
||||
zMiddleA = ( (bits32) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits32) aHigh ) * bLow;
|
||||
z0 = ( (bits32) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
|
||||
zMiddleA <<= 16;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
|
||||
| to obtain a 96-bit product. The product is broken into three 32-bit pieces
|
||||
| which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
| `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul64By32To96(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, more1;
|
||||
|
||||
mul32To64( a1, b, &z1, &z2 );
|
||||
mul32To64( a0, b, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
|
||||
| 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
|
||||
| product. The product is broken into four 32-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul64To128(
|
||||
bits32 a0,
|
||||
bits32 a1,
|
||||
bits32 b0,
|
||||
bits32 b1,
|
||||
bits32 *z0Ptr,
|
||||
bits32 *z1Ptr,
|
||||
bits32 *z2Ptr,
|
||||
bits32 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits32 z0, z1, z2, z3;
|
||||
bits32 more1, more2;
|
||||
|
||||
mul32To64( a1, b1, &z2, &z3 );
|
||||
mul32To64( a1, b0, &z1, &more2 );
|
||||
add64( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul32To64( a0, b0, &z0, &more1 );
|
||||
add64( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul32To64( a0, b1, &more1, &more2 );
|
||||
add64( more1, more2, 0, z2, &more1, &z2 );
|
||||
add64( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the 32-bit integer quotient obtained by dividing
|
||||
| `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
|
||||
| divisor `b' must be at least 2^31. If q is the exact quotient truncated
|
||||
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
| If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
|
||||
| unsigned integer is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
|
||||
{
|
||||
bits32 b0, b1;
|
||||
bits32 rem0, rem1, term0, term1;
|
||||
bits32 z;
|
||||
|
||||
if ( b <= a0 ) return 0xFFFFFFFF;
|
||||
b0 = b>>16;
|
||||
z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
|
||||
mul32To64( b, z, &term0, &term1 );
|
||||
sub64( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits32) rem0 ) < 0 ) {
|
||||
z -= 0x10000;
|
||||
b1 = b<<16;
|
||||
add64( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<16 ) | ( rem1>>16 );
|
||||
z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the square root of the 32-bit significand given
|
||||
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
| case, the approximation returned lies strictly within +/-2 of the exact
|
||||
| value.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 32 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
|
||||
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
|
||||
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
|
@ -1,242 +0,0 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap
|
||||
| to substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits32 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
float32_default_nan = 0xFFFFFFFF
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = a<<9;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
float64_default_nan_high = 0xFFFFFFFF,
|
||||
float64_default_nan_low = 0xFFFFFFFF
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( 0xFFE00000 <= (bits32) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & 0x000FFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a.low || ( a.high & 0x0007FFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>31;
|
||||
shortShift64Left( a.high, a.low, 12, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
float64 z;
|
||||
|
||||
shift64Right( a.high, a.low, 12, &z.high, &z.low );
|
||||
z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a.high |= 0x00080000;
|
||||
b.high |= 0x00080000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load diff
|
@ -1,136 +0,0 @@
|
|||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef bits32 float32;
|
||||
typedef struct {
|
||||
bits32 high, low;
|
||||
} float64;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_down = 2,
|
||||
float_round_up = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_exception_flags;
|
||||
enum {
|
||||
float_flag_inexact = 1,
|
||||
float_flag_underflow = 2,
|
||||
float_flag_overflow = 4,
|
||||
float_flag_divbyzero = 8,
|
||||
float_flag_invalid = 16
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( int8 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int32 );
|
||||
float64 int32_to_float64( int32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 float32_to_int32( float32 );
|
||||
int32 float32_to_int32_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
flag float32_eq( float32, float32 );
|
||||
flag float32_le( float32, float32 );
|
||||
flag float32_lt( float32, float32 );
|
||||
flag float32_eq_signaling( float32, float32 );
|
||||
flag float32_le_quiet( float32, float32 );
|
||||
flag float32_lt_quiet( float32, float32 );
|
||||
flag float32_is_nan( float32 );
|
||||
flag float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 float64_to_int32( float64 );
|
||||
int32 float64_to_int32_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
flag float64_eq( float64, float64 );
|
||||
flag float64_le( float64, float64 );
|
||||
flag float64_lt( float64, float64 );
|
||||
flag float64_eq_signaling( float64, float64 );
|
||||
flag float64_le_quiet( float64, float64 );
|
||||
flag float64_lt_quiet( float64, float64 );
|
||||
flag float64_is_nan( float64 );
|
||||
flag float64_is_signaling_nan( float64 );
|
||||
|
Loading…
Reference in a new issue